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Abstract: An indirect conversion X-ray detector uses a scintillator that utilizes the proportionality
of the intensity of incident radiation to the amount of visible light emitted. A thicker scintillator
reduces the patient’s dose while decreasing the sharpness. A thin scintillator has an advantage in
terms of sharpness; however, its noise component increases. Thus, the proposed method converts the
spatial resolution of radiographic images acquired from a normal-thickness scintillation detector into
a thin-thickness scintillation detector. Note that noise amplification and artifacts were minimized
as much as possible after non-blind deconvolution. To accomplish this, the proposed algorithm
estimates the optimal point-spread function (PSF) when the structural similarity index (SSIM) and
feature similarity index (FSIM) are the most similar between thick and thin scintillator images.
Simulation and experimental results demonstrate the viability of the proposed method. Moreover,
the deconvolution images obtained using the proposed scheme show an effective image restoration
method in terms of the human visible system compared to that of the traditional PSF measurement
technique. Consequently, the proposed method is useful for restoring degraded images using the
adaptive PSF while preventing noise amplification and artifacts and is effective in improving the
image quality in the present X-ray imaging system.

Keywords: image restoration; non-blind deconvolution; image quality assessment; scintillator
thickness; adaptive point-spread function

1. Introduction

A flat-panel detector (FPD) is an important device in digital radiographic imaging
systems. The FPD is located behind the object to be imaged in the direction of radiation
from the X-ray and gamma-ray sources. As radiation penetrates an object, it converts the
attenuated information into electrical signals and then converts them into digital signals
for a subsequent real-time display [1]. The inner structures of the objects in the radiation
imaging scanner are represented by the relative intensity of the signals captured by the pixel
array owing to the difference in the X-ray attenuation coefficients of the inner structures.
These electrical signals are converted into digital signal outputs using a readout integrated
circuit (ROIC) and provided to a backend computer system [2].

Digital radiography (DR) using FPD has the advantages of fast image-acquisition
speed and wide dynamic range compared to conventional film and computed tomography
(CR) techniques [3]. The FPD has fast image acquisition, allowing real-time diagnostics.
When the radiation reaches the FPD, it is immediately converted into an electrical signal
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and digital image. The FPD consists of a pixel array of sensing elements called pixels,
and an electronic circuit that includes the ROIC and a gate driver. This reduces the image
distortion caused by blurring owing to long exposure times and ensures an accurate
diagnosis [4]. Moreover, FPD has a wide dynamic range under various illumination
conditions. Combining a phosphor or scintillator and a backplane (pixel array) in an FPD
results in high light sensitivity, which allows for the sensitive detection of radiation [5].

Depending on the method used to convert radiation into electrical signals, methods
can be broadly classified as direct or indirect [6,7]. A direct conversion detector converts the
energy deposited into electric charges using photoconductors or semiconductor materials,
including amorphous selenium (a-Se), thallium bromide, and gadolinium compounds,
using materials with low atomic numbers [8]. In contrast, an indirect conversion de-
tector improves the photon-to-electric signal conversion ratio by inserting a scintillator
(e.g., thallium-doped cesium iodide [CsI:Tl], gadolinium oxysulfide [Gadox], barium fluo-
ride, or cadmium tungstate [CdWO4]) in the process of converting photons to electrical
signals in the direct conversion detector [9,10]. The spatial resolution of the indirect con-
version detector is restricted by the blurring of the scattered light within the scintillators
compared to that of the direct conversion detector [11]. Swank [12] investigated the noise
factor when the resultant signal was formed by integrating scintillation pulses. This de-
pends on the shape of the pulse-height distribution in the X-ray phosphors. Therefore,
direct conversion detectors have a relative advantage for high-resolution imaging, such as
mammography [13,14], and it is helpful to improve the image quality by optimizing the
scintillator thickness for optimal detection quantum efficiency (DQE) with noise reduction,
although the resolution and sharpness are reduced [15,16].

In general, the finite focal spot size, detector pixel size, and magnification affect the
acquisition of information by distorting the original signal [17,18], which can be expressed
by Equation (1), assuming a linear shift-invariant system [19].

g(m, n) = PSF(m, n)⊗⊗ f (m, n) + N(m, n), (1)

where m and n describe the orthogonal coordinate indices, g is the degraded image, and f
is the clean image. f is recovered from g by deconvolving the point-spread function (PSF),
which is referred to as image deconvolution. Here, the PSF is considered to be the result
of the influence of the finite focal spot size and detector pixel size. The magnitude within
the object is assumed to be the same when the thickness of the object is much smaller than
the SDD. The ⊗⊗ represents the 2D convolution operator, and N is the noise component.
Notably, the PSF is most important to restore the blurred image, and there are three main
techniques in which PSF can be measured in radiographic images: the pinhole, slit, and
edge phantom [20–22] methods. Here, the area in which radiation passes is required to
be φ ∼ 10 µm in pinhole and slit phantom. The radiographic images acquired by these
devices contain a blurred component owing to finite system conditions. A profile that
includes the pinhole and slit areas can be represented as a PSF, as shown in Equation (2):

PSF(m, n) =
1

σ
√

2π
exp

(
−m2 + n2

2σ2

)
, (2)

where σ denotes the standard deviation of the Gaussian distribution function. In particular,
the slit method was tilted by approximately 1.5◦–3◦ to improve the measurement accuracy
through oversampling [23,24]. The edge phantom was constructed from a 1 mm Tungsten
(W) foil plate fixed on a 3 mm thick lead plate in accordance with the IEC 62220-1-1:2015
protocol [25,26]. The line spread function (LSF) of the edge phantom image was calculated
by differentiating the profile between the penetrated radiation regions and vice versa.

Once the PSF is obtained through the above process, the restored image can be obtained
by deconvolution of the degraded image, g. An approach that uses a pre-measured PSF
is called a non-blind method. The advantage of this method is that it is more likely to
succeed in deconvolution because it uses the exact PSF of an acquisition system [27,28].
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Traditionally, Richardson–Lucy and Wiener filters are classic deconvolution methods [29,30],
and fast deconvolution is performed to obtain restored images with improved sharpness.
However, these images suffer from ringing artifacts [27]. Image prior-based deconvolution
methods, including non-local-based approaches [31,32], fields of experts [33,34], and patch-
based priors [35,36], can effectively prevent artifacts. However, these methods rely on
empirical information and suffer from highly non-convex optimization problems and high
computational costs [37]. Recently, machine learning-based deconvolution methods [38,39]
have shown outstanding performance in image restoration; moreover, when combined
with existing non-blind methods, they overcome the limitations of real-world applications
to limited training data [37,40].

Despite the existing effective non-blind deconvolution methods, the noise in Equation (1)
is amplified when high-pass filtering is performed by deconvolution, and the problem of
image quality degradation remains [41]. To overcome these problems, a deconvolution
approach based on regularization terms can be used to perform high-pass filtering with
PSF while minimizing noise amplification [42–44]. In particular, penalty terms based on
total variation (TV) and total generalized variation (TGV) are very effective at improving
the sharpness of noisy and blurry images [45,46]. However, TV- and TGV-based regulation-
term methods often tend to produce staircase artifacts [47]. Another approach is the
deconvolution method after the noise reduction process, where deconvolution is performed
considering the total PSF, composed of blurring in the imaging system and smoothing of
the noise reduction algorithm [48]. This method can minimize noise amplification during
deconvolution by removing the noise. However, restoring the lost detailed information
using noise reduction algorithms is difficult.

Therefore, this study aims to convert the resolution of radiographic images acquired
with a normal-thickness scintillator to that of a thin scintillator. The proposed method
extracts the PSF with the most similar image quality between a high-resolution image
convolving various PSF and a low-resolution image. Thus, a high-resolution image with
minimal noise amplification was obtained by deconvolution using the PSF obtained from a
low-exposure image with a normal-thickness scintillator. Simulations and experiments are
conducted to verify the viability of the proposed framework. The following sections briefly
describe the proposed scheme and discuss the results.

2. Materials and Methods
2.1. Imaging System Performance

Figure 1 shows the exposure conditions for measuring the modulation transfer function
(MTF) of the detector for each scintillator thickness. All the detectors were configured
using a Gd2O2S:Tb scintillator and a CMOS image sensor (Rad-icon, Teledyne DALSA,
California, USA). Here, Figure 2 shows the scanning electron microscope images (SEM)
of the three detectors, and the detectors 1, 2, and 3 have scintillator thicknesses of 84 µm,
96 µm, and 140 µm, respectively. The scintillation thicknesses, pixel sizes, matrix sizes, and
analog-to-digital conversion (ADC) resolutions of the detectors used in the experiments
are summarized in Table 1. The experimental exposure conditions were documented
following the guidelines of the IEC 62220-1-1:2015 protocol. According to the Radiation
Quality (RQA)-5, the SDD was set to 150 cm, tube voltage to 70 kV, and additional filter
of 21.0 mm Al. An X-ray tube (L10321, Hamamatsu Photonics K.K., Shizuoka-ken, Japan;
focal spot size: 5 µm) was used to investigate the imaging system performance and conduct
an experimental study. Figure 3a shows the MTF plots of all the detectors, where the x-axis
is the spatial frequency. Radiographic images were acquired according to IEC 62220-1-
1:2015 guidelines, while tilting a slit camera (07-24-1, Nuclear Associate Corp., Washington,
USA) with a slit width of 10 µm to avoid aliasing [49]. MTF plots were calculated using
Equation (3):

MTF( f ) = bF{LSF}c, (3)

where f is a 1D coordinate in the frequency domain, and F is an operator of the Fourier
transformation. Figure 3b shows the LSF predicted by the inverse calculation of the mea-
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sured MTF using Equations (2) and (3). The σ of the LSFs in Figure 3b were approximately
1.79 (pixels), 2.61 (pixels), and 5.13 (pixels) for detectors 1, 2, and 3, respectively.
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Figure 2. Scanning electron microscopy (SEM) images to measure each scintillator thickness.

Table 1. Detector specifications.

Name Scintillator
Thickness (µm)

Pixel Size
(µm)

Pixel Matrix
(Pixels) ADC σ of LSF

(Pixels)

Detector 1 84 48 512 × 1024 12-bit 1.79
Detector 2 96 48 512 × 1024 12-bit 2.61
Detector 3 140 48 512 × 1024 12-bit 5.13

Normalized noise power spectrum (NNPS) [50] representation is standard and useful
for understanding the noise characteristics of an imaging system. This demonstrates the
variation influenced by spatial frequency, indicating a limitation in utilizing the simulation
for the design of degraded images based on Equation (1). Consequently, the analysis
of the noise component was carried out using the Poisson–Gaussian mixture model as
Equation (4), which has been recognized as the most suitable approach within the radiation
degradation model due to its emphasis on noise characteristics [51,52].

g(x) = PSF(x)⊗ f (x) + η(x)δ, η2(x) = αx + β2, (4)

where η(x) represents the standard deviation of the noise distribution at the pixel position
x, which can be decomposed into Poisson noise, α, and the variance of Gaussian noise, β2.
Additionally, δ denotes zero-mean independent random noise with a standard deviation
of one. Earlier research grounded in this model has substantiated its effectiveness [53,54].
Notably, Sutour et al. [55] anticipated noise parameters through non-parametric detection
within uniform regions based on Kendall’s τ-coefficient [56,57]. This approach employs a ro-
bust polynomial noise level function (NLF) estimation method that relies on the correlation
between the mean and variance observed in uniform regions.

As illustrated in Figure 4, the NLF of the three detectors is depicted using the average
of the white images, denoted as S. The Poisson parameters, α, for detectors 1, 2, and 3
were approximately 0.37, 0.29, and 0.08, respectively. Moreover, their respective Gaussian
parameters, β, were approximately 9.12, 7.10, and 3.31. These detector-specific PSF and
noise parameter outcomes, derived from MTF and NLF measurements, were then employed
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in the simulation process to generate an image that authentically represents the underlying
physical phenomena.
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2.2. Data Acquisition
2.2.1. Simulations

Figure 5a shows a 3D numerical dice phantom used in the simulation. The geometrical
acquisition conditions were the same as those of Section 2.1. The dice phantom has
300 × 300 × 300 voxels and the size of voxels is 0.1 × 0.1 × 0.1 mm3. In the simulation, a
degradation image is created according to Equations (1) and (4) based on the previously
calculated σ of PSF and α and β of noise parameters. To generate a noisy image, we used
the imnoise (·) and poissrnd (·) functions in the MATLABTM (version 8.3) toolbox. The dice
phantom composed of the methyl methacrylate (PMMA) and attenuation images were
obtained based on the ray-tracing method. The SDD was set to 150 cm, the source-to-object
(SOD) was set to 100 cm, and the tube voltage was set to 70 kV at mono-energy spectrum.
Note that, the effect of scatter radiation is not considered for the proof of principle for
Equation (4).
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Figure 5. (a) A 3D numerical phantom in simulation, (b) a high-resolution line chart phantom, and
(c) an electronic device in experiment.

2.2.2. Experiments

Figure 5b also shows a high-resolution line chart phantom (Type 38, CN 69761, Active
Radsys, Italy) and Figure 5c an electronic device used in the experiment. Here, we used
high-resolution patterns in the line chart, which had 20 groups from 0.6 to 5.0 lp/mm. This
pattern is enclosed in plastic, which can be assumed to be a tissue-equivalent material. The
line chart phantom and electronic device have thicknesses of 0.1 mm and 2 mm or less. The
acquired signal was subjected to preprocessing, including dark analysis, image lag analysis,
and a uniformity test to evaluate the image quality [22]. The specifications of the normal
workstation were as follows: OS, Windows 10; CPU, Intel Core i7 10700; and RAM, 64 GB.

2.3. Proposed Restoration Framework Based on the Adaptive PSF Estimation

As mentioned, the resolution and amount of noise are tradeoffs according to the
scintillator thickness when the exposure conditions and pixel size of the TFT panel are
the same. In general, thick scintillation results in less noise and a higher resolution than
thin scintillation. The goal of the proposed method is to restore the resolution from that
of a thick scintillation detector to that of a thin scintillation detector while minimizing
noise amplification. Algorithm 1 shows a simplified illustration of the proposed restoration
framework based on suitable PSF estimation using the factors for image quality assessment.
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Algorithm 1 Structure of proposed scheme to estimate adaptive PSF

1: Input: Initial matrix IMG1, IMG2
2: Output: Complete matrix FSFσ

3: FunctionInitialize ():
4: Sigmaval = 0.01 to end (empirically);
5: Preallocation (SSIMval, FSIMval);
6: END
7: Function Main ():
8: For val = Sigmaval (start): Sigmaval (end) do
9: PSFval ← Input sigma in Equation (2) (val);
10: IMG1_blur = IMG1 ⊗⊗ PSFval;
11: SSIMval (val)← Calculate the Equation (5) (IMG1_blur, IMG2);
12: FSIMval (val)← Calculate the Equation (6) (IMG1_blur, IMG2);
13: END For
14: SSIMσ = find the index (max (SSIMval));
15: FSIMσ = find the index (max (FSIMval));
16: FSFσ = average (SSIMσ, FSIMσ);
17: Return FSFσ

18: END

In brief, radiographic images were obtained using the scintillator thickness (here, we
denote the thin scintillator thickness image as IMG1 and the thick scintillator thickness im-
age as IMG2). Then, the PSFval was generated using one of a set of the sigma value (Sigmaval)
and blurred image (IMG1_blur) designed when performing the convolution between IMG1
and PSFval. The structural similarity index (SSIM) and feature similarity index (FSIM) of
IMG1_blur and IMG2 were computed. The SSIM factor is considered to be correlated with
image quality perception from the perspectives of loss of correlation, luminance distortion,
and contrast distortion [58]. This factor can be defined by Equation (5):

SSIM = l(x, y)αc(x, y)βs(x, y)γ =

(
2µxµy + C1

)(
µ2

x + µ2
y + C1

) × (
2σxy + C2

)(
σ2

x + σ2
y + C2

) × (σxy + C3
)(

σxy + C3
) ,

C1 = (k1L)2, C2 = (k2L)2, C3 =
C2

2
, (5)

where l(x, y), c(x, y), and s(x, y) are the luminance comparison function, contrast com-
parison function, and structure comparison function, respectively. ux,y, σx,y, and σxy are
the local means, the standard deviations, and cross-covariance, respectively, of images x
and y. C is a small positive constant (e.g., k1 and k2 are 0.01 and 0.03 as a default value,
respectively), and L is the dynamic range. α, β, and γ are weight constants, and we set
those constants to one in this study. In addition, by applying the default as C3 = C2

2 , the

SSIM can be organized as (2µxµy+C1)(2σxy+C2)
(µ2

x+µ2
y+C1)(σ2

x+σ2
y+C2)

. The closer to the SSIM value, the better

the adaptive σ-value of the PSF. In addition, FSIM is also a full-reference image quality
assessment, and it uses important low-dimensional properties such as edges and zero
crossings to determine image quality [59]. FSIM uses phase congruency (PC) and gradient
of magnitude (GM) maps. FSIM was defined as follows:

FSIM =
∑x∈Ω [S PC(x)]α· [S G(x)]β·PC(x)

∑x∈Ω PC(x)
, SPC(x) =

2PC1(x)·PC2(x) + T1
PC1(x) + PC2(x) + T1

, SG(x) =
2GM1(x)·GM2(x) + T2

GM1
2(x) + GM2

2(x) + T2
, (6)

where PC1,2 and GM1,2 represent the PC and GM maps of the input images, respectively. T1
is a positive constant that controls the stability of SPC and T2 is a positive constant according
to the dynamic range of GM value. Ω denotes the whole image spatial domain, and α
and β are balance parameters between PC and GM features. In this study, we followed
the reference paper and used α = β = 1. We found the index as the maximum value in
the obtained SSIM (SSIMval) and FSIM (FSIMval) results. The optimal PSFσ can be used to
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calculate the average derived sigma index values. Finally, non-blind deconvolution was
performed using the PSFσ as Equation (7):

f ∗ = argmin
IMG2∈Q

‖PSFσ ⊗⊗IMG2 − IMG2‖2
2 + λ‖∇IMG2‖1, (7)

where Q is the set of feasible IMG2, ‖PSFσ ⊗⊗IMG2 − IMG2‖ is the fidelity term, ‖∇IMG2‖
is the regularization term, and λ is the balancing factor due to control of the signal-to-noise
ratio (i.e., λ = 0.01 was used in this study). Here, the regularization term was set to the total
variation-based l1-norm calculation to avoid artifacts [44,48]. The solving method to find
the f ∗ used the augmented Lagrangian of the problem technique [60], and the tolerance
used 1× 10−4 with an iteration loop stop condition.

2.4. Quantitative Evaluation of Image Performance

The profile, contrast-to-noise ratio (CNR) [61], and GM [59] were selected for quantita-
tive image quality assessment. The CNR is commonly used to assess the distinguishability
of an object or feature from background noise. GM is a metric used to formulate the
sharpness of an image. The CNR and GM were calculated as follows:

CNR value =
|µT − µB|√
σT2 + σB2

, (8)

GM value =

√(
I
⊗

fh

)2
+
(

I
⊗

fv

)2
, (9)

where µT,B and σT,B denote the mean and standard deviation of the target or background
region-of-interest (ROI), respectively. Generally, a higher CNR value indicates that it is
easier to identify objects in an image by considering noise characteristics.

I denotes the input image and fh and fv are gradient operators according to the
horizontal and vertical directions, such as the Sobel, Canny, Prewitt, Scharr, Laplacian,
and hybrid edge operators [62]. The closer the GM value of the initially calculated thin
scintillator image, the more suitable the image restoration.

3. Results and Discussion
3.1. Simulations

Figure 6 shows the plots of the calculated SSIM and FSIM values between the thick
scintillator-based simulated radiographic image, IMG2, and the thin scintillator-based
blurred image by convolving the PSF IMG1_blur. Here, the simulation image was designed
using the numerical phantom shown in Figure 5a, and artifacts were added based on
Equations (1) and (4) with the precalculated system performance evaluation parameters
measured on the three detectors. The adaptive sigma for the PSF, determined by the
highest SSIM value between detectors 1 and 2, was computed as 0.49 (pixels), while the
corresponding value for the FSIM factor was approximately 0.41 (pixels). The average
sigma across all values was calculated to be 0.45 (pixels). Similarly, the suitable sigma for
detectors 3 and 1, determined through the same process, was approximately 0.63.

Figure 7 illustrates various image scenarios: (1) the reference image; (2) a degraded
image assuming a thin scintillator-based detector 1; (3) a degraded image assuming a
thick scintillator-based detector 2; (4) a restored image from detector 2 using the proposed
PSF (σ = 0.45 pixels); (5) deconvolution images from detector 2 employing alternative
PSF (σ = 2.61 pixels for Detector 1). Notably, the non-blind deconvolution based on the
proposed PSF demonstrates effective resolution restoration while minimizing noise ampli-
fication, emphasizing its utility for thin scintillator-based simulated image restoration.
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a thin scintillator-based detector 1; (3) the degraded image assuming a thick scintillator-based
detector 2; (4) the restored image obtained through simulation using the proposed PSF for detector 2;
(5) deconvolution image derived from the simulated image of detector 2 using an alternative PSF.
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Figure 8 presents CNR and GM results for degraded and restored images using
degradation parameters from three detectors: (a) results employing simulation images
of detectors 1 and 2, and (b) results using detectors 1 and 3. Here, the CNR value is
calculated and averaged using the values within the three ROIs depicted in the thin
scintillator image (2) of Figure 7. In Figure 8a, average CNR values are approximately
23.43, 24.21, 22.04, and 11.21 for degraded images with detectors 1 (2), detector 2 (3),
proposed image from detector 2 (4), and deconvolution images using σ = 2.61 pixels (5),
respectively. Similarly, in Figure 8b, the average CNR values are approximately 23.43, 25.01,
24.28, and 11.74 for degraded images with detectors 1 (2) and 3 (3), proposed image from
detector 3 (4), and deconvolution images using σ = 5.13 pixels (5), respectively. The GM
values in Figure 8a,b were approximately 3.68, 4.57, 4.88, and 3.35, and 1.88, 4.57, 2.73,
and 1.54, respectively. These results indicate that the resolution of the proposed image
was improved compared with those of images (2) and (5). A quantitative assessment of
the high-resolution image derived from the degraded image, which assumes the thick
scintillator-based detector 2 (3), further validates a satisfactory resolution enhancement.
Note that, utilizing the suitable PSF during non-blind deconvolution achieves resolution
improvement and effectively curbs noise amplification in the resulting image (5).
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3.2. Experiments

Figure 9 shows the plots of the SSIM and FSIM values used to calculate the adaptive
sigma value of the PSF. Here, (a) compares the experimental images (IMG2 and IMG1_blur)
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of detectors 1 and 2, and (b) compares those of detectors 1 and 3. The maximum values
of SSIM and FSIM were predicted for sigma values of (a) 1.03 and 1.14, and (b) 1.26 and
1.43, respectively. The average sigma value was calculated as 1.09 between detector 1 and
2, and 1.35 between detector 1 and 3. Here, we can see that the first peak occurs around
0.4 pixels and then the SSIM and FSIM values decrease and then increase again. This
is a different tendency compared to that of the simulation result in Figure 6, and this is
expected to be caused by asymmetric PSF, various noises, and physical distortions such as
scatter radiation.
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Figure 9. Plots of the SSIM and FSIM values; (a) detectors 1 and 2, and (b) detectors 1 and 3.

Figure 10 presents illustrative instances, including a radiographic image captured
with a thin scintillator in detector 1, a degraded image attained with a thick scintillator,
the resultant image using the proposed approach from a thick scintillator image, and
deconvolution images employing the measured PSF for assessing system performance.
Specifically, (a) showcases outcomes between detectors 1 and 2, while (b) delineates out-
comes between detectors 1 and 3. The application of the proposed framework for image
restoration enhances overall image quality concerning the resolution and noise character-
istics in contrast to radiographic images captured with a thin scintillator (detector 1) and
thick scintillators (detectors 2 and 3). These findings underscore the significance of deriving
the optimal PSF by considering comprehensive quantitative evaluation criteria. Moreover,
the deconvolution results for a PSF corresponding to system performance (σ = 2.61 pixels
and 5.13 pixels in detectors 2 and 3, respectively) considerably improved the resolution
compared with the proposed method. However, it has limitations in that noise is signif-
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icantly amplified, and artifacts may occur, as indicated by the yellow arrows, owing to
excessive high-frequency filtering. These results indicate that the optimal PSF is derived by
considering the quantitative evaluation factors.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 10. Experimental results of the radiographic image with a thin scintillator for detector 1, the 
degraded image with a thick scintillator, the proposed image derived from the thick scintillator im-
age, and the deconvolution images utilizing the measured PSF to evaluate system performance. 
Here, (a) represents the outcomes between detectors 1 and 2, and (b) similarly depicts the outcomes 
between detectors 1 and 3. 

Figure 11 presents the 1D normalized intensity profiles measured along (a) the line 
AB and (b) line CD, as indicated in Figure 10a and Figure 10b, respectively. The intensity 
profile of the restored image, acquired using the proposed method, exhibits differentiation 
between 2.0 lp/mm and 4.6 lp/mm. Noticeable improvement in resolution is apparent 
when compared to the thick scintillator images ((2) and (5)). Clear separation in the line 
bars is also evident when contrasted with the thin scintillator image (1), except for the 3.7 
lp/mm case in Figure 11b. At 3.7 lp/mm, the profile result of the proposed restored image 
does not distinctly differentiate from the profiles of (1) and (7). However, this can be im-
proved by increasing the sigma size of the PSF, although it may result in noise amplifica-
tion. 

Figure 10. Experimental results of the radiographic image with a thin scintillator for detector 1,
the degraded image with a thick scintillator, the proposed image derived from the thick scintillator
image, and the deconvolution images utilizing the measured PSF to evaluate system performance.
Here, (a) represents the outcomes between detectors 1 and 2, and (b) similarly depicts the outcomes
between detectors 1 and 3.

Figure 11 presents the 1D normalized intensity profiles measured along (a) the line AB
and (b) line CD, as indicated in Figures 10a and 10b, respectively. The intensity profile of
the restored image, acquired using the proposed method, exhibits differentiation between
2.0 lp/mm and 4.6 lp/mm. Noticeable improvement in resolution is apparent when com-
pared to the thick scintillator images ((2) and (5)). Clear separation in the line bars is also
evident when contrasted with the thin scintillator image (1), except for the 3.7 lp/mm case
in Figure 11b. At 3.7 lp/mm, the profile result of the proposed restored image does not
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distinctly differentiate from the profiles of (1) and (7). However, this can be improved by
increasing the sigma size of the PSF, although it may result in noise amplification.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 11. Normalized intensity profiles as measured along (a) line AB and (b) line CD are indicated 
in Figure 10a and Figure 10b, respectively. 

Figure 12 shows the experimental results of an electronic device radiographic image, 
a restored image using the proposed approach, and a deconvoluted image using the PSF 
of the imaging system performance. Here, (a) shows the results obtained using detectors 
1 and 2, and (b) shows the results obtained using detectors 1 and 3. The magnified image 
shows a zoomed-in view of Box B in Figure 12. 

Figure 11. Normalized intensity profiles as measured along (a) line AB and (b) line CD are indicated
in Figures 10a and 10b, respectively.

Figure 12 shows the experimental results of an electronic device radiographic image, a
restored image using the proposed approach, and a deconvoluted image using the PSF of
the imaging system performance. Here, (a) shows the results obtained using detectors 1
and 2, and (b) shows the results obtained using detectors 1 and 3. The magnified image
shows a zoomed-in view of Box B in Figure 12.
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Figure 12. Examples of electronic device images, a restored image using the proposed method, and
a deconvolution image using the PSF obtained by measuring the system performance. Here, the
images of (1) to (4) a show the results using detectors 1 and 2, and the images of (1) and (5) to (7)
show results using detectors 1 and 3.

Figure 13 shows the results of the CNR and GM with the ROIs in Figure 12. The
average CNR values in Figure 13a,b were calculated approximately as 29.04, 32.51, 26.59,
and 22.37 for images (1) to (4), and 34.75, 31.41, and 6.13 for images (5) to (7). Moreover, the
average GM values in Figure 13a,b were determined to be approximately 5.70, 3.59, 5.33,
and 5.64 for images (1) to (4), and 1.30, 4.53, and 4.84 for images (5) to (7).

The purpose of the proposed method is to find the optimal PSF considering the human
visible system, and then the best results can be achieved by applying a contextualized image
restoration algorithm. Figure 14 shows the experimental results of the iterative restoration
method using a regularization term, a restoration method based on the Wiener filter, and
the Lucy–Richardson–Rosen method [29,30,63]. Here, the results above use detector 2 and
another result below uses detector 3. Wiener filtering, also known as minimum mean-
square-error filtering, takes into account the stochastic characteristic of blur and noise. It is
reconstructed by Equation (10):

F̂ =

[
H∗

|H|2 + K

]
G, (10)

where F̂ is restored by the Wiener filter using the degraded image, G, in frequency domain,
H is the PSF component in frequency domain, and H∗ is complex conjugate of H. K is the
Wiener constant, which is related to the signal-to-noise ratio. The Wiener filter approximates
inverse filtering by directly dividing the PSF when there are few noise components in the
image. In contrast, the Wiener filter approaches zero and becomes similar to a frequency-
rejection filter in a noisy image which has very large noise compared to the original image.
The Lucy–Richardson–Rosen method replaces the correlation in the Lucy–Richardson
algorithm by the non-linear reconstruction method [63]. The iterative Lucy–Richardson
algorithm is calculated by Equation (11):

ĝ(n + 1) = ĝ(n)
[

f (n)
ĝ(n)⊗ PSF

⊗ PSF′
]

, (11)
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where PSF′ denotes the complex conjugate of PSF, and f (n) is the initial guess. f (n + 1)
is generated by convolving between PSF and f (n). The ratio between f (n + 1) and f (n)
is correlated with the PSF. This correlation is replaced by the non-linear reconstruction
method, and the resulting residual is multiplied by the previous guess until the mismatch
between the two metrics is within tolerance. This algorithm is also based on inverse filtering,
and noise estimation is important. Therefore, it is essential that the noise characteristics are
well derived and optimized for image restoration. These characteristics are demonstrated
in Figure 14. The image from detector 2 has relatively more noise components, compared
to that of the image from detector 3 at the same radiation dose. Therefore, the higher
resolution image of the regularization method can be seen while optimizing the relative
noise component, compared to that of the wiener filter and the Lucy–Richardson algorithm.
However, when reconstructing the image of detector 3, which is less noisy, the result is
not an optimal image owing to the obstacle of the regularization term of obtaining the
high resolution. Comparatively, the Lucy–Richardson–Rosen method, which optimizes
for noise characteristics, results in a much higher resolution. Therefore, the PSF obtained
through the proposed method can achieve the best restoration result when deconvolution is
performed by selecting the optimal reconstruction method according to the characteristics
of the image.
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Figure 14. Experimental results of the iterative restoration method using regularization term-based
minimization, a restoration method based on the Wiener filter, and the Lucy–Richardson–Rosen
method. Here, the results above use detector 2 and another result below uses detector 3.

In summary, the proposed method is considerably more effective in restoring the image
by considering the overall image quality and predicting the appropriate PSF. However, this
study had several limitations. First, some noise components are emphasized in high-pass
filtering. Although the optimal PSF was predicted by accounting for noise amplification,
high-frequency filtering inevitably introduces noise amplification. Several noise reduction
approaches offer solutions to this problem. Chen et al. introduced an object function to solve
for an optimal noise reduction image using an approximate TV regularization term and the
weight of the fidelity term [64]. This model demonstrates that noise can be removed while
preserving details and edges. Another approach for optimizing the parameters in the noise
reduction algorithm is presented. Seo et al. optimized the similarity and weight parameters
for a fast non-local means algorithm in low-dose computed tomography [65]. The optimal
parameters of the noise reduction algorithm considering the X-ray exposure conditions
yielded improved image quality in both quantitative and qualitative measurements. We
believe that this method can be applied to reduce the noise component while maintaining
sharpness and that it can significantly compensate for the problems of the proposed method.

Another limitation is the radiation–scatter component. The proposed method performs
image restoration using the degraded image assumed in Equations (1) and (4). However,
there is no contribution from the scatter component images in the assumed model, which
have a significant impact on low-contrast radiographic image [66]. When X-rays penetrate
an object, the transmitted radiation consists of primary and scattered components. The
scattered component depends on the radiation energy, the field of view, and the thickness
of the object [67,68]. Many studies on degradation models based on radiation–scatter
characteristics have been published. The key idea behind these models is that the scatter
component is modeled by adding or convolving primary radiation, and the scatter signal is
mainly distributed at low frequencies [69–71]. Therefore, the low-frequency region contains
various types of degradation information, including the effect on the scintillation thickness,
and quantitative image analysis is required for an accurate image performance evaluation
of the proposed algorithm. In continuous R&D, we plan to investigate the impact of the
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proposed method on scatter radiation using Monte Carlo simulations to describe a real
radiographic imaging system.

4. Conclusions

The proposed framework predicts an adaptive PSF to convert an image from a normal-
thickness scintillator to a thin scintillator. The main objective is to suppress noise ampli-
fication and artifacts as much as possible after deconvolution using adaptive PSF. The
experimental results show that the average CNR value for the proposed image was approx-
imately 31.41, which is approximately 1.08 times larger than that of the thin scintillator-
based detector 1 image. The GM value of the proposed image was also approximately
4.53, which was approximately 3.48 times higher than that of the thick scintillator-based
detector 3 images. These results indicate that the proposed method effectively solves the
tradeoff problem between improving sharpness and preventing noise amplification. In
conclusion, the proposed software is expected to be applicable to radiographic systems.
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