Intelligent Early Fault Diagnosis of Space Flywheel Rotor System
Abstract
:1. Introduction
- Integrating similarity clustering into a dual MCCNN architecture with shared parameters to achieve accurate fault detection in the event of insufficient labeled data (binary classification, i.e., determining whether there is a fault in the rotor system).
- Simplifying the multi-classification problem to a multi-step binary classification problem by introducing a hierarchical branch, and accurate bearing fault location (multi-classification) is achieved when labeled data are insufficient.
- The SC model enables the convolutional network model to self-learn new fault types and realizes the relabeling of missing fault types in the training dataset.
2. Problem Formulation
3. Methods
3.1. Overview
- Step 1: Multi-source signals acquisition. Multi-source signals include the operation trajectory of the cage, dynamic friction torque, and vibration. By utilizing complementary information from different data sources at the same time, the complete and consistent information description of the rotor system can be effectively improved, making fault multi-classification more accurate and reliable.
- Step 2: Dataset dividing. The original vibration signals are directly divided into the training set, verification set, and test set without any signal processing or feature extraction.
- Step 3: Model training. The HB-SC-MCCNN model proposed in this paper is trained by training samples and provides a relabeling function for the validation set data after preliminary training, and is then retrained.
- Step 4: Intelligent early fault diagnosis. The trained model in Step 3 analyzes the data in the test set, determines whether there is a fault in the rotor system, and locates the type of fault.
3.2. HB-SC-MCCNN
3.2.1. Stratification of the Rotor System
3.2.2. Basic Structural Block
3.2.3. Branch Structure
4. Experiments
4.1. Description of the Dataset
4.2. Results
4.3. Ablation Experiment
4.3.1. Comparative Experiment for Exploring the Contribution of MCCNN to HB-SC-MCCNN
4.3.2. Comparative Experiment for Exploring the Contribution of HB and SC to HB-SC-MCCNN
4.4. Comparison with Existing Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, S.; Wang, D.; Wang, H.; Peng, Z. Time-Varying Envelope Filtering for Exhibiting Space Bearing Cage Fault Features. IEEE Trans. Instrum. Meas. 2021, 70, 3504313. [Google Scholar] [CrossRef]
- Liao, H.; Xie, P.; Deng, S.; Zhang, W.; Shi, L.; Zhao, S. Investigation of Dynamic Characteristics Experiments and Stability Evaluation Criterion of Space Ball Bearing Cage. IEEE Tribol. Trans. 2023, 66, 453–465. [Google Scholar] [CrossRef]
- Zhang, S.; Su, L.; Gu, J.; Li, K.; Zhou, L.; Pecht, M. Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey. Chin. J. Aeronaut. 2023, 36, 45–74. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Gu, J.; Wang, Z. Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings. Chin. J. Aeronaut. 2018, 31, 597–607. [Google Scholar] [CrossRef]
- Gao, S.; Han, Q.; Zhou, N.; Pennacchi, P.; Chu, F. Stability and skidding behavior of spacecraft porous oil-containing polyimide cages based on high-speed photography technology. Tribol. Int. 2022, 165, 107294. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Zhou, G.; Zhang, J.; Qing, T.; Zhou, N. The friction and wear behaviors of polyimide bearing retainer under point-contact condition. Ind. Lubr. Tribol. 2020, 72, 931–936. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, X.; Yan, K.; Zhu, Y.; Hong, J. A Study on Bearing Dynamic Features under the Condition of Multiball–Cage Collision. Lubricants 2022, 10, 9. [Google Scholar] [CrossRef]
- Chen, C.; Deng, Z.; Wang, H.; He, T. Simulation of Friction Fault of Lightly Loaded Flywheel Bearing Cage and Its Fault Characteristics. Sensors 2022, 22, 8346. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, J.; Li, H.; Zhang, Q.; Xiao, G. Dynamic simulation of a planet roller bearing considering the cage bridge crack. Eng. Fail. Anal. 2022, 131, 105849. [Google Scholar] [CrossRef]
- Fu, Y.; Ji, Y.; Meng, G.; Chen, W.; Bai, X. Three-Phase Inverter Fault Diagnosis Based on an Improved Deep Residual Network. Electronics 2023, 12, 3460. [Google Scholar] [CrossRef]
- Łuczak, D.; Brock, S.; Siembab, K. Fault Detection and Localisation of a Three-Phase Inverter with Permanent Magnet Synchronous Motor Load Using a Convolutional Neural Network. Actuators 2023, 12, 125. [Google Scholar] [CrossRef]
- Kim, M.; Yun, J.; Park, P. Deep Learning-Based Explainable Fault Diagnosis Model With an Individually Grouped 1-D Convolution for Three-Axis Vibration Signals. IEEE Trans. Ind. Inform. 2022, 18, 8807–8817. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Dong, L.; Li, Y.; Du, W. A Rul Prediction of Bearing Using Fusion Network through Feature Cross Weighting. Meas. Sci. Technol. 2023, 10, 105908. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, W.; Li, Y.; Dong, L.; Wang, J.; Du, W.; Jiang, X. Adaptive staged RUL prediction of rolling bearing. Measurement 2023, 222, 113478. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Sanjanasri, J.P.; Kumar, M.A.; Soman, K.P. Deep learning-based techniques to enhance the precision of phrase-based statistical machine translation system for Indian languages. Int. J. Comput. Aided Eng. Technol. 2020, 13, 239–257. [Google Scholar] [CrossRef]
- Thomas, C.; Fernanda, L. Automated segmentation of RGB-D images into a comprehensive set of building components using deep learning. Adv. Eng. Inform. 2020, 45, 101131. [Google Scholar]
- Monga, V.; Li, Y.; Eldar, Y.C. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Process. Mag. 2021, 38, 18–44. [Google Scholar]
- Su, K.; Liu, J.; Xiong, H. Hierarchical diagnosis of bearing faults using branch convolutional neural network considering noise interference and variable working conditions. Knowl. Based Syst. 2021, 230, 107386. [Google Scholar] [CrossRef]
- Hosameldin, O.A.; Asoke, K.N. Connected Components-based Colour Image Representations of Vibrations for a Two-stage Fault Diagnosis of Roller Bearings Using Convolutional Neural Networks. Chin. J. Mech. Eng. 2021, 34, 37. [Google Scholar]
- He, M.; He, D. A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals. Neurocomputing 2019, 396, 542–555. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q. Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism. Signal Process. 2019, 161, 136–154. [Google Scholar] [CrossRef]
- Yang, Z.; Gjorgjevikj, D.; Long, J.; Zi, Y.; Zhang, S.; Li, C. Sparse Autoencoder-based Multi-head Deep Neural Networks for Machinery Fault Diagnostics with Detection of Novelties. Chin. J. Mech. Eng. 2021, 34, 54. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, S.; Fujita, H.; Chen, D.; Wen, C. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data. Knowl. Based Syst. 2019, 187, 104837. [Google Scholar] [CrossRef]
- Han, T.; Ma, R.; Zheng, J. Combination bidirectional long short-term memory and capsule network for rotating machinery fault diagnosis. Measurement 2021, 176, 109208. [Google Scholar] [CrossRef]
- Lin, L.; Wang, B.; Qi, J.; Wang, D.; Huang, N. Bearing Fault Diagnosis Considering the Effect of Imbalance Training Sample. Entropy 2019, 21, 386. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, S.; Xu, K.; Zeng, M.; Li, X.; Gu, J.; Chen, Y. Auxiliary generative mutual adversarial networks for class-imbalanced fault diagnosis under small samples. Chin. J. Aeronaut. 2022, 36, 464–478. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Li, H.; Yang, Z. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions. Knowl. Based Syst. 2020, 199, 105971. [Google Scholar] [CrossRef]
- Zhao, M.; Fu, X.; Zhang, Y.; Meng, L.; Tang, B. Meng Linghui and Tang Baoping. Highly imbalanced fault diagnosis of mechanical systems based on wavelet packet distortion and convolutional neural networks. Adv. Eng. Inform. 2022, 51, 101535. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, R.; Li, J.; Chen, Z.; Li, W. Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis. Chin. J. Mech. Eng. 2021, 34, 34–52. [Google Scholar]
- Zhang, Z.; Xuan, J.; Shi, T. Alternative multi-label imitation learning framework monitoring tool wear and bearing fault under different working conditions. Adv. Eng. Inform. 2022, 54, 101749. [Google Scholar]
- Wang, Z.; Zhang, Q.; Tang, L.; Shi, T.; Xuan, J. Transfer reinforcement learning method with multi-label learning for compound fault recognition. Adv. Eng. Inform. 2022, 55, 101818. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Ma, H. Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech. Syst. Signal Process. 2020, 143, 106825. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Domain generalization in rotating machinery fault diagnostics using deep neural networks. Neurocomputing 2020, 403, 409–420. [Google Scholar] [CrossRef]
- He, Z.; Shao, H.; Zhong, X.; Zhao, X. Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions. Knowl. Based Syst. 2020, 207, 106396. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L. A New Reinforcement Learning based Learning Rate Scheduler for Convolutional Neural Network in Fault Classification. IEEE Trans. Ind. Electron. 2020, 68, 12890–12900. [Google Scholar] [CrossRef]
- Chen, L.; Konstantinos, G.; Li, W. Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network. IEEE Trans. Ind. Inform. 2019, 16, 339–349. [Google Scholar] [CrossRef]
- Chopra, S.; Hadsell, R.; Yann, L. Learning a Similarity Metric Discriminatively, with Application to Face Verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–26 June 2005; Volume 2005, pp. 539–546. [Google Scholar]
- Liu, R.; Liu, Y.; Yan, Y.; Wang, J.-Y. Iterative Deep Neighborhood: A Deep Learning Model Which Involves Both Input Data Points and Their Neighbors. Comput. Intell. Neurosci. 2020, 2020, 9868017. [Google Scholar] [CrossRef]
- Shao, S.; Yan, R.; Lu, Y. DCNN-based Multi-signal Induction Motor Fault Diagnosis. Trans. Instrum. Meas. 2019, 69, 2658–2669. [Google Scholar] [CrossRef]
- Zhai, X.; Qiao, F. A Deep Learning Model with Adaptive Learning Rate for Fault Diagnosis. In Proceedings of the IEEE 9th Data Driven Control and Learning Systems Conference, Liuzhou, China, 19–21 June 2020; Volume 2020, pp. 668–673. [Google Scholar]
- Sun, Q.; Du, Q. A Distributed Optimal Control Problem with Averaged Stochastic Gradient Descent. Commun. Comput. Phys. 2020, 27, 753–774. [Google Scholar]
- Guo, Y.; Jia, X.; Zhao, B.; Chai, H.; Huang, Y. Multifeature extracting CNN with concatenation for image denoising. Signal Process. Image Commun. 2020, 81, 115690. [Google Scholar] [CrossRef]
- Liang, C.; Chen, C.; Liu, Y.; Jia, X. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder. IEEE Access. 2021, 9, 154777–154787. [Google Scholar] [CrossRef]
Level #1 | Level #2 | Level #3 |
---|---|---|
Normal | Normal | |
Cage rubbing | ||
Bearing wear | ||
Falut | Inner ring | |
Damage on the bearing surface | Outer ring | |
Balls |
Layers | Kernel Size/Stride | Output | Activation Function | Padding in Pooling Layer | Dropout Rate | Trainable Parameters |
---|---|---|---|---|---|---|
Input | / | 2, 1024 × 1 | / | / | / | 0 |
C1 | (2, 32, 11 × 1) | 32, 1024 × 1 | ReLU | / | / | 12, 662 |
PD1 | (2 × 1) | 32, 512 × 1 | / | 0-padding | 0.5 | 0 |
C2 | (32, 64, 11 × 1) | 64, 512 × 1 | ReLU | / | / | 67, 712 |
PD2 | (2 × 1) | 64, 256 × 1 | / | 0-padding | 0.5 | 0 |
C3 | (64, 128, 11 × 1) | 128, 256 × 1 | ReLU | / | / | 196, 864 |
PD3 | (2 × 1) | 128, 128 × 1 | / | 0-padding | 0.5 | 0 |
C4 | (128, 256, 11 × 1) | 256, 128 × 1 | ReLU | / | / | 786, 944 |
PD4 | (1 × 2) | 128, 128, 1 | / | 0-padding | 0.5 | 0 |
F | 128 | 128 × 1 | ReLU | / | / | 33, 154 |
Sensor 1, High-Speed Camera | |
---|---|
Manufacturer | Vision Research |
Model | Phantom V711 |
Full frame shooting speed [frames/s] | 7530 |
Maximum shooting speed [frames/s] | 1.4 million |
Maximum resolution | |
Pixel size [µm] | 20 |
Sensor 2, Friction Torque Measuring Instrument | |
Manufacturer | China Luoyang Bearing Research Institute Co., Ltd. |
Model | |
Test object | Bearings/Shafting |
Range [mN· m] | 0∼100 |
Speed [r/min] | 1∼9990 |
Error | <3 |
Sensor 3, Vibration Sensor | |
Manufacturer | Chengdu Hangzhen Automation Equipment Co., Ltd., China |
Model | |
Charge Sensitivity | 6∼10 pC/m/s |
Response frequency | 1∼10,000 Hz |
Parameter | Value |
---|---|
Diameter of outer ring [mm] | 42 |
Diameter of inner ring [mm] | 20 |
Width of rings [mm] | 12 |
Diameter of balls [mm] | 6.35 |
Number of steel balls | 12 |
Outer diameter of cage [mm] | 34.1 |
Inner diameter of cage [mm] | 28.5 |
Width of cage [mm] | 11.4 |
Shape of pockets | Square |
Guide surface of cage | Outer surface |
Contact angle [deg] | 15 |
Material of rings | G95Cr18 |
Material of balls | G95Cr18 |
Material of cage | Polyimide |
Level #1 | Level #2 | Level #3 | Number of Samples | |
---|---|---|---|---|
Normal | Normal | 5500 | 5500 | |
Cage rubbing | 1100 | 1100 | ||
Bearing wear | 1100 | 1100 | ||
Fault | Damage on the bearing surface | Inner ring | 1100 | 3300 |
Outer ring | 1100 | 0 | ||
Balls | 1100 | 0 |
Data Sets | Training Sets (Labeled Samples) | Validation Sets (Labeled Samples) | Accuracy (%) | ||
---|---|---|---|---|---|
3300 | 660/660/660/660/660 | 1100 | 220/220/220/220/220 | 100 (0) | |
1650 | 330/330/330/330/330 | 2750 | 550/550/550/550/550 | 100 (0) | |
825 | 165/165/165/165/165 | 3575 | 715/715/715/715/715 | 100 (0) | |
400 | 80/80/80/80/80 | 4000 | 800/800/800/800/800 | 99.98 (0.04) | |
2640 | 660/660/660/660/0 | 1760 | 220/220/220/220/880 | 99.96 (0.05) | |
2640 | 660/660/660/0/660 | 1760 | 220/220/220/880/220 | 99.97 (0.04) | |
2640 | 660/660/0/660/660 | 1760 | 220/220/880/220/220 | 99.96 (0.05) | |
2640 | 660/0/660/660/660 | 1760 | 220/880/220/220/220 | 99.95 (0.06) | |
2640 | 0/660/660/660/660 | 1760 | 880/220/220/220/220 | 99.94 (0.06) | |
1320 | 330/330/330/330/0 | 3080 | 550/550/550/550/880 | 99.96 (0.05) | |
1320 | 330/330/330/0/330 | 3080 | 550/550/550/880/550 | 99.96 (0.07) | |
1320 | 330/330/0/330/330 | 3080 | 550/550/880/550/550 | 99.95 (0.05) | |
1320 | 330/0/330/330/330 | 3080 | 550/880/550/550/550 | 99.94 (0.07) | |
1320 | 0/330/330/330/330 | 3080 | 880/550/550/550/550 | 99.93 (0.07) | |
660 | 165/165/165/165/0 | 3740 | 715/715/715/715/880 | 99.96 (0.07) | |
660 | 165/165/165/0/165 | 3740 | 715/715/715/880/715 | 99.95 (0.08) | |
660 | 165/165/0/165/165 | 3740 | 715/715/880/715/715 | 99.94 (0.08) | |
660 | 165/0/165/165/165 | 3740 | 715/880/715/715/715 | 99.92 (0.10) | |
660 | 0/165/165/165/165 | 3740 | 880/715/715/715/715 | 99.92 (0.11) | |
320 | 80/80/80/80/0 | 4080 | 800/800/800/800/880 | 99.93 (0.10) | |
320 | 80/80/80/0/80 | 4080 | 800/800/800/880/800 | 99.93 (0.08) | |
320 | 80/80/0/80/80 | 4080 | 800/800/880/800/800 | 99.92 (0.11) | |
320 | 80/0/80/80/80 | 4080 | 800/880/800/800/800 | 99.91 (0.13) | |
320 | 0/80/80/80/80 | 4080 | 880/800/800/800/800 | 99.87 (0.15) | |
3300 | 660/660/660/0/0 | 1100 | 220/220/220/880/880 | 84.93 (8.29) | |
3300 | 660/660/0/0/0 | 1100 | 220/220/880/880/880 | 73.79 (10.37) | |
3300 | 660/0/0/0/0 | 1100 | 220/880/880/880/880 | 63.31 (11.94) | |
3300 | 0/0/0/0/0 | 1100 | 880/880/880/880/880 | 25 (0) |
Datasets | HB-SC-MCCNN | HB-SC-CNN | Softmax-CNN | Deep Represent Clustering |
---|---|---|---|---|
100 (0) | 100 (0) | 93.78 (5.15) | 100 (0) | |
100 (0) | 100 (0) | 93.42 (5.03) | 100 (0) | |
100 (0) | 99.70 (0.74) | 93.60 (6.52) | 99.94 (0.05) | |
99.98 (0.04) | 98.51 (1.73) | 92.97 (7.08) | 99.92 (0.09) | |
99.96 (0.05) | 98.10 (2.08) | 82.47 (8.98) | 99.92 (0.04) | |
99.97 (0.04) | 97.19 (2.45) | 81.04 (8.94) | 99.92 (0.05) | |
99.96 (0.05) | 97.25 (2.54) | 81.85 (9.55) | 99.91 (0.07) | |
99.95 (0.06) | 97.38 (2.73) | 82.37 (9.57) | 99.89 (0.09) | |
99.94 (0.06) | 96.92 (2.89) | 81.43 (9.92) | 99.82 (0.11) | |
99.96 (0.05) | 97.20 (3.07) | 81.95 (10.42) | 97.30 (2.24) | |
99.96 (0.07) | 96.50 (3.09) | 80.27 (10.86) | 97.50 (2.37) | |
99.95 (0.05) | 97.37 (4.41) | 81.21 (10.93) | 97.13 (3.01) | |
99.94 (0.07) | 96.46 (4.79) | 80.56 (11.00) | 97.67 (2.61) | |
99.93 (0.07) | 96.15 (6.44) | 80.68 (11.30) | 96.93 (3.41) | |
99.96 (0.07) | 96.64 (7.86) | 81.24 (11.68) | 94.70 (4.96) | |
99.95 (0.08) | 97.05 (8.52) | 80.01 (12.21) | 95.01 (4.28) | |
99.94 (0.08) | 97.05 (4.41) | 79.40 (12.84) | 95.03 (4.17) | |
99.92 (0.10) | 95.62 (4.22) | 78.74 (12.64) | 95.16 (4.26) | |
99.92 (0.11) | 95.58 (4.61) | 78.48 (12.79) | 94.85 (5.19) | |
99.93 (0.10) | 91.99 (6.55) | 77.88 (12.87) | 92.40 (6.81) | |
99.93 (0.08) | 90.23 (7.00) | 77.45 (14.85) | 92.63 (6.58) | |
99.92 (0.11) | 93.14 (7.71) | 75.64 (17.21) | 91.99 (6.80) | |
99.91 (0.13) | 91.90 (8.46) | 71.79 (17.69) | 91.62 (7.04) | |
99.87 (0.15) | 90.47 (9.12) | 72.70 (18.85) | 92.58 (6.55) | |
84.93 (8.29) | 77.15 (15.08) | 47.52 (20.65) | 57.04 (9.16) | |
73.79 (10.37) | 66.12 (17.87) | 45.7 (22.09) | 50.98 (13.55) | |
63.31 (11.94) | 54.01 (19.50) | 39.62 (24.13) | 48.05 (14.98) | |
25 (0) | 25 (0) | 25 (0) | 25 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.; Xie, P.; Deng, S.; Wang, H. Intelligent Early Fault Diagnosis of Space Flywheel Rotor System. Sensors 2023, 23, 8198. https://doi.org/10.3390/s23198198
Liao H, Xie P, Deng S, Wang H. Intelligent Early Fault Diagnosis of Space Flywheel Rotor System. Sensors. 2023; 23(19):8198. https://doi.org/10.3390/s23198198
Chicago/Turabian StyleLiao, Hui, Pengfei Xie, Sier Deng, and Hengdi Wang. 2023. "Intelligent Early Fault Diagnosis of Space Flywheel Rotor System" Sensors 23, no. 19: 8198. https://doi.org/10.3390/s23198198
APA StyleLiao, H., Xie, P., Deng, S., & Wang, H. (2023). Intelligent Early Fault Diagnosis of Space Flywheel Rotor System. Sensors, 23(19), 8198. https://doi.org/10.3390/s23198198