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Abstract: Watermarking is an excellent solution to protect multimedia privacy but will be damaged
by attacks such as noise adding, image filtering, compression, and especially scaling and cutting. In
this paper, we propose a watermarking scheme to embed the watermark in the DWT-DCT composite
transform coefficients, which is robust against normal image processing operations and geometric
attacks. To make our scheme robust to scaling operations, a resampling detection network is trained
to detect the scaling factor and then rescale the scaling-attacked image before watermark detection.
To make our scheme robust to cutting operations, a template watermark is embedded in the Y channel
to locate the cutting position. Experiments for various low- and high-resolution images reveal that
our scheme has excellent performance in terms of imperceptibility and robustness.

Keywords: image watermarking; scaling robustness; cutting robustness; resampling detection network

1. Introduction

Nowadays, with the rapid development of the Internet, multimedia information,
especially images, can be seen everywhere. Despite it bringing convenience and variety
to people, the wide usage of multimedia also causes the problems of privacy disclosure,
information manipulation, and copyright infringement. Watermarking, however, is an
excellent solution which can embed extra information into images imperceptibly and extract
that information when necessary. It is also a protection scheme that can be applied to various
kinds of images, including photos, images, medical images [1], light-field images [2], 3D
images [3], and so on.

A watermark can be embedded in the spatial domain, frequency domains, and other
domains defined for specific purposes. Spatial-domain-based methods are the first pro-
posed kind of watermarking method, but they always have weaker performance. As
described in [4], statistical features, like the shape and mean of histograms, are robust
under different types of attacks and can be used to embed watermarks. This method
is mathematically invariant to scaling the size of the images, independent of the pixel
position in the image plane, statistically resistant to cropping, and robust to interpola-
tion errors during geometric transformations and common image processing operations.
However, histogram-based watermarking suffers from its limitation of histogram equal-
ization since this operation will greatly distort the histogram shape. In 2019, Abraham
and Paul [5] proposed a spatial-domain-based method which embeds the watermark by
gradually spreading the information over a region of pixels. This method is designed
for high image quality and high robustness to attacks. However, this method is not ro-
bust to rotation attacks and translation attacks. Frequency-domain based methods are the
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most popular ways in recent years. Discrete wavelet transform (DWT), discrete Fourier
transform (DFT), and discrete cosine transform (DCT) are the most widely and effectively
used frequency domains, and many recently proposed methods have combined them
together or improved them to obtain better performance. Kamili et al. [6] proposed a
dual-watermarking framework that embedded robust watermarks in the DCT domain and
obtained strong robustness against cropping and resizing attacks. It should be pointed out
that this dual-watermarking framework is designed for content authentication and tamper
localization for industrial images. The robust and fragile watermarks along with overhead
bits related to the cover image for tamper localization are embedded in different planes of
the cover image. The results obtained confirmed that the scheme can stand firm against
different singular as well as hybrid attacks and acceptably trace the regions being tampered
as well. To achieve high robustness, many schemes make use of dual transforms. In [7],
a blind robust watermarking scheme has been proposed, which is a blend of DWT and
DCT. The watermark is first scrambled using the Arnold transform and then embedded in
spread spectrum patterns with the help of pseudorandom series. The midfrequency DCT
coefficients of the LL subband obtained after using DWT have been used for embedding.
However, the use of dual transformations results in high computational cost. In [8], Hu
and Hsu applied quantization index modulation (QIM) to DWT-DCT coefficients in an
adaptive manner, where controlling parameters are designed to minimize the bit error
rates of extracted watermarks subject to a quality criterion. However, this scheme cannot
withstand desynchronization attacks. Because of the rapid development of watermarking
schemes, original frequency-domain-based methods are unable to solve complex problems,
and thus many new domains are defined. Kang et al. [9] proposed a near-uniform log-polar
mapping (ULPM) domain to embed and extract watermarks, which showed robustness to
geometric distortions and general print/scan processes. It is robust against RSTC distortion,
general print/scan processes, and JPEG compression with low-quality factors simultane-
ously. However, this scheme has a low capacity. Liu et al. [10] proposed a method based on
a new transform called DTCWT to resist geometric attacks. This method is robust against
geometric attacks, such as cropping, rotation, scaling, shearing, and projective mapping.
However, this method has a relatively high computational complexity.

Cutting attacks can be seen everywhere in our daily life when someone needs to
highlight something or hide something. This type of attack will destroy the synchronization
of the watermark, thus causing the failure of the whole watermarking scheme. Many
schemes have been proposed to resist cutting attacks. The first type of schemes for resisting
cutting operations embeds watermarks by uniformly distributing the information into
the whole image. Su et al. [11] spread the watermark into small blocks and used the QR
decomposition to embed each bit. This method focuses on embedding color watermark
images into color host images. However, the robustness to JPEGs with high compression
ratios, cropping of 50%, scaling of 1/4, median filtering, and Gussian noise is not so good.
The second type of scheme embeds multiple copies of the watermark and uses redundant
judgment to obtain the final watermark. The main problem of this kind of method is
that the cutting attack will make the watermarks inconsistent, and thus it is difficult to
find the correct beginning position. Hsu and Tu [12] proposed a dual-watermark scheme
where they embedded a fragile watermark and a robust watermark simultaneously. The
fragile watermark aims to locate the cutting position, and the robust watermark focuses on
the information that needs to be embedded. However, this method is only designed for
enhancing the robustness against cropping attacks and does not pay much attention to the
robustness against other attacks, including common image processing operations.

In addition to cutting attacks, scaling attacks are also a very common but harmful
attack in the watermarking field. When people use images, they usually need to shrink these
images to save space or enlarge them to see more details. However, these operations will
destroy the synchronization of the watermark. Zheng et al. [13] solved the scaling problem
by using image normalization to transform regions into compact sizes that are scaling
invariant. This scheme shows good performance in terms of the robustness against rotation,
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scaling, JPEG compression, and noise pollution. However, the capacity of this algorithm is
not high. Kang et al. [14] embedded an extra template in the DFT domain and obtained
the scaling factor by detecting this template. However, the robustness of the informative
watermark against median filtering and random bending needs to be improved. Geometric
invariant domains, like ULPM [9], were also applied to host images to resist scaling attacks.
Another way to detect the scaling factor is based on image features. Bas et al. [15] proposed
a geometrically invariant watermarking scheme using feature points. They performed
Delaunay tessellation on the set of feature points and embedded the watermark in these
triangles. However, the robustness of this scheme depends on the capacity of the feature
point detector to preserve feature points after geometrical transformation, especially in
highly textured images. Wang et al. [16] proposed a blind watermarking algorithm for
dual-color images using discrete Hartley transform (DHT). It mainly used the image’s
geometric features, such as sides and angles, to correct the attacked image and embeded a
color watermark into a color image with large embedding capacity and strong practicability.
However, this algorithm is not robust to rotation of 90°. Wang et al. [17] proposed a robust
periodic blind watermarking scheme based on sub-block mapping and block encryption to
enhance robustness under combined attack. The watermarked images were periodically
encoded to raise the fault tolerance rate, and sub-block mapping and block encryption were
also incorporated to enhance the security of copyright information and the visual quality of
watermarked images. However, this algorithm is not very good at resisting scaling attacks.

The above-mentioned methods, however, need to embed extra watermark information
or their geometric invariant ability is strongly related to the watermarking schemes. In
the field of manipulation detection, resampling factor detection methods that can obtain
the scaling factor only by the traces of scaling operations are commonly used, and they
are suitable for watermark detection tasks. In 2005, Popescu and Farid [18] proposed a
method to detect the resampling factor by employing the expectation-maximization (EM)
algorithm. However, the major weakness of this approach is that it is only applicable to
uncompressed TIFF images and JPEG and GIF images with minimal compression. Because
of the large computation complexity and low speed, Kirchner [19] improved that work by
calculating the gradient of the p-map spectrum to replace the EM algorithm. However,
this modified detector is still vulnerable to recently presented geometric distortion attacks
against resampling detection. When scaling an image, the interpolation operation will leave
a peak in the DFT magnitude spectrum, so Gallagher [20] computed the second derivative
and employed DFT to detect scaling factors. However, the performance of the interpolation
detection algorithm decreases as the order of the interpolator increases. And sometimes the
DFT signal will fail to produce meaningful peaks for some cases. Energy features have also
been used; e.g., Feng et al. [21] proposed a method to extract the energy feature and train a
support vector machine (SVM) classifier. However, the detection performance degrades
with decreasing JPEG quality factors.

The development of deep learning gives the scaling factor detection task more possi-
bilities. Luo et al. [22] proposed a method to train a dual-stream network that combines
the features of gray images and differences in spectrum. However, this method is unable
to detect the presence of resampling and estimate resampling parameters in the existence
of more complex operation chains. Bayar and Stamm [23] analyzed traditional ways and
found that most of them firstly obtained residuals by performing a filter and then subtract-
ing the original image. As a result, they proposed a new layer called the constrained layer,
which sums to zero and has −1 in the center, and put it as the first layer to construct the
neural network. This method can perform general-purpose image manipulation detection;
however, it cannot estimate the manipulation parameters. Ding et al. [24] focused on the
energy feature and generated a measurable energy map toward the estimation of resam-
pling factors. This method is outstanding for estimating the resampling rate; however, the
problem of parameter estimation via deep learning for other image manipulations is still a
potential and inspiring topic.
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In the past few years, many deep-learning-based watermarking schemes have been
proposed. The reason for using the neural network in watermarking is it enhances the
watermarking efficiency compared to other methods. In [25], a hybrid watermarking
scheme based on DWT and SVD in addition to a deep belief neural (DBN) network was
proposed. However, this method does not perform well for image processing attacks with
severe parameters. In [26], the learning ability of a deep learning network was utilized
to automatically learn and generalize the watermarking algorithms and train them in an
unsupervised manner to reduce human intervention. The employment of the embedding
and extractor networks ensures that the proposed scheme is imperceptible and protects the
mark image satisfactorily against attacks. However, the robustness to geometric attacks is
not so good, and the embedding capacity is high.

It should be pointed out that in the past few years, many watermarking schemes have
also emerged for copyright protection of deep learning networks. Recently, Fkirin et al. [27]
have provided a comprehensive survey on digital watermarking methods for protecting
deep neural networks. Unlike the work that focuses on using deep neural networks to
aid the digital image watermarking process, this is related to another field, which uses
digital watermarking methods to protect the copyright of deep neural network models, e.g,
protecting the weights in deep neural networks. This is not our research topic.

Based on the above analysis, it is a hard but promising research task to design a robust
image watermarking scheme with high imperceptibility that enables resistance to cutting
and scaling attacks. To address this problem, this paper presents a robust digital image
watermarking scheme based on deep learning with resampling detection and periodic
head searching. This scheme can not only resist random cutting and scaling attacks, but
it can enable extraction of the watermark from an image that has been attacked by both
of these two attacks simultaneously. In addition, our proposed scheme also has high
imperceptibility, enough capacity, and security assurance. It should be pointed out that
our scheme is also based on the DWT-DCT domain, but the usage is different from the
original DWT-DCT-based schemes [7,8]. In our scheme, the watermark embedding process
mainly includes two parts: information embedding and template embedding, which are
performed in the Cb and Y channels respectively. The information embedding process
includes a two-order/two-dimensional DWT, block partition, block DCT, and coefficient
quantization. And the template watermark embedding process is almost the same as the
information embedding process, except we replace the two-order DWT with a one-order
DWT for the reason that the lower level DWT can reduce the number of head searching
points so we can extract the watermark faster. The main contributions of our method are
as follows:

(1) We propose a watermarking method which can resist not only normal attacks but
mixture attacks, like scaling and random cutting. Our method resists scaling attacks
by using a scaling detection neural network, which is trained to focus on the detailed
traces of the scaled images. In order to obtain the cutting position, a template water-
mark is embedded in the Y component and the position is found by maximal MSE
searching.

(2) It is the first time to apply the resampling factor detection neural network to the
watermark extraction area. Although deep learning has already been applied to
enhance the robustness of digital image watermarking schemes, the deep learning
schemes that accurately estimate the re-scaling factor are not effectively used in
digital watermarking. We successfully use this neural network in the digital image
watermarking field.

(3) With the fact that most of the papers in the image watermarking field test their
methods only on several images, we use a large number of images to ensure the
universality of our method. We test the ability to detect scaling factors on the datasets
of RAISE, Boss, and Dresden. What is more, we randomly select 100 images from
each of these photo databases to test the scheme performance on large color images
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which correspond to real-world situations. We also test our watermark scheme on
high resolution color images that are consistent with real-world scenes.

(4) We embed an extra head watermark in another channel to find out the cutting offset.
During the cutting position detection process, in order to speed up the searching
process, we use four parallel processes starting in different positions.

The rest of this paper is organized as follows. In Section 2, some relevant preliminary
terms are presented, including the scaling factor detection network, the datasets used, the
quantization method, and the cutting position searching scheme. In Section 3, the detailed
scheme, including the embedding and extracting processes, are described. Section 4 is the
experimental part with analysis. Finally, the conclusions will be shown in Section 5.

2. Preliminaries

As we know, one major drawback of classical watermarking schemes is the lack of
robustness to geometrical distortion. Thus, the detection of the watermark often requires
a synchronization step to locate the embedded watermark in the content. In practical
applications, if there is a watermarked image on the website, it may be downloaded by
someone. He or she may resample this image and cut out some useful parts from it. Scaling
and cropping the image at any position can disrupt the synchronization of the watermark,
so how to resist scaling and cropping is the main task of robust watermarking algorithms.
Although rotation is also possible, scaling and cutting are more common. Thus, in this
paper, we focus on the scaling operations and the cutting operations. In our scheme,
we consider using deep learning methods to obtain the scaling factor and use the head
watermark searching method to obtain the cutting position. If we can obtain the scaling
factor by neural networks, then we can easily restore the suspect watermarked image to
its original size, and then we can search for the head watermark to locate the embedding
position since the image may suffer from the cropping operation from any position. In this
section, we introduce the related techniques of our scheme.

2.1. Scaling Factor Detection Network

Deep learning approaches, such as convolutional neural networks, have been a hot
and useful method, have developed rapidly in recent years, and can automatically learn
the parameters and extract the hidden features in many kinds of tasks, including scaling
factor detection. The key layer of a convolutional neural network is the convolutional layer,
which can be written as follows:

h(n)j =
K

∑
k=1

h(n−1)
k ∗ w(n)

kj + b(n)j (1)

where ∗ denotes the 2d convolution, h(n)j is the j-th feature map of the n-th hidden layer

and also to h(n−1)
k , w(n)

kj is the k-th channel in the j-th filter in the n-th layer, and b(n)j is
the bias term of the j-th filter in the n-th layer. Different from the normal deep learning
tasks, the scaling detection task recognizes the factor by focusing on the details in an image
rather than the content of it. In fact, the content is a disturbance that should be suppressed
before further learning. The constrained layer [23], however, is a distinguished solution
to this problem, whose kernel has a sum of zero and a set of −1 in the center, as shown in
Equation (2). Traditional methods in scaling detection always apply a filter on the image
and then subtract the original one to obtain the details, and this process is mimicked by the
constrained layer. 

w(n)
kj (0, 0) = −1

∑
x,y 6=0

w(n)
kj (x, y) = 1

(2)
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The structure of our scaling factor detection network is shown in Figure 1. We firstly
put a constrained layer with a kernel of 5× 5 in size and 3 in depth. Then we choose
Resnet50 [28] as our backbone to extract deep features because it is a mature model and has
been proved to perform well in many deep learning tasks. The Resnet50 network learns
the residual but not the original parameters, which enable it to learn better and faster. The
classification step includes a fully connected layer and a soft-max operation whose output
is a scalar in the size of the class number, representing the possibilities of the input image
belonging to different classes.

Figure 1. The proposed scaling factor detection model.

2.2. Datasets

In order to train a well-performing resampling detection network with high efficiency,
we need to choose proper datasets. Obviously, the more images we use, the better perfor-
mance of the neural network we can obtain, but the more time we need to consume, so we
are supposed to choose a proper size for the dataset. In addition, in order to simulate the
real-world environment, it is better to use images of high quality and large size. As a result,
we combine Boss [29], RAISE [30], and Dresden [31] as our dataset and divide it into the
training dataset and the validation dataset.

The training dataset consists of 1600 images from Boss, 1193 images from Dresden, and
800 images from RAISE and has 3593 images in total. And the validation dataset consists of
400 images from Boss, 298 images from Dresden, and 200 images from RAISE and has 898
images in total. They are shown in Table 1.

Table 1. The details of the training and testing datasets.

Training Set Validation Set

Boss 1600 Boss 400

RAISE 800 RAISE 200

Dresden 1193 Dresden 298

Total 3593 Total 898

2.3. Quantization Method

We embed the watermark bits with the quantization method [32]. In every 8× 8
block, we can embed 2 bits of information and for every bit, we modify three parameters to
embed. As a result, we will change 6 parameter values for every 8× 8 block. Assume that
the parameters’ positions for bit 1 are p1

1, p2
1, p3

1 and those for bit 2 are p1
2, p2

2, p3
2, as shown

in Figure 2.
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Figure 2. The quantization block.

We embed the information by quantizing the second-order difference, and the differ-
ence is calculated by Equation (3).{

d1 = p1
1 + p3

1 − 2× p2
1

d2 = p1
2 + p3

2 − 2× p2
2

(3)

The purpose of this quantization process is to put the difference into the middle of the
nearest block with an odd index if the watermark bit is 0 and into the middle of the nearest
block with an even index if the watermark bit is 1. Firstly, we calculate the ∆d, which is
related to the offset value of the parameters, and it is controlled by a parameter δ as well
as the watermark bit. If the watermark bit is 0, ∆d can be defined by Equation (4). If the
watermark bit is 1, ∆d can be defined by Equation (5).

∆d =


k× δ + δ/2− d, if k is even

k× δ− δ/2− d, if k is odd and r < δ/2
(k + 1)× δ + δ/2− d, if k is odd and r ≥ δ/2

(4)

∆d =


k× δ + δ/2− d, if k is odd

k× δ− δ/2− d, if k is even and r < δ/2
(k + 1)× δ + δ/2− d, if k is even and r ≥ δ/2

(5)

where k and r are defined by Equation (6), while b·cmeans the floor function.{
k = bd/δc
r = d− k× δ

(6)

After obtaining ∆d, we can embed the watermark bit by changing the values of the
block positions, which can be seen in Equation (7).

p1′
i = p1

i + ∆d/4

p2′
i = p2

i − ∆d/4

p3′
i = p3

i + ∆d/4

(7)

2.4. Cutting Position Detection

A color image consists of three channels, and every channel has the same size. In the
meanwhile, the attacks on images, except quantizing the color, will not mix the data of
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different channels. As a result, we can embed an extra head watermark in another channel
to find out the cutting offset.

We use the DWT-DCT-based method to embed the head watermark. For the balance
of efficiency and accuracy, firstly we apply the one-order/two-dimentional DWT to the
image, and then we divide the image into blocks and embed the head watermark into the
DCT coefficients of the block using the quantization method, as introduced in Section 2.3.

The main idea of the detection method is ergodic searching to find the position with
maximal MSE, which is exactly the cutting offset. The MSE calculation formula is described
in Equation (8).

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (8)

The details of searching process are as follows: firstly, we create a searching template
by repeatedly splicing the known head watermark template until the size is bigger than
the image size. Then we extract the watermarks from the image. We next move the start
position from left to right, top to bottom, and cut the template into the same size with the
image and then calculate the MSE between them. Finally, we find out the position with the
maximal MSE, and that position will be the one we want to find.

The block size of our method to entirely embed one watermark sequence is 256× 256.
Because of the one-order DWT and the 8× 8 DCT block size, the maximum searching range
is 16× 16. We perform the searching and calculation as shown in Figure 3.

Figure 3. Finding cutting positions, where the arrows mean the window moving direction.

In order to speed up the searching process, we also use four parallel processes starting
in different positions. As a result, this parallel searching will only cost one-fourth the time
compared to the original one. The whole searching process is shown in Figure 4.
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Figure 4. The whole searching process.

3. Proposed Scheme

Robustness, imperceptibility, capacity, and computation complexity are the main
factors we should consider when we design a watermarking scheme. In order to obtain a
better robustness, we transform the image into the YCbCr color space and apply DWT to
obtain the more stable low frequency data. What is more, we divide the image into blocks
and repeatedly embed the same input watermark. As to the imperceptibility, we carefully
select the parameters in the scheme, including the DCT positions to be embedded and the
quantization value δ. We also choose a proper size of blocks to make this scheme have
enough capacity. In addition, multiple processes are also applied to the extracting scheme
in order to reduce the computation complexity. Figures 5 and 6, respectively, display the
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detailed embedding and extracting schemes, and the specific processes are described in
Section 3.1 and Section 3.2, respectively.

Figure 5. The process of embedding.

Figure 6. The process of extracting.

3.1. Watermarking Embedding Process

The watermark embedding process mainly includes two parts: information embed-
ding and template embedding, which are performed in the Cb and Y channels, respectively.
The information embedding process includes a two-order/two-dimensional DWT, block
partition, block DCT, and coefficient quantization. The template watermark is a sequence
with 256 bits. And the template watermark embedding process is almost the same as the
information embedding process, except we replace the two-order DWT with a one-order
DWT for the reason that the lower level DWT can reduce the number of head searching
points so we can extract the watermark faster. The detailed embedding process is as follows:

Step 1: Color space transform. Firstly, we transform the original image I from the
RGB color space into the YCbCr color space. Due to the fact that the human eye is more
sensitive to brightness compared to chromaticity, YCbCr is more in line with human visual
characteristics. In the watermarking algorithm, modifying the Y channel and Cb or Cr
channel is relatively independent.

Step 2: Template embedding.
Step 2.1: Take the Y component IY of the input image I; perform the one-order/two-

dimensional DWT on IY to obtain four subbands LLY, LHY, HLY and HHY.
Step 2.2: Divide the lower frequency subband LLY into blocks LLi of size 8 × 8,

i = 1, 2, . . . , L, where L is the number of blocks. For each block LLi, we perform the
two-dimensional DCT to obtain L DCT blocks DCTLLi of size 8× 8, i = 1, 2, . . . , L.

Step 2.3: For each 8× 8 DCT block DCTLLi, embed two watermark bits using the quan-
tization method as mentioned in Section 2. As shown in Figure 2, we change 6 parameter
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values for every DCT block. If the watermark bit is 0, ∆d is defined by Equation (4). If the
watermark bit is 1, ∆d is defined by Equation (5). Then, we embed the watermark bit by
changing the values of the block positions, as shown in Equation (7).

Step 2.4: The inverse DCT transform is applied to all DCT blocks to reconstruct new
LL blocks, and then they are combined together to obtain the new LL subband, and finally,
based on the new LL subband, together with the original LH, HL, and HH subbands, the
inverse DWT transform is applied to obtain the new watermarked Y component IYW.

Step 3: Information watermark embedding.
Step 3.1: Take the Cb component ICb of the input image I; perform the two-order/two-

dimensional DWT on IY to obtain seven subbands LL2Cb, LH2Cb, HL2Cb, HH2Cb, LH1Cb, HL1Cb
and HH1Cb.

Step 3.2: Divide the lower frequency subband LL2Cb into blocks LL2i of size 8× 8,
i = 1, 2, . . . , M, where M is the number of blocks. For each block LL2i, we perform the
two-dimensional DCT to obtain M DCT blocks DCTLL2i of size 8× 8, i = 1, 2, . . . , M.

Step 3.3: For each 8× 8 DCT block DCTLL2i, embed two head watermark bits using
the quantization method as mentioned in Section 2. As shown in Figure 2, we change
six parameter values for every DCT block. If the watermark bit is 0, ∆d is defined by
Equation (4). If the watermark bit is 1, ∆d is defined by Equation (5). Then, we embed the
watermark bit by changing the values of the block positions, as shown in Equation (7).

Step 3.4: The inverse DCT transform is applied to all DCT blocks to reconstruct new
LL2 blocks, and then they are combined together to obtain the new LL2 subband, and finally,
based on the new LL2 subband, together with the original LH1, HL1, HH1, LH2, HL2, and
HH2 subbands, the inverse DWT transform is applied to obtain the new watermarked Cb
component ICbW.

Step 4: Channel merging. Finally, we merge the new watermarked Y channel IYW, the
new watermarked Cb channel ICbW, and the unchanged Cr channel ICr into a new image,
which is the final watermarked image IW.

3.2. Watermarking Extraction Process

For the image to be extracted, firstly, we need to detect the scaling factor using the
pre-trained network described in Section 2. After re-scaling the image into the original size,
we transform the image into the YCbCr color space and use the Y channel to locate the
cutting position. Considering the computation complexity, we use four parallel processes
to search for the position with maximal MSE as the cutting position. Then, we cut the
image and extract the Cb channel to extract the watermark. The detailed extracting process
is described as follows:

Step 1: Scaling factor detection.
Step 1.1: We divide the suspect image Isus to be detected into blocks and input them

into the pre-trained scaling factor detection network. For each block, the network will
output a scaling factor.

Step 1.2: The final scaling factor α is the one appearing most times over all blocks.
Step 1.3: Then, we rescale the image Isus by the reciprocal of α and convert it into the

image I′sus with the original size.
Step 2: Cutting position detection.
Step 2.1: Take the Y component I′Y of the image I′sus; by ergodically searching I′Y to

find the position with maximal MSE, we obtain the cutting position. The detailed method
is given in Section 2.

Step 2.2: Cut the image I′sus based on this starting position to obtain the final image
I′cut to be extracted.

Step 3: Watermark bits extraction.
Step 3.1: Take the Cb component I′Cb of the input image I′cut; the watermark infor-

mation is extracted by the cut Cb component. We firstly perform the two-order/two-
dimensional DWT on it to obtain seven subbands, i.e., LL2, HL2, LH2, HH2, HL1, LH1,
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and HH1, and then divide the low-frequency subband LL2′Cb into 8 × 8 blocks LL2′i,
i = 1, 2, . . . , M, where M is the number of blocks.

Step 3.2: DCT is performed on each block LL2′i to obtain the corresponding DCT block
DCTLL2′i. Then, we calculate the difference between DCT coefficients and figure out its
belonging quantized interval with Equations (3) and (6).

Step 3.3: If the resulting k is even, the extracted watermark bit is 1; otherwise, if the
resulting k is odd, the extracted watermark bit is 0.

Step 4: Redundant judgment.
Step 4.1: After extracting the watermark from every block, we need to decide the final

watermark. For every bit of the final mark, if the number of 1s is larger than the number of
0s, then the final bit is set to 1; otherwise, it will be set to 0.

Step 4.2: When the redundant judgment is completed, the final watermark can
be extracted.

4. Experimental Results

Our experiments were realized on an Intel(R) Core(TM) i5-7400 CPU, from Intel
Corporation in Santa Clara, California, United States, with a Python framework. The
scaling factor detection network is trained on a machine equipped with NVIDIA GeForce
GTX 1080 Ti, from NVIDIA Corporation in Santa Clara, California, United States. The
quantization factor δ is set to be 48.

The color images of size 512 × 512 in Figure 7 are selected as the host images to
compare the performance of our watermarking scheme with others. To show the superi-
ority of our scaling factor detection network, we test the ability to detect scaling factors
on the datasets of RAISE [30], Boss [29], and Dresden [31]. What is more, we randomly
select 100 images each from these photo databases to test the scheme performance on
large color images which correspond to real-world situations. In order to show the supe-
riority of the proposed scheme, we also compare with nine existing schemes, including
seven transform-domain-based methods and two deep-learning-based methods. The seven
transform-domain-based methods are as follows: (1) Ernawan and Ariatmanto’s DWT-
DCT-based method [33]; (2) Wang et al.’s discrete Hartley-transform-based scheme [16],
which mainly uses the image geometric features such as sides and angles to correct the
attacked image; (3) Wang et al.’s robust periodic blind watermarking scheme [17] based
on sub-block mapping and block encryption to enhance robustness under combined at-
tack; (4) Kamili et al.’s two-channel method [6], which embeds robust and fragile water-
marks into Y and Cb channels, respectively; (5) Wang et al.’s [34] PDTDFB magnitude and
relative-phase-modeling-based method; (6) Yang et al.’s undecimated discrete wavelet-
transform-domain-based method [35]; and (7) Wang et al.’s polar-harmonic-transform-
based method [36]. The two deep-learning-based methods are: (1) Kumari et al.’s hybrid
watermarking scheme based on DWT and SVD in addition to a deep belief neural net-
work [25] and (2) Singh and Singh’s deep-learning-based watermarking algorithm [26].

4.1. Imperceptibility

The imperceptibility means people cannot distinguish the watermarked images from
the original ones, which can be measured by the peak signal-to-noise ratio (PSNR), and
structural similarity index metric (SSIM). The PSNR measures the similarity of the original
image and the watermarked one, while the SSIM measures the structural similarity index
between them. As for a color image, the PSNR can be defined in Equation (9). If the PSNR
is larger than 30 dB, we assume that the imperceptibility is good.

PSNR = 10log10(
MAX2

I
MSE

)

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2
(9)
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where I and K are the original and watermarked images, respectively, and MAXI is the
possible maximal value of the image, which is 255 for a uint8 image.

Figure 7. Host images.

The SSIM can be defined as in Equation (10). The bigger the SSIM is, the higher the
imperceptibility the method has. And the maximal value is 1, which means there is no
difference between two images.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(µ2
x + µ2

y + c2)
(10)

where µx and µy means the average of x and y, σ2
x and σ2

y means the variance of x and y,
and σxy is the covariance between them.

The imperceptibility results of our scheme for different images are shown in Table 2.
As we can see, the PSNR and SSIM obtained for the various host images are greater than
44.9 dB and 0.989, respectively, which means the proposed method is proficient in providing
the watermarked images with high quality. The comparison of the average imperceptibility
over six test images among different image watermarking methods can be seen in Table 3.
From these results, we can see that our scheme has better imperceptibility than most of the
existing schemes.

The reason why our algorithm can obtain better imperceptibility in PSNR is that our
scheme is based on the DWT-DCT domain, and we only modify the DCT coefficients of the
LL subband of DWT, and we carefully select the parameters in the scheme, including the
DCT positions to be embedded and the quantization value δ. Ernawan and Ariatmanto’s
method [33] obtained the best imperceptibility because it is also DWT-DCT-based. Their
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method is better than our method since we embed two watermarks (i.e., the template
watermark and the information watermark) in both the Y and Cb channels, which brings
much more distortion.

Table 2. The imperceptibility measurement results of our scheme.

Images PSNR (dB) SSIM

Lena 44.9891 0.9932

Pepper 45.1291 0.9929

Airplane 45.0222 0.9917

Sailboat 44.9009 0.9946

Splash 45.0555 0.9893

House 44.9449 0.9938

Average 44.9852 0.9933

Table 3. Comparisons of imperceptibility among different methods.

Method [6] [16] [17] [25] [26]

Average PSNR 41.213 41.003 40.318 41.702 44.480

Average SSIM 0.9929 0.9666 0.9918 0.9934 0.9997

Method [33] [34] [35] [36] Our

Average PSNR 47.112 40.829 40.189 40.230 44.985

Average SSIM 0.9870 0.9910 0.9901 0.9917 0.9933

4.2. Robustness

Robustness is one of the most significant criteria in evaluating watermarking methods,
which measures the ability to extract the watermark from the images under attack. We
use the Lena image as the host image and compared the robustness testing results with
other methods against general and geometric attacks. The robustness is evaluated by bit
error rate (BER), which is defined as the ratio between the number of incorrect bits and the
length of the watermark.

4.2.1. Robustness against General Attacks

The general attacks we evaluated included adding salt and pepper noise, Poisson, average
filtering, Gaussian filtering, median filtering, and JPEG compression with quality factors
ranging from 60 to 90. The methods we choose to compare include [6,16,17,25,26,33–36].
Among these algorithms, three methods are most related to our schemes: Kamili et al. [6]
proposed a two-channel method, embedding robust and fragile watermarks into the Y
and Cb channels, respectively. And our scheme also embedded watermark information
and search templates into these channels. Wang et al. [34] used PDTDFB magnitude and
relative phase modeling to resist geometric attacks, which has the same purpose as our
method. Ernawan et al. [33] embedded the watermark by modifying selected DWT-DCT
coefficients, which has similarity with our watermark-embedding method. As a result, we
choose those methods for the comparison. The comparison results can be seen in Table 4,
showing that our method can resist all of these general attacks and performs better in most
of the attacks. Our method has the best performance on the robustness to Poisson, average
filtering, Gaussian filtering, and median filtering. However, our method is not very good at
withstanding salt/pepper noise and JPEG compression.
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Table 4. The comparisons of robustness to general attacks among different methods (using
Lena image).

Method [6] [16] [17] [25] [26]

No Attack 0 0 0 0.54 0

Salt and Pepper (0.01) 11.06 0.06 2.35 7.36 1.25

Poisson 5.93 1.21 2.15 3.40 1.57

Average Filter 3× 3 8.50 0.23 1.59 14.30 0.59

Gaussian Filter 5.74 0.10 0.25 10.13 0.45

Median Filter 3× 3 7.89 0.04 1.25 15.13 0.23

JPEG (Q = 60) 0.02 0.32 0 4.56 5.48

JPEG (Q = 70) 0 0.21 0 1.23 4.79

JPEG (Q = 80) 0 0.14 0 0.45 2.43

JPEG (Q = 90) 0 0.11 0 0.12 1.24

Method [33] [34] [35] [36] Our

No Attack 0 0.48 0 0 0

Salt and Pepper (0.01) 0.16 0.37 3.69 0.68 2.34

Poisson 6.84 1.35 2.40 1.72 0

Average Filter 3× 3 0.29 1.78 7.40 3.15 0

Gaussian Filter 0 0.49 3.88 1.07 0

Median Filter 3× 3 0.02 1.95 4.69 2.56 0

JPEG (Q = 60) 0 0.51 7.7 2.13 8.59

JPEG (Q = 70) 0 0.37 4.59 1.39 2.34

JPEG (Q = 80) 0 0.14 4.11 0.97 0

JPEG (Q = 90) 0 0.05 3.42 0.68 1.56

The reason why our scheme can obtain the best robustness to filtering operations
(average filtering, Gaussian filtering and median filtering) among the existing methods is
that our method is based on DWT-DCT, where the DCT coefficients of the LL subband of
DWT are used to embed the watermarks, while DWT-DCT coefficients are stable under
the filtering attack, and thus the filtering operations have few effects on the embedded
watermarks in the watermarked image. In fact, Ernawan and Ariatmanto’s method [33]
also obtained the second-best robustness to filtering operations because it is also DWT-
DCT-based. On the other hand, DWT-DCT coefficients are also stable under the adding
of non-bipolar impulse noise attacks, and thus our scheme also has the best robustness to
adding Poisson noise. However, our scheme does not have the best robustness to adding
bipolar impulse noise, such as salt and pepper noise, since this kind of noise has great
effects on DWT-DCT coefficients. In general, the DCT-based watermarking method is
robust to JPEG compression, e.g., Ernawan and Ariatmanto’s method [33] has the best
robustness to JPEG compression. In principle, our algorithm should also be very robust to
JPEG compression. However, our scheme seems to be not very robust to JPEG compression,
probably because, compared with [33], we perform two watermark embedding processes
on both the Y and Cb components, and the information embedding process is performed in
the Cb component, which is not more robust to JPEG compression than embedding only in
the Y component.

Common image processing operations generally have effects on all pixels but reserve
the content of the image, i.e., most of the common image processing operations have fewer
effects on low-frequency components. Our scheme uses the DCT coefficients of the LL sub-
band of DWT to embed watermarks, and when the common image processing operations
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are performed on the watermarked image, the DCT coefficients of the LL subband of DWT
are modified by a small amount that is not enough to change the watermark information
embedded, and thus the related watermark information can be extracted correctly. For
salt and pepper noise, it changes some pixels to white pixels and changes some pixels to
black pixels, and this modification may have great effects on the DCT coefficients of the LL
subband of DWT, which may have effects on the extraction results.

4.2.2. Robustness against Scaling Attacks

Scaling is a very common but harmful geometric attack. The methods we choose to
compare include [6,16,17,25,26,33–36]. We compare the extracting results for Lena after
scaling with factors of 90%, 120%, 140%, and 150%, as shown in Table 5. As the results
show, our method has no error bits in this scenario, while other scaling-resistant schemes
cannot extract an exactly correct watermark. Here, the authors who proposed the deep-
learning-based method in [26] performed no experiments for scaling attacks, and maybe
the scaling attacks were not considered during training. In [33], the authors only considered
the rescaling attacks of 512-256-512 and 512-1024-512, since their method should know the
scaling factor or restore the images to original sizes before watermark extraction. In our
opinion, the scaling factor should be unknown or should be detected automatically before
watermark extraction. In order to verify the universality of our scheme, we also perform
experiments in all the 512× 512 host images with a larger range of scaling factors. The
results in Table 6 indicate that the proposed method has a good performance in resisting
scaling attacks, and for most of the cases, we can extract no-error watermarks.

Table 5. The comparisons of robustness to scaling attacks among different methods (using
Lena image).

Method [6] [16] [17] [25] [26]

Scaling factor 50% 5.18 5.41 6.71 7.81 1.03 (1-0.5-1)

Scaling factor 90% 4.39 4.75 5.68 6.54 0.91 (1-0.9-1)

Scaling factor 120% 0.98 1.01 1.05 2.12 0.57 (1-1.2-1)

Scaling factor 140% 0.89 0.79 0.98 1.11 0.45 (1-1.4-1)

Scaling factor 150% 0.37 0.65 0.47 0.92 0.32 (1-1.5-1)

Method [33] [34] [35] [36] Our

Scaling factor 50% 0.48 (1-0.5-1) 5.45 13.72 6.71 0

Scaling factor 90% 0.22 (1-0.9-1) 2.67 4.20 4.74 0

Scaling factor 120% 0.11 (1-1.2-1) 1.10 4.22 3.69 0

Scaling factor 140% 0.05 (1-1.4-1) 1.14 4.13 3.78 0

Scaling factor 150% 0.03 (1-1.5-1) 1.17 3.98 4.10 0

Table 6. The obtained BER values under scaling attacks with different factors for different
host images.

Factor 60% 70% 80% 90% 100% 110% 120% 130% 140% 150%

Lena 0 0 0 0 0 0 0 0 0 0

Pepper 0.78 1.56 0 0 0 0 0 0 0 0

Airplane 0 1.56 0 0 0 0 0 0 0 0

Sailboat 0.78 0 0 0 0 0 0 0 0 0

Splash 0 0 0 0 0 0 0 0 0 0

House 0 0.78 0 0 0 0 0 0 0 0

Average 0.26 0.65 0 0 0 0 0 0 0 0
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The reason why our scheme can obtain the best robustness to scaling is that our scheme
uses a scaling detection neural network. This network is trained to focus on the detailed
trace of the scaled images. Thus, our scheme can automatically and accurately obtain the
scaling factor that the watermarked image may suffer. After rescaling the image by the
reciprocal of the detected scaling factor, we can then accurately extract the watermark.
Different from other algorithms that add template watermarks to resist scaling attacks,
our scheme detects the scaling factor only based on the detection network that has been
trained in advance. The second reason is that our DCT-DWT-based embedding operation
can guarantee that the corresponding extraction operation has the ability to extract the
watermark correctly from the rescaled watermarked image that is with the same size of
the original image. As long as the scaling factor is correctly detected, after the rescaling
operation, our extraction algorithm can correctly extract the watermark.

4.2.3. Robustness Against Cutting Attacks

Cutting or cropping is a kind of common attack in image processing. To evaluate the
effectiveness of our scheme, the methods we choose to compare include [6,16,17,25,26,33–36].
We test the ability of our method to resist cutting attacks with factors 10%, 20%, 30%, and
50%, whose results are shown in Table 7. In the searching process, we will cut the extra
part and only use the entity block to extract the watermark. Because the size of host images
and blocks are 512× 512 and 256× 256, respectively, we will extract the watermark from
the same bottom-right part whether the factor is 10% or 50%, resulting in the same BER
in comparison. Here, the authors in [25,26] did not conduct experiments for cutting or
cropping attacks since they did not use cutting or cropping attacks during training. The
extraction results of the all six host images are shown in Table 8, and the average BER
0.26 proves the ability of our scheme to resist cutting attacks. From this table, we can see
that for most test images, our method can 100% accurately extract the watermarks from
cropped images. The reason is that our scheme uses a special searching scheme to find the
cutting position for synchronization. It seems that the schemes in [17,33,36] have better
results than our scheme. In fact, for most images, our scheme can 100% correctly extract the
watermark after cutting, as shown in Table 8, while for many other schemes, they cannot
100% correctly extract the watermark for each image. The same value, 0.78, means that
sometimes there is a fixed minimal step error during the search process. In future work, we
will use better methods to search the cutting positions.

Table 7. The comparisons of robustness to cutting attacks among different methods (using
Lena image).

Method [6] [16] [17] [25] [26]

Cutting rate 10% 5.45 6.13 0 2.78 4.79

Cutting rate 20% 11.75 10.79 0 5.12 10.48

Cutting rate 30% 17.21 16.75 0.81 8.41 16.12

Cutting rate 50% 25.93 24.51 1.31 11.23 23.79

Method [33] [34] [35] [36] Our

Cutting rate 10% 0.05 0.28 3.22 0.71 0.78

Cutting rate 20% 0.10 0.45 3.86 0.61 0.78

Cutting rate 30% 0.18 0.69 4.93 0.61 0.78

Cutting rate 50% 0.23 1.13 17.6 0.90 0.78
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Table 8. The obtained BER values under cutting attacks with different factors for different
host images.

Cutting Factor 10% 20% 30% 40% 50%

Lena 0.78 0.78 0.78 0.78 0.78

Pepper 0 0 0 0 0

Airplane 0 0 0 0 0

Sailboat 0.78 0.78 0.78 0.78 0.78

Splash 0 0 0 0 0

House 0 0 0 0 0

Average 0.26 0.26 0.26 0.26 0.26

From Table 7, together with Table 8, we can see that our scheme has the relatively
better and more stable robustness to cutting operations. The reason is that our scheme
embeds a template watermark in the Y component and finds the position using maximal
MSE searching in order to obtain the accurate cutting position. That is, we can find out
the accurate cutting offset before watermark extraction. In addition, during the cutting
position detection process, in order to speed up the searching process, we use four parallel
processes starting in different positions.

4.3. Capacity and Security

For watermarking methods applied to copyright protection, robustness is the main
performance consideration, while capacity is not the main performance consideration.
To show the capacity performance, Table 9 lists the embedding capacity of ten methods,
including [6,16,17,25,26,33–36].The capacity of the existing nine algorithms is either 32× 32
or 64 × 64, while the capacity of our algorithm is divided into two parts: one part is
for template watermarking (32× 32× 2 = 2048), and the other part is for information
watermarking (16× 16× 2 = 512).

The security of watermark information is not of particular concern in this article.
Our main concern is how to improve the robustness against scaling and cutting attacks.
However, many techniques can be added to improve the security. For example, we can
encrypt the information watermark before embedding. The coefficient positions can be also
adopted as an embedding key. For all the nine methods compared, only Wang et al. [16]
mentioned the security problem. In their paper, the advantages of the NP-hard problem
in the RSA algorithm and large key space of an affine transform were exploited. The
communication security was guaranteed, and the key information was protected from
being stolen by attackers. A similar technique can be also adopted in our scheme.

Table 9. The comparisons of the embedding capacity among different methods (using Lena image of
size 512× 512).

Method [6] [16] [17] [25] [26]

Capacity(bits) 4096 1024 1024 4096 1024

Method [33] [34] [35] [36] Our

Capacity(bits) 1024 4096 4096 4096 2560

4.4. Experiments for Large-Resolution Real-World Images

In the real world, we regularly use images with high resolution. As a result, experi-
ments for high-resolution databases are of great importance and have practical significance.
The databases we choose are Boss [29], RAISE [30], and Dresden [31], whose images are
obtained by different cameras without after-processing.
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4.4.1. Robustness against Scaling Attacks

As to extracting the watermark from images attacked by scaling, firstly we need to
detect the scaling factor using the pre-trained neural network described in Section 2. As a
result, the factor detection accuracy is of great importance to the extraction accuracy. We
test our resampling detection neural network using the three databases. The images are
scaled by the factors ranging from 60% to 150% (where the factor 100% means there is no
scaling operation on the images). The results are shown in Table 10, which reveals that our
network is able to detect the scaling factor for most of the real-world images.

Table 10. The resampling factor detecting accuracy for databases.

Database BOSS RAISE Dresden

60% 99.65% 85.90% 99.66%

70% 100% 99.30% 100%

80% 100% 100% 100%

90% 100% 100% 100%

100% 100% 100% 100%

110% 100% 100% 100%

120% 100% 100% 100%

130% 100% 100% 100%

140% 100% 100% 100%

150% 100% 100% 100%

Then, we randomly select 100 images from each database, embed watermarks, scale
the images, and extract the watermarks from them. The final BER results in Table 11 show
the excellent performance in resisting scaling attacks.

Table 11. The BER for datasets under scaling attacks.

Database BOSS RAISE Dresden

60% 0 4.8203 0.5859

70% 0 1.9688 0.4531

80% 0 0.5391 0

90% 0 0 0

100% 0 0 0

110% 0 0 0

120% 0 0 0

130% 0 0 0

140% 0 0 0

150% 0 0 0

4.4.2. Robustness Against Random Cutting Attacks

We test the ability of our method to resist cutting attacks in these large-resolution
databases. We randomly choose 100 images from every database and calculate the BER of
the watermark extracted from the images under random cutting with the factors ranging
from 10% to 50%. The results can be seen in Table 12, which shows that our scheme has the
ability to resist cutting attacks in most of the scenes.
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Table 12. The BER for datasets under cutting attack.

Factor No Cutting 10% 20% 30% 40% 50%

BOSS 0 0 0 0 0 0

RAISE 0 0 0.4844 0 0 0.5469

Dresden 0 0 0 0 0 0

4.4.3. Robustness Against Mixture Attacks

Our method is also able to extract the embedded watermark from the watermarked
images attacked by scaling and cutting simultaneously. We adopt the randomly chosen
100 images from the Boss [29], RAISE [30], and Dresden [31] data sets, whose results are
shown in Table 13, Table 14 and Table 15, respectively. The testing cutting factors begin
with 0% and end with 50%, with a step of 10%. The testing scaling factors begin with 60%
and end with 150%, with a step of 10%. As we can see, our method performs well in the
mixture attack scenes.

Table 13. The BER for BOSS for mixture attacks of scaling and cutting.

0% 10% 20% 30% 40% 50%

60% 0 0 0 0.1875 0.7930 0.5391

70% 0 0 0 0 0.4805 0.2539

80% 0 0 0 0 0 0.5156

90% 0 0 0 0 0 0.3203

100% 0 0 0 0 0 0

110% 0 0 0 0 0 0.2695

120% 0 0 0 0 0 0

130% 0 0 0 0 0.3281 0

140% 0 0 0 0 0 0.2109

150% 0 0 0 0 0 0

Table 14. The BER for RAISE for mixture attacks of scaling and cutting.

0% 10% 20% 30% 40% 50%

60% 4.8203 6.9063 8.2578 5.9844 9.4922 8.5313

70% 1.9688 0.9766 1.0078 1.9688 3.0781 3.4766

80% 0.5391 0 0 2.3750 0 0.4844

90% 0 0 0 0 0 0

100% 0 0 0.4844 0 0 0.5469

110% 0 0 0 0.5313 0.5156 0

120% 0 0 0 0 0 0

130% 0 0 0 0 0.5313 0

140% 0 0 0 0 0 0

150% 0 0 0 0 0 0
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Table 15. The BER for Dresden for mixture attacks of scaling and cutting.

0% 10% 20% 30% 40% 50%

60% 0.5859 0.5078 0.4609 0.5313 1.7578 0.5703

70% 0.4531 0.4688 0.5625 0.4453 0.9531 1.0078

80% 0 0 0 0 0 0

90% 0 0 0 0 0 0.0016

100% 0 0 0 0 0 0

110% 0 0 0 0 0 0

120% 0 0 0 0 0 0.0008

130% 0 0 0 0 0 0.0008

140% 0 0 0 0 0 0

150% 0 0 0 0 0 0.0008

5. Conclusions

In this paper, we proposed a robust image watermarking scheme based on the quan-
tization of the DWT-DCT coefficients, which can resist not only normal attacks but also
geometric attacks, like scaling and cutting. Our method resists the scaling attack by using
a scaling detection neural network, which is trained to focus on the detailed trace of the
scaled images. We found that this neural network can calculate the scaling coefficient and
then perform the inverse transformation to restore the image with the original size. In order
to obtain the cutting position, a template watermark is embedded in the Y component
and the position is found by maximal MSE searching. We found that the proposed cutting
positioning algorithm can effectively locate watermark information. According to the exper-
imental results, the proposed scheme has excellent performance in the area of robust image
watermarking and has practical significance in real-world scenes. In particular, we found
that our algorithm can not only resist ordinary attacks but can also resist 50% cropping and
60–150% scaling mixed attacks. However, the main disadvantage of our method is that it
is not robust to rotation attacks. Future research directions include: (1) combining other
techniques to make our scheme robust to rotation attacks and hybrid geometric attacks;
(2) designing a better deep neural network to deal with all kinds of geometric attacks,
together with some common image processing operations.
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