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Abstract: Infrared and visible image fusion (IVIF) aims to render fused images that maintain the
merits of both modalities. To tackle the challenge in fusing cross-modality information and avoiding
texture loss in IVIF, we propose a novel edge-consistent and correlation-driven fusion framework
(ECFuse). This framework leverages our proposed edge-consistency fusion module to maintain rich
and coherent edges and textures, simultaneously introducing a correlation-driven deep learning
network to fuse the cross-modality global features and modality-specific local features. Firstly, the
framework employs a multi-scale transformation (MST) to decompose the source images into base
and detail layers. Then, the edge-consistent fusion module fuses detail layers while maintaining the
coherence of edges through consistency verification. A correlation-driven fusion network is proposed
to fuse the base layers containing both modalities’ main features in the transformation domain.
Finally, the final fused spatial image is reconstructed by inverse MST. We conducted experiments
to compare our ECFuse with both conventional and deep leaning approaches on TNO, LLVIP and
M3FD datasets. The qualitative and quantitative evaluation results demonstrate the effectiveness of
our framework. We also show that ECFuse can boost the performance in downstream infrared–visible
object detection in a unified benchmark.

Keywords: infrared–visible image; image fusion; nonsubsampled shearlet transform; deep learning

1. Introduction

Image fusion is a basic and popular topic in image processing that seeks to generate
informative fused images by integrating essential information from multiple source images.
Infrared and visible image fusion (IVIF) is one of the important sub-categories of image
fusion [1]. IVIF focuses on preserving detailed texture and thermal information in the
input images [2]. The fused images can mitigate the disadvantages of visible images, being
susceptible to illumination and other environmental conditions, as well as avoiding the
issue of infrared images lacking texture.

Numerous methods have been proposed to tackle the challenge of IVIF [3–11]. These
methods can be mainly categorized into deep learning-based approaches and conventional
methods. Deep learning methods are becoming increasingly popular in the fusion task
due to their ability to extract high-level semantic features [5,7,10,12], but there is still a
need for improvement in preserving complex and irregular edges within images. Infrared
and visible images, coming from the same scene, inherently share statistical co-occurrent
information, such as background and large-scale features. Transformer-based deep learning
frameworks are good at extracting global features from inputs, so they are well suited for
fusing the main features of infrared and visible images.
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Conventional methods offer better interpretability, and their rich prior knowledge
enables the design of fusion techniques that effectively preserve high- and low-frequency
information. But they may suffer from high design complexity. Conventional fusion meth-
ods can be generally divided into several categories according to their adopted theories [13],
i.e., multi-scale transformation (MST), saliency-based methods, sparse representation, sub-
space, etc. One of the most active and well-established fields for image fusion is MST. It
decomposes input images into a base layer containing low-frequency main feature and
detail layers containing high-frequency texture and edges. Some studies demonstrated that
MST-based methods are aligned with human visual characteristics [14,15] and this property
enables fused images to have an appropriate visual effect. Regarding MST-based fusion
schemes, many methods employ weighted averaging or maximum value schemes. Simple
weighted averaging may diminish the contrast of salient regions, while the pixel-wise
application of the maximum value strategy may not adequately preserve the continuity of
edges and textures.

To this end, we propose a novel edge-consistent and correlation-driven fusion frame-
work. Specifically, we first employ a MST-based method to decompose the input images
into low-frequency base layers and high-frequency detail layers. Subsequently, the edge-
consistent fusion module is proposed to adaptively fuse the detail layers that mainly
contain edges and textures. For the base layers, which are more suitable for extracting main
features employing deep learning, a correlation-driven deep learning network trained on
MST domain images is proposed to extract the base layers feature and fuse them. Finally,
the inverse MST is employed to reconstruct the final fused image. By combining deep
learning and conventional methods, their advantages can be kept. The effectiveness of the
combination of deep learning and conventional methods within our proposed framework
is validated through extensive experiments.

Our main contributions are summarized as follows:

1. We propose a novel edge-consistent and correlation-driven fusion framework. We
leverage the advantages of conventional methods and deep learning methods. Experi-
ments demonstrate our framework’s effectiveness and boost the performance in the
downstream infrared–visible object detection task.

2. We propose a novel edge-consistent fusion method. The proposed method aims
to transfer salient edges and textures from the source image to the fused image
while keeping edges intact, rather than merely fusing the pixel values from each
source image.

3. We propose a correlation-driven network that is applicable in the MST domain.
The correlation loss function is introduced to enforce the global encoder in extracting
shared cross-modal information, while the residual architecture enables the encoder
to preserve distinctive features for each modality.

2. Related Works

While it is common and feasible to perform object detection or segmentation tasks us-
ing either infrared or visible images individually [16,17], Tang’s research [18] demonstrates
that the fusion of infrared and visible images can improve the performance in downstream
tasks. This section briefly reviews the representative works of MST-based IVIF methods
and deep learning-based IVIF approaches.

2.1. MST-Based Fusion Methods

MST contains many methods, such as wavelet transform, contour transform, non-
subsampled contourlet transform (NSCT), and nonsubsampled shearlet transform (NSST).
Various MST-based methods have been applied to image fusion [14,19]. NSCT was pro-
posed by Da Cunha et al. [20], and is based on contourlet transform [21]. NSCT has been
widely applied in infrared and visible image fusion. The entropy of the square of the coeffi-
cients and the sum of the modified Laplacian were utilized in the frequency domain [19].
Easley et al. proposed NSST [22], which is realized by nonsubsampled Laplacian pyramid
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and shearing filters. Zhang et al. [9] proposed a new image fusion method regarding
global–regional–local rules applied to overcome the problem of wrongly interpreting the
source image. The source images are statistically correlated by the G-CHMM model, R-
CHMM model, and L-CHMM model in the high subband region. High-pass subbands
were fused by global–regional–local CHMM design and choose-max rules based on the
local gradient measure. Finally, the fused images were extracted by exploiting the inverse
NSST. Liu X et al. [3] proposed a multi-modality medical image fusion algorithm that uti-
lizes a moving frame-based decomposition framework (MFDF) and the NSST. The MFDF
is applied to decompose the source images into texture components and approximation
components. The maximum selection fusion rule is employed to fuse the texture compo-
nents, aiming to transfer salient gradient information to the fused image. The approximate
components are merged using NSST. Finally, a component synthesis process is adopted to
produce the fused image. Liu et al. proposed an image fusion algorithm based on NSST and
modified-spatial frequency (MSF) [4]. It selects the coefficients with greater MSF to combine
images when high-frequency and low-frequency subbands of source images are compared.
Miao et al. [23] proposed an image fusion algorithm based on the NSST. The algorithm
employs an average fusion strategy for the low-frequency information fusion and a novel
method to fuse high-frequency information.

Lots of MST-based fusion methods utilize weighted averaging or maximum value
strategies. However, simple weighted averaging may reduce the contrast of salient re-
gions, and the simple maximum value strategy is applied pixel-wise, which may not
preserve the continuity of edges and textures. To tackle these limitations, we propose
an edge-consistency fusion method. This method incorporates the activity rules to pre-
serve the brightness of salient edges and achieves texture continuity and integrity through
consistency verification.

2.2. Deep Learning-Based Fusion Methods

The convolutional neural network (CNN) is a commonly used deep learning network
model. In STDFusionNet [2], a salient target mask is employed to enhance the contrast
information from the infrared image in the fused image. This approach aims to achieve
a significant injection of contrast information. SeAFusion [7] is a novel semantic-aware
framework for fusing infrared and visible images, achieving outstanding performance in
image fusion and advanced visual tasks. These methods leverage CNN to extract features
and perform fusion operations, enabling the effective integration of information from
different modalities or sources. FusionGAN [6] is a groundbreaking method that applies a
generative adversarial network (GAN) to the field of image fusion. It establishes a genera-
tive adversarial framework between the fused image and visible image, allowing the fused
image to acquire texture and structure in a more enhanced manner. Following FusionGAN,
there have been numerous fusion methods inspired by GAN, such as TarDal [5]. Addition-
ally, a wide range of fusion methods based on autoencoders (AE) have been proposed by
researchers. These methods commonly employ AE to extract features from source images
and achieve image reconstruction. AE can capture relevant information and reconstruct
images effectively, making them a popular choice in fusion techniques. DenseFuse [8]
uses the structural strength of DenseNet [24], resulting in an effective fusion outcome.
DIDFuse [10] is also an AE-based image fusion method that replaces the transformers and
inverse transformers with encoders and decoders.

The deep learning methods excel at extracting high-level semantic features, and the
AE-based approaches are capable of capturing global information from images, making the
extraction of shared features between infrared and visible images more effective, such as
background and large-scale features. This advantage makes them well-suited for fusing
the main features of images. Therefore, we design a correlation-driven AE-based method
for fusing the main information of images.
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3. Method

Figure 1 depicts the schematic diagram of the proposed fusion framework. NSST
is one of the most popular MST methods, so we choose it as an implement to validate
the working of our method. Firstly, we employ NSST to decompose the source images
into their respective base and detail layers. Subsequently, the detail layers of infrared and
visible images are adaptively enhanced and fused using bilateral transpose consistency
module. Then, the base layers are fused by a correlation-driven network. Finally, the fused
base and detail layers are reconstructed into the final fused image using the corresponding
inverse transform.

Figure 1. The schematic diagram of the proposed fusion framework.

3.1. NSST Decomposition

As depicted in Figure 2, NSST decomposes the source image into a series of high-
and low-frequency sub-images. It can be divided into two major steps: (1) Multi-scale
decomposition can obtain subbands by using the non-subsampled (NS) pyramid filter.
(2) Shearlet transform (ST) is employed to obtain multi-directional decomposition. The ST
is close to the optimal sparse representation. The synthetic expansion of the affine system
is described as follows:

ΛAB(ψ) = {ψj,l,k(x) = |detA|j/2ψ(Bl Ajx− k) : j, l ∈ Z, k ∈ Z2},

where ψj,l,k represents a composite wavelet, A denotes the anisotropy matrix for multi-scale
decomposition, and B is a shear matrix for directional analysis. j, l and k are the scale,
the direction of decomposition, and the shift parameter, respectively.

Multi-scale 
Decomposition

Input Image

Lowpass
Subband

Highpass
Subband

Bandpass
Directional 
Subbands

Multi-directional
Decomposition

Highpass
Subband

Bandpass
Directional 
Subbands

Multi-directional
Decomposition

Figure 2. The schematic diagram of NSST decomposition.
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The layer corresponding to the lowest frequency is referred to as the base layer, while
the layers corresponding to higher frequencies are referred to as detail layers.

3.2. Edge-Consistent Detail Layers Fusion

Existing simple average or maximum fusion schemes are performed on each pixel
in the spatial image. However, detail layers obtained from NSST contain rich directional
texture information, and using a simple scheme does not fully exploit this directional infor-
mation. To provide a clear illustration of this effect, Figure 3 offers a one-dimensional signal
example. The visible image predominantly encompasses regular edge signals, whereas
the infrared image includes not only edge signals but also some noise. Employing simple
maximum or average strategies would both result in fused outcomes containing noise.
When the noise value exceeds the valuable signal in the other input image, the maximum
strategy would be entirely submerged by noise, and the average strategy would diminish
the value of the valuable edge information. In contrast, our proposed method retains
edge information from the input images, even in the presence of noise interference. Our
proposed edge-consistent fusion module consists of three main parts: bilateral transpose
correlation, smoothing, and activity-based fusion. It is important to note that both bilateral
transpose correlation and smoothing are designed to obtain the activity map, rather than
serving as the images for subsequent fusion. The edge-consistent fusion module preserves
the integrity of edges and textures while avoiding artifacts in the fusion result.
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Figure 3. Schematic diagram of the fusion results of our proposed method. (a) Visible. (b) Infrared.
(c) Max fusion scheme. (d) Average fusion scheme. (e) Our fusion scheme.

Firstly, the schematic diagram of the transpose correlation is shown in Figure 4.
The larger absolute values in the detail layers correspond to sharper brightness changes
and thus to the salient features in the image, such as edges, lines, and region boundaries. It
can be observed that the overlapping regions during the kernel movement add up. When
the pixels represented by red and blue belong to the edge, the accumulation will further
enhance the edge. When both of these pixels do not belong to the edge, the accumulated
value is relatively smaller. The size of the output image for transposed correlation can be
calculated using Equation (1).

O = (I − 1)× s + k, (1)
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where O represents the size of the output image, I represents the input size, k represents
the kernel size, and s represents the stride size. In this study, we simply choose s as 1 and k
as 3.

Stride: 1
+    : Add to the output

: Overlapped pixels

: A pixel's bilateral transpose   
  correlation result

: A pixel 

 : Multiplication

Figure 4. The schematic diagram of bilateral transpose correlation.

The design of the kernel is crucial for the performance of the transpose correlation.
Simple fixed kernels, while computationally efficient, often yield limited results. Another
commonly used Gaussian filtering kernel considers only spatial distances, neglecting sharp
changes in edges, leading to blurred edges. Bilateral filtering is a successful method, but its
purpose is to filter noise rather than being specifically designed for image fusion. There-
fore, we propose a novel non-iterative kernel construction method suitable for transpose
correlation. This method considers both value distances and spatial distances, enabling the
adaptive enhancement of edges and textures.

To obtain a bilateral kernel that can enhance both edges and textures, the value distance
matrix is defined as in Equation (2). Since the pixel values of the edges themselves are larger
or smaller, their corresponding pixel values should be less influenced by the surrounding
non-edge pixels. Therefore, choosing the cube of the value distance is necessary to reduce
the weight of the surrounding pixels. And if the surrounding pixels all belong to edges,
they will mutually enhance each other’s effects:

Gs(x, y) = exp (−
|x− µx|3 + |y− µy|3

2σ2
s

), (2)

where Gs represents the value distance matrix, µx denotes the current window’s center
x-coordinate and µy denotes the current window’s center y-coordinate. The parameter σs
represents the standard deviation of the spatial distance.

To consider the pixel value differences in the image, the value distance matrix is
defined as given in Equation (3). As the variations in the edge regions are significant, it is
essential to emphasize the extent of the pixel value changes, apart from considering the
spatial distances. Taking the grayscale image as an example, the pixel value changes often
exceed 100, which may lead to very small values in the numerator. To avoid an unnatural
reduction in pixel values, normalization is performed. Inspired by softmax, we employ an
exponential function for the normalization, which makes the value distance matrix more
sensitive to pixel value changes:

Gv(x, y) =
exp (− (I(x,y)−I(µx ,µy))2

2σ2
v

)

∑(x,y)∈Q exp (− (I(x,y)−I(µx ,µy))2

2σ2
v

)
, (3)

where Gv represents the value distance matrix, I(µx, µy) denotes the pixel value corre-
sponding to the current kernel center position, σv represents the value distance standard
deviation, and Q represents the window corresponding to the current kernel.
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With the spatial distance matrix and value distance matrix of the same size now de-
fined, the bilateral kernel can be formulated as shown in Equation (4). This kernel takes into
account both the differences in the pixel values between different pixels and the influence
of the spatial distances. The bilateral kernel is utilized in the bilateral transpose correlation:

K(x, y) =
Gs(x, y)× Gv(x, y)

∑(x,y)∈Q(Gs(x, y)× Gv(x, y))
, (4)

where the K is the bilateral kernel.
After the bilateral transpose correlation processing, the output is larger than the size

of the source image, so it needs to be restored to the same size as the source image. The
enhanced edges through the bilateral transpose correlation exhibit more pronounced dis-
tinctions between the infrared and visible images. However, the accentuation of the edges
can potentially introduce artifacts in the vicinity of the edges. So, smoothing is introduced
to ensure smoother transitions between edges and surrounding pixels, preserving edges
while achieving a more natural fusion outcome. This step accomplishes the consistency
verification of edges and their neighboring regions. The values in the smoothing kernel are
set to 1 in this paper. The smoothing is defined as Equation (5):

M =
k

∑
i=0

k

∑
j=0

I(i, j)× K(k− i, k− j), (5)

where M represents the result of the correlation, I denotes the input image, K refers to the
correlation kernel, and k represents the size of the correlation kernel.

After processing the infrared and visible detail layers described above, we obtain cor-
responding images with enhanced edges and textures. In Figure 5, to visually demonstrate
the effects of bilateral transpose correlation and smoothing, we provide an example using
the one-dimensional signal from Figure 3. From Figure 5, it is evident that the bilateral
transpose correlation amplifies the differences in the edges of the image. However, a little
noise in the infrared image is still greater than the edges in the visible image. Then, smooth-
ing raises all edges above the noise values, ensuring that the edges in the fusion result are
continuous and intact.
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Figure 5. Schematic diagram of the results of edge-consistent module. (a) Bilateral transpose
correlation result. (b) Smoothing result.

To obtain the activity map, we define higher pixel values in the grayscale image as
having higher activity and retain the positions with higher activity. The following formula
is designed to generate the activity map:

MA = sgn(Mv −Mi), (6)

where MA is the activity map. Mv and Mi represent the enhanced visible detail layers and
enhanced infrared detail layers, respectively.
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The fused detail layer can be obtained by the following equation:

MF(i, j) =

{
Mv(i, j), if MA(i, j) = 1
Mi(i, j), otherwise

. (7)

Figure 6 presents the visualized results of the aforementioned process. The NSST
decomposition yields multiple detail layers, each corresponding to different scales and
orientations of details. We illustrate the effectiveness of our proposed approach by selecting
one of these detail layers. As observed in the figure, the source visible and infrared detail
layers encompass distinct information. Following the application of the bilateral kernel,
edge and texture information receive enhancement. The coherence in the chosen pixels,
evident in the activity map, underscores the advantage of regionally consistent fusion,
ensuring the continuity and integrity of edges and textures. The ultimate fused result
adeptly not only retains the principal features of both infrared and visible images but also
captures intricate and comprehensive details.

Visible Detail Layer Activity Map Fused Detail Layer Infrared Detail Layer

Figure 6. Visualization of the edge-consistency fusion result.

Note that edge-consistency fusion is a generic multi-modal image fusion method,
and we only take the IVIF task as an example to explain its operation.

3.3. Correlation-Driven Base Layers Fusion

Both the infrared and visible images are captured from the same scene, thus containing
statistically similar information such as background and objects. However, due to their
different modalities, they also possess independent information, such as the rich textures in
the visible images and the thermal radiation information in the infrared images. Therefore,
our objective is to promote the extraction of modality-specific features and modality-shared
features by constraining the correlation between different modality images.

The correlation-driven network contains three main modules, i.e., a transformer-based
encoder for feature extraction, a fusion layer to fuse visible and infrared features, and a
decoder for generating fusion images.

3.3.1. Encoder

The residual architecture design of the encoder draws inspiration from ResNet [25],
enabling the global encoder to extract shared cross-modal features, while also ensuring that
the encoder captures modality-specific features for each modality.

First, we define some symbols for clarity in the formulation. The input paired infrared
and visible images are denoted as I ∈ RH×W and V ∈ RH×W×3. The global feature encoder
and transformer block are represented by G(·) and P(·), respectively.

Global encoder. The global encoder aims to extract global features {ΦV , ΦI} from
visible and infrared images {V, I}, i.e.,

ΦV = G(V), ΦI = G(I); (8)

The Restormer block can extract global features by applying self-attention across the
feature dimension. So, we employ it to extract cross-modality global features without
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increasing too much computation. The detailed architecture of the Restormer block can be
referred in Appendix A or the original paper [26].

Transformer block. The Transformer block receives the output of the residual struc-
ture network, retaining both the shared features across modalities and the distinct char-
acteristics within different modalities. Additionally, the Transformer block employs the
self-attention mechanism, enhancing the network’s ability to focus on the most relevant
features for effective fusion:

ΦVP = P(ΦV), (9)

where ΦVP is the encoded feature of V. And the infrared feature can be obtained similarly.
Because the balance of performance and computational efficiency is important, the LT
block [27] is chosen as the basic unit of the transformer block. The LT block shrinks the
embedding to reduce the number of parameters while preserving the same performance.

3.3.2. Feature Fusion Layer

The features of visible and infrared images are combined using an element-wise
average strategy, which is then used as the input to the fusion layer. Considering that the
inductive bias for feature fusion should be similar to feature extraction in the encoder, we
also employ LT blocks for the fusion layer:

ΦF = F (ΦVP ⊕ΦIP), (10)

where F represents the fusion layer. ⊕ is the element-wise addition.

3.3.3. Decoder

The decoder D(·) reconstructs the features into the fused base layer:

F = D(ΦF). (11)

Since the inputs here involving cross-modality features, we keep the decoder structure
consistent with the design of the global encoder.

3.3.4. Loss Function

There is no ground truth for the IVIF task. We introduce the intensity lossLint, gradient
loss Lgrad, and correlation loss LCC to constrain the visual quality of the fusion results.

The full objective function of the progressive fusion network is a weighted combination
of the intensity loss, gradient loss and correlation loss, which is expressed as follows:

Ltotal = α1Lint + α2Lgrad + α3LCC, (12)

where α1, α2 and α3 are the tuning parameters.
The intensity loss quantifies the disparity between the fused images and the more

salient regions within the infrared and visible images. Hence, we formulate the intensity
loss as follows:

Lint =
1

HW
‖F−max(I, V)‖1, (13)

where H and W are the height and width of the input image, respectively. ‖ · ‖1 stands for
the l1-norm. max(·) denotes the element-wise maximum selection.

Moreover, we expect the fused image to maintain the optimal intensity distribution
and preserve abundant texture details. The optimal texture of the fused image can be
expressed as a maximum aggregate of the infrared and visible image textures. Therefore,
a texture loss is introduced to force the fused image to contain more texture information,
which is defined as follows:
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Lgrad =
1

HW
‖|∇F| −max(|∇V|, |∇I|)‖1, (14)

where ∇ indicates the Sobel gradient operator.
The above losses aim to ensure that the fusion results closely resemble the source

images. However, they do not explicitly utilize the prior knowledge that the two modalities
correspond to the same scene. Given that both infrared and visible images capture the same
scene, it is evident that the background and common large-scale features are correlated.
To address this, we introduce a correlation loss, ensuring that the global encoder learns
related information while also easing the subsequent modules’ task of extracting modality-
specific features:

LCC =
1

CC(ΦV , ΦI) + µ
, (15)

where CC(·, ·) is the correlation coefficient operator, and µ here is set to 2 to ensure that
this term always remains positive.

In conclusion, our correlation-driven fusion network effectively preserves salient
regions and details from the source images while actively focusing on the correlation
between the two modalities. Therefore, this network utilizes the shared and distinct
information from both modalities, leading to meaningful and efficient fusion results.

After the fusion of detail and base layers, the inverse NSST is employed to reconstruct
the spatial final fused image.

4. Experimental Results and Analysis

We test the performance of our proposed framework on publicly available datasets
and compare it with thirteen state-of-the-art or well-known methods, including seven deep
learning methods, i.e., FusionGAN [6], DIVFusion [28], DenseFuse [8], DIDFuse [10], STD-
FusionNet [2], SeAFusion [7], TarDal [5], and six conventional methods, i.e., Wavelet [29],
ADF [30], TIF [31], LatLRR [32], FPDE [33], IFEVIP [34]. All methods were implemented
using publicly available codes, with parameters set according to the original paper. The ex-
periments were conducted on a platform equipped with an Intel(R) Core(TM) i9-10980XE
CPU @ 3.00 GHz and a NVIDIA GeForce RTX 3090 GPU.

4.1. Datasets and Settings

The TNO [35] dataset is utilized for testing our framework. We randomly select 42
pairs of typical images from it. This dataset contains multispectral nighttime images of
various military-related scenes, which are registered using different multiband camera
systems. With the development of technology, the image resolution is constantly improving,
so we also test with the newer LLVIP [36] dataset. This dataset is a registered infrared–
visible image dataset, with most image pairs taken under low light conditions. The dataset
consists of 3464 registered pairs of infrared–visible image pairs. For the training of the
correlation-driven network, a random selection of 90% of these pairs is used, and the
images are subjected to NSST decomposition. Additionally, a non-repeating subset of 10%
of the dataset is extracted to evaluate and test our framework. Note that fine tuning is not
applied to the TNO dataset to verify the generalization performance of the method.

The results of image fusion are usually evaluated objectively. However, in most
cases, the differences in fusion results obtained by different methods are small, making
it difficult to judge using subjective evaluation. Therefore, many metrics for measuring
fusion results have been proposed, most of which are designed based on the transfer of
edges and information. However, there is no absolute optimal metric, so it is necessary to
use multiple metrics to comprehensively evaluate different fusion methods. We use five
metrics to quantitatively evaluate different fusion methods, i.e., spatial frequency (SF) [37],
entropy (EN) [38], transfer edge information quantity (QAB/F) [39], standard deviation
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(SD) [40], and average gradient (AG) [41]. For these evaluation metrics, a larger value
indicates better fusion performance.

Parameter initialization. NSST uses the pyrexc filter for the shearlet transform. We
set four levels decomposition of NSST, and the decomposition direction of each level is
[8, 8, 8, 16].

For deep learning network training, the batch size is set to 8. We adopt the Adam
optimizer with the initial learning rate set to 10−3. The number of Restormer blocks is 4,
with 8 attention heads and 64 dimensions. The dimension of the LT block is same as that of
the Restormer. The parameters of the decoder are the same as those of the encoder. And α1
to α3 are set to 4, 4 and 1.

As other methods do not adjust fusion parameters during experimentation, we ensure
the fair comparison of our proposed framework by employing identical parameters in
experiments conducted on the two aforementioned datasets.

4.2. Comparison with Different Methods

In order to comprehensively evaluate the performance of our method, we compare
the proposed ECFuse with twelve other methods on the TNO and LLVIP dataset.

Visualization of features. Figure 7 visualizes the encoder features. Obviously, a larger
portion of background information within the feature becomes activated, and these ac-
tivated regions exhibit relevant characteristics. In this example, the infrared features
prominently emphasize object highlights, whereas visible features attentively capture in-
tricate details and textures, thus affirming the successful extraction of modality-specific
features. This visualization aligns seamlessly with our prior analysis.

ΦI

ΦV

CC: 0.9728 CC: −0.5577 CC: −0.9850

Figure 7. Visualization of the global encoder output.

Qualitative comparison. We show the qualitative comparison in Figures 8 and 9.
Obviously, our method better integrates thermal radiation information in infrared images
and detailed texture in visible images.

As shown in Figure 8, our approach is the only one that effectively preserves the object
highlighted within the red bounding box and the green box. Our method not only retains
the objects within the red box comprehensively but also maintains reasonable contrast
and brightness, which proves beneficial for observing objects in dark scenes. Further-
more, concerning the traffic light, wavelet, FPDE, DenseFuse, DIVFusion, STDFusionNet,
and DIDFuse do not effectively preserve the integrity of the object. The object’s bound-
ary is closely aligned with the background. Although other methods retain the object’s
integrity, their contrast is relatively weak. In contrast, our method’s fused result exhibits
a more pronounced contrast between the traffic light and the background. This more
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salient information is beneficial for accurately discerning object edges and improving our
understanding of the scene.

Figure 8. Visual quality comparison of different methods on TNO dataset. For clearer comparison,
regions with abundant textures are zoomed in with the red box and green box.

Figure 9. Visual quality comparison of different methods on #260061 image from LLVIP dataset.
For clearer comparison, regions with abundant textures are zoomed in with the red box and blue box.

From Figure 9, the car zoomed-in red box is clearly highlighted, even though it
is situated in a dark region. This highlighting allows foreground targets to be easily
distinguished from the background. Moreover, the background details, which would have
been difficult to identify due to low illumination, now possess clear edges and abundant
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contour information, helping us to better understand the scene. In well-exposed foreground
regions, both our method and other approaches retain the main features of the objects.
However, FusionGAN and IFEVIP suffer from a significant loss of fine details. While
other methods preserve most of the details, our approach excels at enhancing the details
of people and other objects with higher contrast. This heightened contrast effectively
highlights regions with valuable information, thus improving our focus and understanding
of salient targets.

Quantitative comparison. Afterward, five metrics are employed to quantitatively
compare the above results, which are displayed in Tables 1 and 2. Our method has excellent
performance on most metrics, indicating its suitability for diverse illumination conditions
and various target categories. Although the QAB/F metric does not show significant
advantages, the four other metrics demonstrate notable superiority. On the TNO dataset,
EN, SF, SD, and AG all exhibit a clear advantage over other methods. On the LLVIP dataset,
EN, SF, and SD continue to maintain significant advantages, with AG ranking second but
still showing notable superiority compared to other methods.

Table 1. Average evaluation metric values of different methods on TNO dataset. The best value in
each metric is denoted in bold, and the second-best score is highlighted with an underline. ↑ denotes
that a higher value indicates a better fusion result.

Methods EN ↑ SF ↑ SD ↑ QAB/F ↑ AG ↑ Deep
Learning

Wavelet [29] 6.3555 0.0250 8.5764 0.2848 2.3745 7

FPDE [33] 6.4162 0.0352 8.6362 0.4810 3.6136 7

ADF [30] 6.4268 0.0364 8.6496 0.5086 3.6570 7

LatLRR [32] 6.5153 0.0307 8.6676 0.4169 2.9607 7

TIF [31] 6.6779 0.0411 8.9052 0.4960 3.9615 7

IFEVIP [34] 6.8975 0.0421 9.0887 0.4109 4.1840 7

Densefuse [8] 6.3462 0.0252 8.5718 0.3493 2.5131 3

FusionGAN [6] 6.6434 0.0328 9.1039 0.3810 3.6985 3

TarDal [5] 6.8079 0.0417 9.0444 0.4125 3.8912 3

STDFusionNet [2] 6.9031 0.0455 9.0451 0.4677 4.3846 3

DIDFuse [10] 6.9586 0.0444 9.4718 0.3980 4.2668 3

SeAFusion [7] 7.1337 0.0480 9.5712 0.4872 4.9802 3

DIVFusion [28] 7.5933 0.0528 10.0987 0.3116 5.5602 3

Ours 7.6307 0.0576 10.1716 0.3432 6.0310 3

Table 2. Average evaluation metric values of different methods on LLVIP dataset. The best value in
each metric is denoted in bold, and the second-best score is highlighted with an underline.

Methods EN SF SD QAB/F AG Deep
Learning

Wavelet [29] 6.8964 0.0241 9.4977 0.1996 2.0167 7

FPDE [33] 6.9161 0.0451 9.4264 0.4909 3.6297 7

ADF [30] 6.9282 0.0489 9.4236 0.5273 3.8861 7

LatLRR [32] 6.9748 0.0450 9.3101 0.4535 3.2089 7

TIF [31] 7.0605 0.0635 9.4683 0.6354 4.7440 7

IFEVIP [34] 7.4487 0.0566 9.6836 0.4957 4.1067 7

DenseFuse [8] 6.8899 0.0375 9.4237 0.3530 2.9379 3

FusionGAN [6] 7.0468 0.0293 10.0528 0.2956 2.3374 3

TarDal [5] 7.1872 0.0511 9.6212 0.3857 3.5221 3

STDFusionNet [2] 5.4825 0.0522 6.8897 0.4898 3.4384 3

DIDFuse [10] 6.1477 0.0508 8.0359 0.3605 6.2487 3

SeAFusion [7] 7.4457 0.0626 9.8828 0.6254 4.7663 3

DIVFusion [28] 7.5716 0.0547 10.0577 0.3312 4.6006 3

Ours 7.6913 0.0667 10.1742 0.4865 5.6376 3
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In summary, the fusion results with high contrast and preserved objects in low-light
environments contribute to a better understanding of the scene. The advantages demon-
strated in the quantitative evaluation indicate that we retained more information from the
source images. Both qualitative and quantitative evaluations show the effectiveness of
our method.

4.3. Ablation Study

Ablation experiments are set to verify the rationality of the different modules. The same
metrics are used to quantitatively validate the fusion effectiveness.

4.3.1. Edge-Consistent Fusion Module Analysis

The role of the edge-consistent fusion module is to adaptively perform region-wise
consistency verification fusion using the carefully designed bilateral kernel. The processes
of bilateral transpose consistency and smoothing enhances the edges and textures in the
activity map adaptively, ensuring the consistency and integrity of textures and edges in the
subsequent fusion process, which helps reduce artifacts in the fusion results. The activity-
based fusion strategy retains regions with higher information content, which generally
correspond to textures and edges. Since this module involves fusion, it cannot be simply
removed. To provide a comparison, we select two other common fusion strategies: the
pixel-wise average value strategy and the pixel-wise maximum value strategy. Both of
these strategies simply fuse each pixel from the source images without considering the
integrity of textures and edges.

As shown in Figure 10, we replace the proposed edge-consistency fusion module with
both the max fusion scheme and average fusion scheme fusion strategies. Observing the
drainage pipe region in the zoomed box, it is evident that neither the maximum value nor
the mean value strategy manages to preserve sharp and continuous edges. In contrast, our
proposed method retains continuous edges and obtains better visual appeal.

(a) (b)

(c) (d) (e)

Figure 10. Vision quality comparison of different configurations on TNO dataset. For clearer comparison,
regions with abundant textures are zoomed in the red box. (a) Visible image. (b) Infrared image (c) Max
fusion scheme. (d) Average fusion scheme. (e) Ours.

From Tables 3 and 4, we can observe that on both the TNO and LLVIP datasets, our
proposed method outperforms the other two methods in most metrics, which aligns with
the aforementioned analysis. On the TNO dataset, only QAB/F falls slightly behind the
average fusion scheme, but the difference is minimal. On the LLVIP dataset, only the
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SD metric lags. In summary, our proposed method outperforms both the average fusion
scheme and the maximum fusion scheme.

Table 3. Bilateral transpose consistency ablation experiment results in the testset of TNO. Bold
indicates the best value.

Detail Layers Fusion
Scheme EN SF SD QAB/F AG

I Average 7.6225 0.0484 10.1660 0.3439 5.4032
II Max 7.6276 0.0499 10.1663 0.3320 5.5974

Ours 7.6307 0.0576 10.1716 0.3432 6.0310

Table 4. Bilateral transpose consistency ablation experiment results in the testset of LLVIP. Bold
indicates the best value.

Detail Layers Fusion
Scheme EN SF SD QAB/F AG

I Average 7.6802 0.0482 10.1943 0.4577 4.6234
II Max 7.6844 0.0501 10.1808 0.4268 4.8022

Ours 7.6913 0.0667 10.1742 0.4865 5.6376

4.3.2. Correlation-Driven Fusion Network Analysis

The results of the ablation experiments on the correlation-driven deep learning net-
work are presented in Tables 5 and 6. We simulate multiple comparative scenarios on the
correlation loss to validate its effectiveness. Additionally, we compare the performance of
using the conventional method alone or the deep learning method alone. Through these
comparisons, it is evident that the combination of conventional methods and deep learning
methods holds unique advantages.

Table 5. Ablation experiment results in the dataset of TNO. The best value in each metric is denoted
in bold, and the second-best score is highlighted with an underline.

Configurations EN SF SD QAB/F AG

I w/o LCC 7.5903 0.0576 9.8871 0.3356 6.0326
II LCC → CC2 7.6045 0.0576 10.0538 0.3386 6.0275
III LCC → µ− CC 7.5893 0.0576 10.0852 0.3491 6.0309

IV Framework→ Base layer
fusion network 6.9685 0.0423 9.3970 0.5471 4.0464

V Base layer fusion network→
Max 7.3181 0.0571 9.7470 0.3805 5.8766

Ours 7.6307 0.0576 10.1716 0.3432 6.0310

Table 6. Ablation experiment results in the dataset of LLVIP. The best value in each metric is denoted
in bold, and the second-best score is highlighted with an underline.

Configurations EN SF SD QAB/F AG

I w/o LCC 7.5084 0.0662 9.6513 0.4924 5.5903
II LCC → CC2 7.6911 0.0664 10.2043 0.4870 5.6036
III LCC → µ− CC 7.6937 0.0657 10.2064 0.4907 5.5502

IV Framework→ Base layer
fusion network 6.9358 0.0497 9.4454 0.5353 3.4039

V Base layer fusion network→
Max 7.6775 0.0659 10.2227 0.4905 5.5412

Ours 7.6913 0.0667 10.1742 0.4865 5.6376
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Correlation loss. In Configuration I, we do not use the correlation loss, and the
results shows that the correlation loss is necessary for feature decomposition. While there
is a slight advantage for one quantitative evaluation metric in both the TNO and LLVIP
datasets compared to our method, the difference is minor. On the other hand, our method
demonstrates a significant advantage across other metrics. There is no guarantee that the
global encoder can learn the global features without correlation loss.

In Configuration II, we modify the loss function LCC to CC2, which signifies that the
global encoder is intended to extract unique features from different modalities. Subsequent
encoders receive cues from these distinctive features while simultaneously learning shared
features from both modalities. From the quantitative evaluation results, it is evident
that this design brings improvements when compared to excluding the correlation loss.
However, there is still a gap when compared to our original proposed loss function. This
observation aligns with our earlier analysis, which emphasizes that since infrared and
visible images capture the same scene, the background and overarching features, which
dominate the image content, are inherently correlated.

In Configuration III, we replace the division operation in the loss function LCC with
subtraction, while keeping the objective of the global encoder extracting shared features
across modalities unchanged. The quantitative evaluation results indicate that this al-
ternative design yields satisfactory outcomes, achieving optimal results in the SF metric
on the TNO dataset and the EN metric on the LLVIP dataset. Nevertheless, taking a
comprehensive view, the design involving division remains superior in terms of overall
performance. In conclusion, both division and subtraction designs validate the significance
of the correlation loss in enhancing the fusion results, thereby affirming the validity of our
proposed method.

Collaboration of the conventional method and the deep learning method. To vali-
date the effectiveness of integrating deep learning networks with conventional methods,
we experiment with Configuration IV and Configuration V. In Configuration IV, only the
deep learning network is retained. In this setup, the source images are directly fed into
the correlation-driven deep learning network, with the final fused image as the output.
Notably, the deep learning network in Configuration IV is trained on the original spatial
image dataset, making it suitable for fusing spatial images. In Configuration V, the deep
learning network is replaced by a conventional fusion scheme. Tables 5 and 6 reveal that the
fusion method using only deep learning or conventional method has an advantage in the
QAB/F metric, but it significantly lags behind in most other metrics. Thus, from the quanti-
tative evaluation, using only the correlation-driven deep learning network or conventional
method is not as effective as our proposed framework.

For a qualitative illustration of the combined effect of deep learning and conventional
methods, Figure 11 presents a comparison among the results of using only our proposed
deep learning network, only conventional methods, and our proposed framework. As ob-
served in the figure, the fusion outcome from using only deep learning appears generally
darker, failing to effectively preserve the features of the thermal targets and lacking in detail
richness. The fusion result obtained solely from conventional methods loses the texture of
the roof. However, our proposed method not only retains the features of thermal targets
but also preserves a greater amount of texture. This demonstrates that the deep learning
network we propose, combined with our conventional method-based detail-level fusion
strategy, is better suited for complementary utilization.

In summary, the ablation results demonstrate the effectiveness and rationality of our
framework design:
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(a) (b)

(c) (d) (e)

Figure 11. Vision quality comparison of different configurations on TNO dataset. For clearer
comparison, regions with abundant textures are zoomed in with the red box. (a) Visible image.
(b) Infrared image (c) Only correlation-driven network. (d) Only the conventional method. (e) Ours.

4.4. Downstream Infrared–Visible Object Detection

Setup. The infrared–visible object detection is performed on the M3FD dataset [5]
with 4200 pairs of infrared/visible images, and six categories of labels (i.e., people, car,
bus, motorcycle, truck and lamp). It is divided into training/validation/test sets with a
proportion of 8:1:1. YOLOv5 [42], a SOTA detector, is employed to evaluate the detection
performance with the metric mAP@0.5. The training epoch, batch size, optimizer and initial
learning rate are set as 300, 8, SGD optimizer and 1 × 10−2, respectively.

Comparison with SOTA methods. Table 7 shows that ECFuse has the best detection
performance, especially in the motorcycle class, demonstrating that ECFuse can improve
the detection accuracy by fusing thermal radiation information.

Table 7. AP0.5(%) values for infrared–visible detection on M3FD dataset. Bold indicates the best value.

Bus Car Lam Mot Peo Tru mAP@0.5

IR 91.1 85.4 66.5 74.5 76.0 74.1 77.9
VI 91.1 88.6 78.8 75.0 67.5 76.4 79.6

FusionGAN 90.7 85.4 66.0 74.5 76.0 77.2 78.3
DIDFuse 93.0 87.8 77.7 69.2 74.4 81.6 80.6

STDFusionNet 92.4 87.8 73.0 75.1 73.1 78.2 79.9
TarDal 90.4 87.3 74.1 73.9 75.1 80.5 80.2

SeAFusion 95.1 88.9 77.6 70.6 76.2 77.1 80.9
DenseFuse 94.5 88.7 77.6 73.3 75.0 78.9 81.3
DIVFusion 92.4 87.8 76.9 73.5 72.0 79.4 80.3

Ours 92.6 87.2 76.4 80.2 74.7 79.7 81.8

As shown in Figure 12, only the source visible image, FusionGAN, DIDIFuse, TarDal,
and our method accurately detect both the human and motorcycle. In Figure 13, the source
visible image contains a heavily occluded car that remains undetected in either the isolated
visible or infrared images. Among all the methods, SeAFusion, DIDFuse, STDFusion-
Net, and our method successfully detect this heavily occluded car. In summary, our
approach improves the detection accuracy of objects that are challenging to detect in
individual modalities.
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Visible Infrared FusionGAN

DenseFuseDIDFuse ECFuseSTDFusionNetTarDal

SeAFusion DIVFusion

Figure 12. Target detection results on #02788 from M3FD dataset.

DenseFuseDIDFuse ECFuseSTDFusionNetTarDal

Visible Infrared FusionGAN SeAFusion DIVFusion

Figure 13. Target detection results on #03738 from M3FD dataset.

5. Conclusions

In this paper, we propose an edge-consistent and correlation-driven fusion framework
for infrared and visible image fusion. Based on NSST decomposition, we obtain the detail
layers containing image details and textures, as well as the base layer containing main
features. Subsequently, the edge-consistent fusion module adaptively fuses the texture and
edges in the detail layers. Then, the correlation-driven deep learning network is proposed
to extract the global and modality-specific information in the visible and infrared images
and fuse them. Experiments demonstrate that both qualitative and quantitative evaluations
are improved. What is more, we also show that ECFuse can boost the performance in
downstream infrared–visible object detection.
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Figure A1. The detail architecture of the global encoder module.
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