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Abstract: With the sustainable development of intelligent fisheries, accurate underwater fish seg-
mentation is a key step toward intelligently obtaining fish morphology data. However, the blurred,
distorted and low-contrast features of fish images in underwater scenes affect the improvement in fish
segmentation accuracy. To solve these problems, this paper proposes a method of underwater fish
segmentation based on an improved PSPNet network (IST-PSPNet). First, in the feature extraction
stage, to fully perceive features and context information of different scales, we propose an iterative
attention feature fusion mechanism, which realizes the depth mining of fish features of different
scales and the full perception of context information. Then, a SoftPool pooling method based on
fast index weighted activation is used to reduce the numbers of parameters and computations while
retaining more feature information, which improves segmentation accuracy and efficiency. Finally, a
triad attention mechanism module, triplet attention (TA), is added to the different scale features in
the golden tower pool module so that the space attention can focus more on the specific position of
the fish body features in the channel through cross-dimensional interaction to suppress the fuzzy
distortion caused by background interference in underwater scenes. Additionally, the parameter-
sharing strategy is used in this process to make different scale features share the same learning weight
parameters and further reduce the numbers of parameters and calculations. The experimental results
show that the method presented in this paper yielded better results for the DeepFish underwater fish
image dataset than other methods, with 91.56% for the Miou, 46.68 M for Params and 40.27 G for
GFLOPS. In the underwater fish segmentation task, the method improved the segmentation accuracy
of fish with similar colors and water quality backgrounds, improved fuzziness and small size and
made the edge location of fish clearer.

Keywords: fish; underwater fish segmentation; PSPNet; different scale features; fish characteristics

1. Introduction

As human beings focus increasingly on the diversity of fishery resources and marine
ecosystems, an increasing number of research fields need to be combined with research
on underwater fish segmentation, which is necessary for marine biology research, marine
ecological protection and fishery resource management. In the research of these related
fields, it is necessary to accurately obtain the shape, size and quantity of fish to provide
data for further research. However, due to immature technology in the early days, the
acquisition of morphological data of underwater fish is mainly based on traditional mea-
surements after landing. The disadvantages of using traditional measurement methods
are obvious; for example, manual measurement is time-consuming and labor-intensive
and is even less efficient when a fish population is large. With the popularization and
application of information technology, morphological measurements of fish have begun to
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be performed by transmitting machines, and there is still room for further improvement in
efficiency. Therefore, underwater fish segmentation is an important research topic in the
era of intelligence.

However, for special underwater scenes, the existing segmentation methods face many
challenges. First, imaging equipment may encounter color distortion, noise pollution and
insufficient light propagation in an underwater environment, which results in low recogni-
tion and contrast in the obtained underwater images. Second, the variety of organisms that
exist in the underwater environment similar in shape and color to fish also interferes with
our ability to divide fish. In addition, there is a wide variety of fish species underwater,
and images of fish captured using imaging equipment tend to vary in scale and attitude.
These problems make it more difficult to achieve accurate underwater fish segmentation.

At present, fish segmentation methods are divided into traditional methods and
deep-learning-based methods.

The traditional method divides the target according to the edge and color of the
creature’s body. In 2000, Angelo Loy et al. [1] used Fourier analysis to detect the shapes of
finfish, which is considered the best automated method for detecting fish via traditional
methods. In 2011, Meng-Che Chuang et al. [2] used histogram backprojection on dual
local-threshold images to ensure further effective fish segmentation. In 2014, LAN Yongtian
et al. [3] obtained dichotomous images of fish movements by combining three frames of
difference with logical and mathematical morphological operations. In 2020, HE Qianhan
et al. [4] developed a method to extract the contours of horny jaws using the Canny
algorithm, contributing to easy access to information on biomorphology. In 2021, Hitoshi
Habe et al. [5] proposed a National Aeronautical Advisory Council (NACA) attitude
estimation method for fish wing models to identify fish accurately. However, this method
required extracting fish morphology from the dataset. Moreover, if an image was blurred
or disturbed by other factors, such as illumination, the extracted features were easily
incomplete.

Semantic segmentation technology based on deep neural networks is a very advanced
underwater fish segmentation method. Semantic segmentation belongs to a category of
image classification, but it marks different image areas according to the semantic categories
in the image and classifies each pixel in an image to generate the fine-grained mapping
of semantic labels to image information. In 2017, Alfonso B. Labao et al. [6] used the
ResNet-FCN network model to semantically segment fish in underwater videos only using
input characteristics based on fish color. In 2020, Rafael Garcia et al. [7] used the Mask
R-CNN architecture to locate and segment fish in images. In 2020, Fangfang Liu et al. [8]
introduced an unsupervised color correction module (UCM) based on the DeepLabv3+
network and altered the upper sampling layer in the network, showing that their method
improved segmentation accuracy. In 2021, Wenbo Zhang et al. [9] proposed a two-pool
polymerization attentional network to improve underwater fish segmentation accuracy
using a pool polymerization positional attention module and a pool polymerization channel
attention module. In 2022, Jinkang Wang et al. [10] proposed an underwater image semantic
segmentation method to precisely segment targets; however, the first step in this method
was to improve image quality by performing image enhancement operations based on
multispatial transformation. In recent years, increasing numbers of researchers have begun to
improve segmentation accuracy from the perspective of integrating multiscale features of fish
targets, such as the multiscale CNN network [11–14] and the porous GAN network [15–18].

Each of the above deep-learning-based approaches has its advantages, but the fuzzy
and distorted images of fish in underwater scenes and the disturbance in the surrounding
environment still pose challenges to accurate fish segmentation. In response to the above
challenges, this paper uses PSPNet [19], which can integrate multiscale features as the
basic network. An improved underwater fish segmentation algorithm based on PSPNet is
proposed. This method can improve fish segmentation accuracy for fuzziness, similar colors
and backgrounds and small sizes. The main contributions of this article are as follows:
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(1) We propose an improved PSPNet network model for underwater fish segmentation. In
the feature extraction phase, this article uses an iAFF module to connect to ResBlock.
iAFF realizes the full perception of multiscale characteristics and environmental
information of a target through the MS-CAM module, and global and local features
are integrated through AFF. In addition, iAFF integrates more contextual information
through its iterative nature to facilitate the overall understanding of fish in underwater
images, thereby improving fish segmentation accuracy.

(2) To retain more fish characteristic information at the feature extraction stage, this
article replaces the average pooling in the backbone ResNet50 network with SoftPool.
Softpool reduces the number of parameters and increases the number of calculations
after adding iAFF to the model through the fast exponential weighted calculation
method, and the inference speed and precision are effectively improved.

(3) To make fish features more distinctive in underwater environments, in this paper a
triplet attention mechanism module, triplet attention (TA), is added to the different
scale features in the pyramid pool module to realize more detailed attention to fish
features. The TA module captures richer feature information of fish targets in a
cross-latitude, interactive way, which improves segmentation accuracy.

(4) In adding TA modules, we use a parameter-sharing strategy, which can reduce the
numbers of model parameters and calculations by sharing the parameter weights of
different scale features after passing through the TA module.

Compared to other underwater fish segmentation methods, the proposed IST-PSPNet
(iAFF + SoftPool + TA) method achieves better segmentation accuracy for DeepFish datasets.
In addition, the Params and GFLOPS model results do not increase compared to the baseline
(PSPNet). The results also show that the proposed method can improve the MPA and FPS.
In addition, we verify the effectiveness of our method.

The rest of this paper is arranged as follows. In the second section, the structure of the
underwater fish segmentation IST-PSPNet method is introduced in detail. The third section
gives the experimental results and analysis. The fourth section summarizes the work in
this paper.

2. Proposed Method
2.1. Overall Network Structure

In this paper, a new method, IST-PSPNet, is proposed to solve the underwater fish
segmentation problem. Its structure consists of an input image, a backbone network, an
improved pyramid pooling module and an output image. Figure 1 shows the overall
structure of the IST-PSPNet network. In this model, the main improvements were based
on the ResNet50 backbone; the iAFF module was designed and connected to ResBlock in
ResNet50 to achieve iterative attention feature fusion; SoftPool was used to reduce the
numbers of parameters and computations, replacing AvgPool after the last ResBlock in
ResNet50; and the TA triad attention mechanism module was added to the different scale
features in the gold-tower pool module to focus on the specific location of fish body features
in the channel.

In the IST-PSPNet network structure for the input underwater fish images, feature ex-
traction is carried out by the improved ResNet50. To mitigate the impact of the scale change
in the feature map and smaller fish bodies in the feature extraction stage, connecting and
embedding the iAFF module can effectively integrate fish body features with inconsistent
semantics and scales by aggregating contextual information from different receptive fields
for fish bodies with different scales. After that, the feature map can retain more feature
information while reducing the size through SoftPool.

Then, the resulting global feature information is passed through the pyramid module,
and four different sizes of feature information are obtained using different degrees of pool-
ing operations. After that, the feature information of four different sizes is passed into the
TA module through convolution. While the parameter number is ignored, the TA module
captures the cross-dimensions between the spatial and channel dimensions of the first
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first-scale feature via cross-latitude interaction. Then, the first first-scale feature is shared
with other features via the weight of the TA module through a parameter-sharing strategy,
which reduces the number of parameters while improving the overall generalization ability.
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Finally, the feature information obtained through the TA module is upsampled and
then interpolated with the original feature map. The feature information extracted from
the shallow network is fused with the deep feature information after passing through
the pyramid network to obtain the global feature information. Finally, the fish prediction
results are obtained after decoding.

2.2. iAFF Module

During the fish feature extraction stage, the ResBlock in ResNet50 utilizes skip con-
nections, a form of linear connection, to pass the input feature information directly to the
ResBlock so that the input feature information is directly added to the output. However,
this approach does not fully perceive the context and does not further improve the se-
mantic and scale inconsistencies between input features. For special scenes, such as those
underwater, the feature information needs to be more detailed. Therefore, we proposed
that the iterative attention feature fusion (iAFF) module [20] (shown in Figure 2) replace
the common fusion approach in ResBlock. Experiments show that embedding this module
can improve fish segmentation accuracy in underwater scenes.

To fully perceive the context, initially integrating the input features is the key point. In
this paper, AFF is used to implement two attention modules to fuse input features to form
an iAFF (iterative attention feature fusion) module. The equations for AFF and iAFF are
as follows:

Z = M(X ]Y)⊗ X + (1−M(X ]Y))⊗Y (1)

X ]Y = M(X + Y)⊗ X + (1−M(X + Y))⊗Y (2)

X is the constant mapping of input characteristics, Y is the residual of learning in
ResNet, Z is the output fusion feature, ⊗ denotes elementwise multiplication and ] is the
integration of initial input characteristics. The above calculation equations represent the
process of combining the different initial features X and Y. 1 −M (X ] Y) is the dotted line
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in the iAFF structure; the fusion weight M (X ] Y) is made up of real numbers between
0 and 1; and 1 −M (X ] Y) is made up of real numbers between 0 and 1, which enables
the model to learn the weight between X and Y via training. M denotes the multiscale
channel attention module, which is the core module that makes up AFF and iAFF and
whose structure is shown in Figure 3. The key idea is to achieve channel attention at
multiple scales by changing the size of the spatial pool.
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MS-CAM aggregates more contextual information along channel dimensions, adds
global mean pooling as a global channel branch and selects point-by-point convolution
(PWConv) as a context aggregator for local channels. Compared to other channel atten-
tion modules, MS-CAM can simultaneously focus on larger objects with a more global
distribution and smaller objects with a more local distribution. For this particular un-
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derwater scenario, the enhanced model’s attention to the local features of smaller fish is
undoubtedly critical.

2.3. SoftPool

During the feature extraction phase, the ResNet50 used in this article reduces the size
of the feature diagram via pooling, a process that is important for increasing the sensory
field and reducing the computational load. However, in underwater scenes, images are
often affected by complex factors such as light, sediment and water quality, which lead to
some ambiguity, distortion and fish feature distortion. Therefore, the pooling operation,
which can retain more characteristic information, is the key to fish edge feature extraction.

In this paper, we preserve more characteristic information in the feature diagram
during the poolization process. We replace AvgPool in ResNet50, the backbone of PSPNet,
with SoftPool [21], a rapid exponentially weighted activation sampling method derived
from ablation experiments using a range of architectures and pool-based methods, as shown
in Figure 4. In the ImageNet 1K classification task, replacing the pool layer in ResNet50
revealed that SoftPool showed some improvement in accuracy and CUDA-based inference
time (FPS) and reduced computational complexity (GFLOPS) compared to architectural
baselines and other pool methods.
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Softpool is a kernel-based pooling approach that provides a balance between maxi-
mum and average pool-based operations by exponentially weighting each part of a region
based on the strength of the feature map region. In our experiments, we demonstrated that
SoftPool can retain more information about fish features on the feature maps of underwa-
ter scenes, which is directly reflected in improved segmentation accuracy and improved
computational and memory efficiency.

As shown in Figure 4, the SoftPool working diagram is subsampled using a (2 × 2)
kernel to output an exponential weighted sum of the original pixels in the fish feature area.

This greatly improves the representation of the high-contrast areas that exist at the
edge of the fish and in underwater scenes. To simplify the symbols, we ignore the channel
dimension and assume that R is the index set corresponding to the features in the considered
2D spatial region. The Wi weight is the ratio of the natural index of a feature to the sum of
all the features. Here is how SoftPool calculated this:

∼
a = ∑

i∈R

eai × ai

∑
j∈R

eaj
(3)
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∼
a is the SoftPool output value. ai denotes each feature. ∑

j∈R
eaj is the sum of the natural

indices of all the features.

2.4. TA Module

In underwater environments, due to the different distances traveled by light of dif-
ferent wavelengths in water, water colors vary in images. As a result, there are situations
where fish of different colors and water with different coloration exhibit highly similar
features. As shown in Figure 5a, the textured colors of the three tagged fish are highly
similar to the background colors, which makes it difficult to identify fish body features.
In addition, underwater environments typically contain ecological information such as
algae, vegetation and reefs, which also directly contribute to the low differentiation of fish
in such scenarios. As shown in Figure 5b, there are reefs and vegetation interference in
the living environment of the three species of fish, which limit the attention of the lower
network to the characteristic fish information. In the fish segmentation task, we believe that
adding attention mechanisms after different scale features can improve the adaptability
and robustness of a network to the underwater environment, placing focus more on the
detailed fish feature information and improving the understanding ability of fish features.
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Figure 5. The underwater fish scenes in the DeepFish dataset. (a) The color of the fish body is similar
to the color of the underwater background. (b) The color of the fish is similar to the color of the
disturbance (stone, wood) in the background.

In the feature extraction stage, the backbone network (ResNet50) utilizes the iAFF
module’s MS-CAM channel attention module to continuously acquire global and local
feature weights along the channel dimension of the feature maps. This enhances the
information exchange among channels. However, weighting in spatial dimensions is
neglected, which means that the model cannot accurately adjust spatial feature responses in
different locations as the layers deepen. Additionally, when calculating channel dimension
weights, the global mean pooling performed breaks down the space in the input feature
diagram into one pixel per channel. This results in a large loss in spatial information so
that, when calculating attention on these single-pixel channels, there is no interdependence
between channel and spatial dimensions. This may affect segmentation performance in
fish segmentation missions.

To solve the problem of fish features being obscured by water quality and other
ecological information interference, a triplet attention mechanism (TA) module [22] is
added to the pyramidal pool module (PPM) after different scale features. The TA module
constructs the dependence of fish features between channels and spatial dimensions by
rotating operation and residual transformation. The channel and spatial information are
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encoded with a negligible number of parameters. Specifically, for fish features, the TA
module can focus spatial attention on specific locations in the channel by interacting across
dimensions. The use of a TA module can compensate for our lack of attention to spatial
dimensions by suppressing background interference in underwater scenes, highlighting
fish features (contours and details) and making the different scale features in the pyramidal
pool module more distinguishable, which can then be fused for more detailed results.

As Figure 6 shows, the input of the triad attention mechanism module is a small-scale
feature in a pyramid pool module consisting of three parallel branches, in which Z-pool
is responsible for reducing the tensor’s zero dimension to two dimensions by connecting
the average pool feature and the maximum pool feature on the tensor dimension in that
branch. This enables the layer to retain a wealth of information in the original tensor while
reducing its depth for further calculation, as represented by the following equation for
Z-pool:

Z− Pool(x) = [MaxPool0d(x), AvgPool0d(x)] (4)

Of these, 0d is the zero dimension after maximization and average poolization. For example,
a Z-pool with a tensor in the shape of (C × H × W) produces a tensor in the shape of
(2 × H ×W).
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In this module, the interaction between the height dimension and channel dimension
is first established at the top branch; the input tensor X rotates counterclockwise at 90◦

along the height axis H to obtain the tensor
∧
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∧
X1 is reduced to

∧
X
∗

1 via the
Z-pool back channel and standard convolution of 7 × 7 through the core. Then, the tensor
is passed to the sigmoid activation layer via the normalized layer to generate the final

effective attention weight. The attention weight is then applied to
∧
X1 and rotated clockwise

at 90◦ along the height axis H to obtain the original input tensor shape. Similarly, input on
the second branch rotates counterclockwise at 90◦ along the width axis W to obtain tensor
∧
X2, reduces to

∧
X
∗

2 after passing through Z-pool and then undergoes a series of operations
identical to the first branch to obtain the final attention weight. In the last branch, the

input tensor X passes through the Z-pool to obtain
∧
X3 and experiences the normalization

layer and the sigmoid layer to generate the final attention weight. The final output is then
obtained via averaging operations to aggregate the fine tensor of the shape (C ×W × H)
generated by each of the three branches. Therefore, the above process can be expressed in
the following equation:
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σ represents the sigmoid activation function. δ1, δ2 and δ3 represent a two-dimensional
convolution layer with a kernel size of (7 × 7) in each of the three branches.

In this paper, after adding the TA module to the different scale features of the pyramid
pool module, we also use a parameter-sharing strategy to share the weight of features
learned from small-scale features through the TA module to other scale features to improve
the generalizability and robustness of the input of the model. In summary, the addition
of the TA (triplet attention) module aims to enhance the focus on fish characteristics
within the pyramid pooling module without increasing the number of parameters, thereby
improving the accuracy of the fish segmentation model. The parameter-sharing strategy is
employed to accelerate the model-training process and inference speed, thereby enhancing
the computational efficiency of the model.

3. Experiments
3.1. Experimental Setting
3.1.1. Dataset

Our method was experimentally validated using the DeepFish dataset. The DeepFish
dataset, collected by James Cook University’s Alzayat Saleh team from 20 habitats in
the remote coastal marine environment of Australia’s subtropics, contains approximately
40,000 images captured using fixed underwater cameras. The team’s main goal was to
study the effects of underwater habitat characteristics and environmental background on
fish biota. The dataset consists of three parts: classifying, localization and segmenting.
Classifying is for image classification tasks, while localization is for target detection tasks.
Our task used the segmentation section, which contained fish segmentation labels. This
section deals only with foreground and background types of fish in the water. Segmentation
consists of two types of images of habitat without fish and habitat with fish, with a total
of 620 images and their corresponding segmented masks. For our experiment, the quality
of model training was affected by the fact that 310 images did not contain fish targets.
Therefore, we extracted images of 20 habitats using Python code, with 25 images containing
fish extracted for each habitat. We specifically created corresponding labels to match
the images and label masks. In this work, we combined the extracted images with the
previous 620 images to obtain a total of 1120 images, of which the training set contained 784
images, and the verification set and the test set had 168 images each. In this dataset, there
were various pieces of ecological information and water-color-specific situations. In this
case, the fish had the typical characteristics of fuzzy images, unclear feature textures, low
contrast, occlusion, etc., which created certain difficulties in fish segmentation. To verify
the robustness of the experiment, the dataset was not subjected to any image enhancement
operation to bring it closer to a pristine environment.

3.1.2. Implementation Configuration

This article trained our proposed model with NVIDIA GeForce RTX 3060, which is
based on Windows 10, Python 3.8 and PyTorch 1.2. Specific experimental configurations
are shown in Table 1.

Table 1. Experimental configuration of this paper.

Environment Version

CPU Intel i7-11700, 2.50 GHz
GPU NVIDIA GeForce RTX 3060
OS Windows 10

CUDA V 11.6.1
Python V 3.10
Torch V 1.13.1

In this article, the dataset was divided into training sets, validation sets and test sets at
70:15:15. During the data-preprocessing phase, we unified the size of the images through
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greyscale filling to ensure a true proportion of fish features, and we selected a size of
480 × 480 as the uniform image input size.

During training. This article’s epoch was set to 100, the batch size was set to 4 and the
learning rate was set to 5× 10−4. In addition, we chose “Adam” as the optimizer, with the
Momentum parameter within “Adam” set to 0.9 and the learning rate attenuation mode
set to “Cos.”

Evaluation indicators. Miou, Params and GFLOPS were selected to evaluate model
performance, and accuracy was selected to evaluate other methods. Miou refers to the
mean IoU, which represents the intersection between the segmentation results of each
category and the real mask. Params refers to the number of trainable parameters in a
network model, which represents the spatial complexity of a network model as a whole
expressed in millions (M). GFLOPS represents a network model with a billion floating point
operations per second, representing the time complexity of the network model as a whole
in gigabytes (G). Accuracy is the ratio of pixels correctly predicted by a network model to
the total pixels in a given category.

3.2. Ablation Experiments and Analysis
3.2.1. Quantitative Evaluations

To validate the effectiveness of the IST-PSPNet approach presented here, we designed
three ablation experiments to validate the addition of the iAFF module, the replacement
with SoftPool and the addition the TA module. In this paper, we first used PSPNet with
ResNet50 as the backbone network as the baseline model. Second, the iAFF module
was connected to the ResBlock (named I-PSPNet) in ResNet50 via short hops to achieve
multiscale feature fusion and improve underwater fish feature extraction accuracy. Third,
we used SoftPool to replace the average pool operation in the ResNet50 backbone network
(named IS-PSPNet) to reduce the computational volume while retaining more feature
information, thus improving the segmentation performance of the network model. Finally,
we added the TA module to the different scale features of the pyramid pool module
and implemented parameter weight sharing (named IST-PSPNet) through the parameter-
sharing strategy.

Table 2 shows the results of the PSPNet-based ablation experiments. The results
showed that the PSPNet baseline model had 87.46% for the Miou, 46.70 M in Params and
45.93 G in GFLOPS.

Table 2. Results of ablation experiments.

Model Backbone iAFF SP TA Miou Params GFLOPS

PSPNet ResNet50 87.46% 46.70 M 45.93 G
I-PSPNet ResNet50

√
89.54% 53.10 M 50.56 G

IS-PSPNet ResNet50
√ √

90.36% 46.48 M 40.26 G
IST-PSPNet ResNet50

√ √ √
91.56% 46.48 M 40.27 G

The Miou increased by 2.08%, Params by 6.4 M and GFLOPS by 4.63 G compared
to the baseline (PSPNet). The results show that the iAFF method could improve the net-
work performance compared to the PSPNet baseline and that the MS-CAM module could
combine global and local feature contextual information in channel dimensions to effec-
tively integrate fish features at different scales. Therefore, the iAFF module could improve
underwater fish feature extraction accuracy to improve fish segmentation performance.
Additionally, the numbers of network parameters and calculations increased only slightly
compared to the baseline. As shown in Figure 7, the effect of the addition of the iAFF mod-
ule on fish segmentation is visualized in the fourth column. In the visualization of the third
column baseline, some fuzzy edge features similar to the background were ignored by the
baseline, but better segmentation was achieved through the addition of the iAFF module,
which enabled fish body detail features to be efficiently extracted. For example, as seen
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from the fourth graph in the fourth column, for murky, fuzzy underwater environments,
the improved I-PSPNet model adapted context-aware fusion to receive features, effectively
enhancing the ability to segment fins in greater detail.
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Figure 7. Visual prediction results of ablation experiments. (a) Original input image. (b) A mask
corresponding to the original input image. (c) PSPNet results. (d) Results from I-PSPNet. (e) Results
of IS-PSPNet. (f) Results of IST-PSPNet.

Compared to I-PSPNet, IS-PSPNet increased the Miou by 0.82%, while Params de-
creased by 6.62 M and GFLOPS decreased by 10.30 G. The results show that, by replacing
the average pool in ResNet50 with SoftPool, more information could be retained in the
feature diagram, thus improving the accuracy of fish segmentation tasks. Additionally,
because SoftPool is exponentially weighted, it reduced the numbers of parameters and
calculations in the model compared to average pooling. As seen in the fifth column of
Figure 7, the ability to retain more information in the feature diagram was useful for cap-
turing the edge of the body in more detail; for example, the tail and fish pectoral fins could
be segmented effectively.

Compared to IS-PSPNet, IST-PSPNet increased by 1.2% for the Miou, was unchanged
on Params and increased by 0.01 G for GFLOPS. The results show that the added TA module
could capture richer fish features with almost no reference to the number of parameters via
cross-dimensional dependencies between channel and spatial locations. As Figure 7 shows,
the IST-PSPNet in the sixth column of the figure produced significantly better segmented in
the visualization results. The small fish in the first picture, the small fish in the second and
third pictures and the large fish in the fourth picture could be better segmented in terms of
edge positioning and body detail. This suggests that attention to channel dimensions and
spatial dimensions may contribute to fine-grained fish segmentation.

Overall, compared with the baseline method (IST-PSPNet), the Miou increased by
4.1%, Params decreased by 0.22 M and GFLOPS decreased by 5.66 G. The increase in all
three modules contributed to the improvement in the Miou of the model. The results show
that the iAFF module was very suitable for underwater fish segmentation tasks. Softpool
replacement played a role in reducing Params and GFLOPS. Finally, the use of the TA
module and parameter-sharing mechanism made our model achieve a better segmentation
effect, while the overall parameters and GFLOPS did not change much.

3.2.2. TA Module Component Effectiveness Assessment

To verify the validity of the three branches of the TA module used in this paper,
we designed a set of independent experiments for the three branches that made up the
TA module.
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For results compared to the baseline (IS-PSPNet),
∧
X1,

∧
X2 and

∧
X3 increased the Miou

of the model by 0.42%, 0.29% and 0.04%, respectively, as shown in Table 3. Together,
∧
X1,

∧
X2 and the two branches acted on the model, increasing the Miou by 0.53%. Of these,

∧
X3

had the most significant enhancement, suggesting that spatial attention construction of
fish features was the most conducive to improved segmentation performance. Finally, we

combined
∧
X1,

∧
X2,

∧
X3 and three constitutive TA modules to achieve the best segmentation

accuracy, resulting in an increase of 1.2% compared to the baseline. Experiments in this
group demonstrated the validity of the three branches of the TA module and the TA module
proposed in this paper.

Table 3. Impact of Three TA Branches on Models.

TA:Branch Miou/%

Basic (IS-PSPNet) 90.36%
∧
X1

90.78%
∧
X2

90.65%
∧
X3

90.96%
∧
X1+

∧
X2

90.89%
∧
X1+

∧
X2+

∧
X3

91.56%

3.2.3. Evaluation of Average Pixel Accuracy and Reasoning Speed

Figure 8 shows a comparison of the average pixel accuracy (MPA) of the four ablation
experimental models across 100 training cycles. The MPA calculates the proportion of pixels
in the forecast to the total number of pixels by comparing the pixels in the forecast with
the corresponding label mask. Furthermore, the closer the MPA value is to 1, the better the
segmentation performance of the model. As can be seen in the diagram, MPA was generally
progressive with each method substitution addition. Of these, the IS-PSPNet MPA results
were lower than the baseline (PSPNet) between 40 and 80 epochs, possibly because the
model had not learned enough semantic information about the data after adding SoftPool.

As shown in Table 4, our proposed method (IST-PSPNet) had a reasoning speed of
11.68 with RTX 3060 in our experiments. First, for the baseline (PSPNet), we added iAFF
and replaced the common summation operation in ResBlock with feature fusion, which
increased computational efficiency and improved the FPS by 0.33.

Table 4. Comparison of model reasoning speed.

Models FPS

PSPNet 8.23

I-PSPNet 8.56

IS-PSPNet 9.86

IST-PSPNet 11.68

Second, replacing AvgPool with SoftPool resulted in an increase in FPS of 1.3 for
the method (IS-PSPNet). SoftPool utilizes exponential weighting, which offers higher
parallelism in feature-pooling calculations. It also applies the softmax function to normalize
feature maps, reducing computational redundancy and achieving higher FPS via weight
calculation for each position.
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Figure 8. Comparison of average pixel accuracy with improved network model.

Finally, the TA module was added to the IS-PSPNet method. Because the TA module
captured rich information between fish features in an interdimensional interaction between
independent branches, it could provide a significant performance with a negligible num-
ber of parameters. Then, we used the parameter-sharing strategy to reduce the number
of parameters and storage requirements of our model by sharing parameter weights to
improve the model’s reasoning speed. Therefore, our final method (IST-PSPNet) obtained
the highest inference rate of 11.68.

3.2.4. Visualization of the Heatmap

To represent the visualization results of different modules added to our experiments,
we performed visualization (Grad-CAM) with different target layers. As shown in Figure 9b,
after adding the iAFF module, we visualized and found that, while there was a focus on
fish targets, there was still no positioning on some edge features. Additionally, there was
some attention to background. As shown in Figure 9c, after replacing the SoftPool pooling
operation, we found that the fish edges were positioned more accurately, and there was
less focus on the background. As shown in Figure 9d, the visualization result of the final
TA target layer showed that the figure did not focus on other regional information and
was only located on the fish body. There was also a high degree of attention to the outline
edges of fish. At the same time, in the figure, the distinction between the background
and foreground fish was more obvious. This further verified that the improved method
proposed in this paper can effectively enhance the edge details of different fish bodies and
make them accurately segmented in a fuzzy underwater environment.
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Figure 9. Visualization of different module locations for the DeepFish dataset. (a) Original image and
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results for the last layer of the backbone network. (d) Grad-CAM results at the location of the TA
module after adding iAFF module, SoftPool module and TA module.

3.3. Comparison Experiments and Analysis
3.3.1. Comparison with Other Popular Methods

To further validate our approach, we compared our approach to other popular seman-
tic segmentation methods with the DeepFish dataset. We used ResNet50 as a backbone
network in our experiments, with the same set of other parameters and the same training
sets, validation sets and test set ratios. Here, we used a background assessment and Miou
metrics to comprehensively evaluate the model’s performance. Specific results are shown
in Table 5.

Table 5. Quantitative results for different segmentation methods for DeepFish dataset.

Model Backbone Background Accuracy Miou

FCN ResNet50 98.63% 85.54%

UNet ResNet50 99.12% 87.32%

SegNet ResNet50 99.14% 88.25%

Deeplabv3+ ResNet50 99.60% 88.68%

IST-PSPNet ResNet50 99.78% 91.56%

Compared to other popular methods, our approach (IST-PSPNet) demonstrated sig-
nificant advantages. By comparing the mean intersection over union (Miou), our method
outperformed FCN, UNet, SegNet and DeepLabv3+ by 6.02%, 4.24%, 3.31% and 2.88%,
respectively. This indicates that IST-PSPNet effectively utilized the multiscale feature fu-
sion mechanism of the iAFF module, retained more information in feature pooling with
SoftPool and improved segmentation performance through cross-dimensional interactions
of channel and spatial attention in the TA module.

By comparing the background accuracy, we observed that even the FCN’s Miou with
poor results was 98.63% on background accuracy. This is because, for our underwater fish
segmentation mission, we had only two categories: one background and one foreground
fish. However, with regard to background, we made up the vast majority of the images.
As a result, each method had a higher segmentation result for background accuracy, but
our method (IST-PSPNet) achieved 99.78% for background accuracy, revalidating the
advantages of our approach.
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By combining background accuracy and Miou, we can conclude that the proposed
IST-PSPNet achieved an excellent segmentation performance for each category, as well as
overall.

3.3.2. Prediction Visualizations of Different Methods

Figure 10 shows the predicted results of different semantic segmentation methods for
the DeepFish dataset, and our method (IST-PSPNet) showed a significant advantage in fish
segmentation compared to other popular methods.
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Figure 10. Qualitative comparison of different semantic segmentation methods for DeepFish dataset.
(a) Raw images. (b) Label masks. (c) FCN results. (d) UNet results. (e) SegNet results. (f) Deeplabv3+
results. (g) IST-PSPNet results.

For the first picture in the first column, we looked at its corresponding label mask
(the first picture of the second column) and could see that it had the delicate feature of a
fish palpus. In the results of other methods, this fine feature was not segmented, and our
method (IST-PSPNet) achieved this fine feature segmentation.

For the second, third and fourth images in the first column, FCN, UNet, SegNet
and DeepLabv3+, while successfully segmenting the fish, were imprecisely located in
detail, such as the edge of the fish body. These fish were similar to the background in this
underwater scene and came with ambiguities. For example, in the fourth image of the first
column, even humans have some difficulty identifying with the naked eye. In contrast,
our proposed method (IST-PSPNet) achieved precise segmentation and edge detail for fish.
For example, in the fourth image of the first column, no other method could separate the
caudal fins of the fish, and our method (IST-PSPNet) could effectively segment edge details
such as caudal fins.

4. Conclusions

Currently, acquiring underwater fish morphology data is still mostly based on tra-
ditional measurements after fishing and bringing the fish ashore. To improve efficiency,
most technologies are now moving toward underwater real-time fish segmentation, which
makes it easier to obtain fish morphology data. However, due to the influence of under-
water water quality and the influence of many other types of ecological information, the
images are blurred and distorted. To solve these problems, a high-precision segmenta-
tion method (IST-PSPNet) was proposed. Experiments showed that, compared to other
semantic segmentation methods, this method could improve the segmentation accuracy for
small fish with blurring and similar colors and backgrounds. Moreover, in underwater fish
segmentation, our method achieved good segmentation accuracy.

(1) To fully relate the extracted features of different scales to the context in the feature
extraction stage, we proposed an iterative attention feature fusion method based on
an iAFF module. Through this method, we realized the depth mining of different scale
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feature information. Moreover, for this particular underwater scenario, this method
could effectively integrate local feature information and global feature information to
achieve full awareness of context information. In addition, we also solved the problem
of how to initially integrate the received features through iteration.

(2) In an underwater environment, extracting more information about the characteris-
tics of fish can help to better segment them. In this paper, the average pool in the
backbone ResNet50 network was replaced by SoftPool to address the lack of feature
information caused by the pooling process. In addition, SoftPool calculated features
in a rapid, exponentially weighted way. In this way, compared with average pooling,
the numbers of parameters and calculations were reduced to a great extent and the
reasoning speed was accelerated.

(3) To make the network model more suitable for fuzzy underwater scenes, we added
a triplet attention (TA) module after different scale features of the pyramidal pool
module. The TA module captured the specific position of fish features in the chan-
nel dimension through the spatial dimension of the independent branch to realize
the attention to fish features. The underwater fish segmentation performance was
improved without increasing the calculation parameters.

(4) In this paper, a parameter-sharing strategy was utilized when adding the TA module.
This strategy enabled different scale features in the pyramid pooling module to share
the same parameters. In this way, the numbers of model parameters and calculations
were greatly reduced.

The method proposed in this paper may play an important role in promoting the
development of intelligent fisheries and provide some help with intelligently obtaining
fish data. The focus of future research should be to reduce the numbers of parameters and
computations of network models in underwater fish segmentation through further research
to achieve lightweight processing.
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