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Abstract: The goal of this study was to test a novel approach (iCanClean) to remove non-brain
sources from scalp EEG data recorded in mobile conditions. We created an electrically conductive
phantom head with 10 brain sources, 10 contaminating sources, scalp, and hair. We tested the
ability of iCanClean to remove artifacts while preserving brain activity under six conditions: Brain,
Brain + Eyes, Brain + Neck Muscles, Brain + Facial Muscles, Brain + Walking Motion, and Brain + All
Artifacts. We compared iCanClean to three other methods: Artifact Subspace Reconstruction (ASR),
Auto-CCA, and Adaptive Filtering. Before and after cleaning, we calculated a Data Quality Score
(0–100%), based on the average correlation between brain sources and EEG channels. iCanClean
consistently outperformed the other three methods, regardless of the type or number of artifacts
present. The most striking result was for the condition with all artifacts simultaneously present.
Starting from a Data Quality Score of 15.7% (before cleaning), the Brain + All Artifacts condition
improved to 55.9% after iCanClean. Meanwhile, it only improved to 27.6%, 27.2%, and 32.9% after
ASR, Auto-CCA, and Adaptive Filtering. For context, the Brain condition scored 57.2% without
cleaning (reasonable target). We conclude that iCanClean offers the ability to clear multiple artifact
sources in real time and could facilitate human mobile brain-imaging studies with EEG.
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1. Introduction

Electroencephalography (EEG) is an effective tool for non-invasively recording brain
activity. Compared to functional brain-imaging modalities which record relatively slow
blood-oxygen-level-dependent signals (e.g., fMRI, fNIRS), EEG records electrocortical dy-
namics with high temporal resolution. Additionally, in high-density applications (roughly
100+ channels), EEG also has the ability to localize cortical sources with reasonable spatial
resolution (<1 cm; see Table 2 in [1] and Figure 4A in [2]), and even subcortical activity can
be reconstructed from scalp EEG and localized (approximately 2 cm; see Table 1 in [3]).
Last, EEG is both portable and relatively cheap, making it ideal for studying the neural
control of whole-body movement, both in laboratory settings [4–6] and in the natural
environment [7,8].

One drawback with EEG is that it is often contaminated by a wide variety of artifacts.
Depending on the recording environment, the EEG equipment being used, the task being
studied, and individual variation in each participant’s behavior, a wide variety of artifacts
hinder the ability to isolate electrocortical sources. Some artifacts are internal (or biolog-
ical) in origin, such as muscle contractions [9–11], eye blinks [12], and eye saccades [13].
Other artifacts come from the external environment, such as line-noise artifacts and in-
terference from various items of electrical equipment. Additional artifacts originate from
more complex mechanisms, for example, motion artifacts, which are largely the result of
cable sway [14]. As EEG cables sway through the air, they interact with each other and
background electromagnetic fields. Inductive coupling and electromagnetic radiation in the
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environment can have a relatively large effect on EEG signal quality given the small voltage
of electrocortical signals as they appear at the scalp (roughly 20 µV). Active electrodes can
mitigate motion artifacts by amplifying the EEG signals prior to transmission and digital
sampling. However, motion artifacts are still problematic for recording high-fidelity EEG
signals, especially when participants are moving around in space and activating many
muscles about their neck and face.

There are many software approaches to removing EEG artifacts (see [15]), but no
single method reliably cleans all types of artifacts and many methods are not well suited
for real-time implementation. Independent component analysis (ICA) is one of the most
common approaches for blind EEG source separation and artifact removal. ICA can
effectively remove eye blinks, muscle, and line noise [16,17]. It can also extract high-
quality, independent brain sources from mixed EEG data. However, ICA is generally
computationally slow. Computation time varies by application and algorithm used, but
in our experience with high-density (100+ channel) EEG, the Infomax ICA algorithm can
easily require 5+ h of computation time on a modern home computer or work computer
(non-supercomputer) to decompose less than an hour of data. On a supercomputer with
64 CPU cores, it takes approximately 1 h to decompose 48 min of mobile EEG data with the
AMICA algorithm. Further, ICA generally requires a large amount of data to be recorded
to ensure a good decomposition (see Section 3.5 of [18] for additional detail). Specifics vary
by application, but our general recommendation for mobile scenarios is to record at least
30 min of high-density EEG (100+ channels) at a sampling frequency of at least 500 Hz
when attempting to separate sources with ICA. Generally speaking, ICA is not well-suited
for real-time cleaning, although attempts have been made to remove eye blinks in real time
with ICA [19]. Similarly, ensemble empirical mode decomposition [20,21] is not further
discussed due to its high computational cost.

When reference noise recordings are available, Adaptive Filtering is a popular ap-
proach for removing artifacts in real time [22]. Adaptive Filtering works by scaling one or
more reference noise signals to optimally fit onto a single corrupted data signal of interest
(minimizing the mismatch) and then subtracting the best fit [23]. Although often imple-
mented recursively (online), Adaptive Filtering is based on the concept of linear regression,
which can easily be solved (offline). Adaptive Filtering has been used to remove eye arti-
facts [23,24]. Eye artifacts, in particular, are well suited for Adaptive Filtering because it is
relatively easy to obtain accurate recordings of eye artifacts with only 2–4 electrooculogram
electrodes. One limitation of Adaptive Filtering, however, is that it assumes noise sources
project onto the EEG sensors and noise sensors nearly identically, with no significant dif-
ference other than simple scaling (linear mixing). In certain scenarios, Adaptive Filtering
may exhibit poor performance and need to be modified. For example, in [25] the authors
reported poor performance when they tried to remove EEG motion artifacts using an iner-
tial measurement unit (IMU) attached to the head (reference noise signals) and traditional
Adaptive Filtering. To achieve better performance, the authors modified the approach
by using Volterra series expansion terms to capture nonlinear effects in the IMU signals.
However, to implement the approach in [25], users must a priori know the frequency of the
motion artifact and assume it remains the same throughout the data collection. Thus, the
approach in [25] may not be easily generalizable across tasks, types of artifacts, or types of
noise sensors.

When reference noise recordings are not available, Artifact Subspace Reconstruction
(ASR) and Auto-Canonical Correlation Analysis (Auto-CCA) are two popular options.
ASR is included by default with EEGLAB as an offline cleaning option, but it was first
developed for real-time cleaning as part of BCILAB [26–28]. The burst repair feature of
ASR is based on principal component analysis. ASR has been shown to help with muscle
and eye artifacts [29]. ASR does not require reference noise signals; however, it does require
clean EEG data for calibration. The user can supply the calibration data themselves (e.g., by
recording clean resting-state data prior to recording the task of interest), or they can choose
to automatically extract calibration data from contaminated data (assuming clean segments
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exist). Canonical correlation analysis (CCA) is a computationally efficient statistical method
that can be used for blind source separation. See [30] for a review of the mathematics behind
CCA and some suggested applications for neuroscientists. Researchers previously applied
CCA to EEG data and a slightly lagged (but otherwise identical) EEG dataset [20,31,32].
This approach is often referred to as 1-sample lag CCA, but we prefer the term Auto-
CCA (auto-correlation extended to CCA). Auto-CCA was developed based on the idea
that a small (e.g., 1-sample) shift represents a negligible phase change for low-frequency
content but a significant phase change for high-frequency content. Therefore, relatively
low-frequency Auto-CCA components should have strong correlation while relatively high-
frequency Auto-CCA components should have weak correlation. Auto-CCA was shown
to remove high-frequency muscle artifacts in [20,31,32]. Theoretically, Auto-CCA can also
remove low-frequency artifacts such as motion artifacts and eye artifacts by rejecting high-
correlation components, but users should exercise caution to avoid accidental deletion of
brain activity (also low frequency/high correlation).

Although ASR, Auto-CCA, and Adaptive Filtering are useful, there is still a need
for improved cleaning performance and the ability to remove all types of artifacts with a
single approach. We recently developed a novel generalized framework for removing EEG
artifacts, termed iCanClean [33]. Compared to other real-time-capable methods, iCanClean
is an all-in-one cleaning solution that does not require accurate reference recordings (see
Adaptive Filtering), does not require clean example data for calibration (see ASR), and
does not strongly risk removing brain activity (see Auto-CCA). Furthermore, as we will
later demonstrate, iCanClean consistently outperforms ASR, Auto-CCA, and Adaptive
Filtering, regardless of the type or number of artifacts present. Although we previously
released the mathematics behind the iCanClean algorithm as a preprint [33], we have yet to
demonstrate its ability to clean a wide variety of artifacts and quantitatively compare it to
competing methods in a large parameter sweep. The objective of this work was to validate
iCanClean on a phantom head apparatus, with known ground-truth brain signals, and to
quantitatively compare iCanClean with other real-time-capable algorithms.

The outline of the rest of the paper is as follows. We first describe our novel framework
for removing artifacts given reference noise signals. We then show how corrupt EEG
signals can be temporarily converted to pseudo-reference noise signals to clean artifacts
more generally (without the need for separate noise sensors). Using an electrical phantom
head with embedded brain source antennae (i.e., ground-truth brain signals are available),
we collected EEG data corrupted by motion, muscle, eye, and line-noise artifacts from the
phantom. We then performed multiple parameter sweeps on the EEG data and compared
our newly developed method (iCanClean) to three alternative methods (ASR, Auto-CCA,
and Adaptive Filtering). After validating iCanClean on phantom EEG data (primary
objective), we end with remarks on optimal settings for various scenarios and suggestions
for future research directions. Specifically, we provide preliminary evidence that iCanClean
can remove motion artifacts from human EEG data in real time using dual-layer EEG
sensors. We also briefly explore the potential for iCanClean to find brain components
from mixed EEG data, similar to ICA, but more computationally efficient (results within
seconds or minutes instead of hours) and less total data required (5 min collections versus
30–45 min).

2. The iCanClean Algorithm

The acronym iCanClean stands for implementing Canonical correlation to Cancel
Latent Electromagnetic Artifacts and Noise. iCanClean consists of four main steps, as
depicted in Figure 1A. The first step is to identify candidate noise components by sending
corrupt EEG data and reference noise data to canonical correlation analysis (CCA). CCA
finds and returns, in ranked order, subspaces of the corrupt EEG channels that are most
correlated with subspaces of the reference noise channels. The second step is to select a
subset of noise components for removal, for example, those with the strongest correlation.
The third step is to calculate the projection from the bad components to the EEG channels,
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for example, with linear regression. The fourth step is to directly subtract the projected
noise components from the EEG channels. These steps can be applied to a large fixed
window or to a smaller moving window (e.g., to deal with nonstationarity in the data).
Additional mathematical detail is provided in the supplemental section titled “Mathematics
of iCanClean” (File S1). When direct recording of reference noise signals with dedicated
sensors is not possible, one alternative we developed is to make use of pseudo-reference
noise signals. As depicted in Figure 1B, pseudo-reference signals can be created by taking
contaminated EEG signals and applying a basic temporal filter to attenuate the majority
of brain activity (e.g., a 5–45 Hz band-stop filter). Once the pseudo-reference signals are
created, the rest of the algorithm is the same. We have packaged the iCanClean algorithm
into an EEGLAB plugin so others can easily implement our method on their own data.
The plugin includes a graphical user interface (see Figures S2 and S3), complete with the
option for copying and/or filtering signals prior to finding noise sources in the EEG data
(e.g., to create pseudo-reference noise signals). In addition to providing iCanClean as a
downloadable EEGLAB plugin, we are also providing all relevant phantom EEG data and
MATLAB scripts so others can replicate the results.
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Figure 1. (A) The iCanClean algorithm uses canonical correlation analysis (CCA) to identify latent
relationships between raw (noisy) EEG data and reference noise data (e.g., dual-layer noise sensor
recordings). iCanClean uses CCA to identify subspaces (mixtures) of the EEG data that are correlated
with subspaces of the noise data. iCanClean marks CCA components for removal based on which
components have the strongest correlation. The user selects the correlation threshold and decides
whether the noise components should be constructed from mixtures of the EEG and/or mixtures of
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the noise channels. iCanClean calculates the projection from the noise components onto the EEG data
with linear regression. Finally, iCanClean directly subtracts the scaled noise components from the
EEG channels. Because the noise components were calculated as a linear mixture of the EEG and/or
noise channels and because the projection was calculated as a linear mixture of noise components,
the iCanClean algorithm can be considered a spatial filter. (B) When reference noise signals cannot
directly be recorded by dedicated hardware, iCanClean can optionally extract pseudo-reference
signals from the raw EEG data by applying a temporal filter to attenuate brain activity. For example,
a 5–45 Hz band-stop (notch) filter will significantly remove brain activity from the EEG data while
mostly sparing the artifacts. After extracting pseudo-reference signals, the rest of the iCanClean
algorithm is the same.

3. Methods
3.1. Phantom Head Apparatus

We used an electrical phantom head apparatus to validate iCanClean. This allowed
us to have ground-truth signals to quantify the cleaning performance and to compare
iCanClean with other real-time-capable cleaning algorithms. We made a custom phantom
head (Figure 2), based on the open EEG phantom project [34]. The phantom head included
antennae so that ground-truth electrical signals could be broadcast from inside the head; we
used the tip (T) and sleeve (S) portion of 3.5 mm TRS audio jacks to create electric dipoles.
There were 10 brain antennae, 4 neck-muscle antennae, 4 facial-muscle antennae, and 3 eye
antennae (one for saccades, two electrically coupled for blinks). We mixed ballistics gelatin
(1 kg), deionized water (5 L), and salt (50 g NaCl) and poured it into a plastic 3D-printed
mold. The ballistics gelatin and salt mixture mimicked physical properties of human tissue
and allowed for volume conduction of electrical signals. We added a wig (nonconductive)
along with a layer of conductive fabric (EeonTex LTT-PI-100, Marktek Inc., Chesterfield,
MO, USA) to mimic hair and scalp. We placed the phantom on a robotic motion platform
(NOTUS, Symétrie, Nîmes, France) to induce motion artifacts [35,36].
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Figure 2. (A) We designed and 3D-printed an electrical phantom head mold for this study, based
on the Open EEG Phantom project [34]. We placed 10 antennae inside the head to broadcast brain
sources (ground-truth signals known). Additionally, 11 more antennae broadcast non-brain sources.
Two were for eye blinks (electrically coupled to a single source); one was for eye saccades; four
were for neck-muscle artifacts (bilateral trapezius and sternocleidomastoid); and four were for
facial-muscle artifacts (bilateral masseter and temporalis). (B) We filled the mold with a mixture of
ballistics gelatin, water, and salt to mimic the physical and electrical properties of the human head.
(C) We placed conductive fabric (EeonTex LTT-PI-100, Marktek Inc., USA; not shown) and a wig over
the phantom head to act as scalp and hair. (D) We secured the phantom head to a robotic platform
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(hexapod), which we used to induce walking motion artifacts. Dual-layer EEG electrodes were placed
on the head so that reference motion artifact signals could be recorded alongside traditional EEG.
After gelling the scalp-facing electrodes, the outward-facing (noise) electrodes were covered with
conductive fabric (EeonTex LTT-PI-100) and kept electrically isolated from the scalp-facing electrodes.
EEG amplifiers were secured above the phantom, with cables hanging loosely but bundled. Eight
external sensors (not shown) were placed over the neck and connected to the EEG amplifier. These
sensors recorded neck electromyography (EMG) which could be used as reference noise signals
to remove neck-muscle artifacts. Similarly, the dual-layer EEG sensors recorded motion and line-
noise artifacts.

3.2. Ground-Truth Brain Sources

We created ground-truth brain signals for the phantom head using neural-mass
models [37–39]. We randomized the input parameters for 10,000 candidate neural-mass
models, calculated the power spectral density (PSD) of the output waveform for each set
of parameters, and we compared the power spectral profiles to ICA components coming
from clean resting-state data (sitting eyes open). We kept the 10 neural-mass models whose
PSD curves best matched human experimental data in the frequency band of 5–50 Hz
(minimized sum-of-squares error). We broadcast the ground-truth brain signals into the
phantom head with a digital-to-analogue converter (cDAQ-9178 chassis with NI 9269
output modules, National Instruments, USA). We scaled the signal coming out of the
digital-to-analogue converter (going into the phantom) so that the EEG signals measured
at the scalp were in physiological range (targeted 20 uV for the brain signals).

3.3. Ground-Truth Artifactual Sources

We created artifactual (contaminating) sources for the phantom head from example
human data. Neck-muscle sources are the same as in [36], which were created from direct
bipolar electromyography (EMG) recordings of the trapezius and sternocleidomastoid mus-
cle during a 1.5 m/s walking task. Meanwhile, facial-muscle sources and eye-blink/saccade
sources were newly recorded for this study from a single human subject. To create facial-
muscle sources, we recorded EEG during a trial which consisted of chewing food, swal-
lowing food, and drinking water. To create eye sources, we recorded EEG during frequent
blinking. Unlike the neck-muscle sources, which were direct bipolar recordings, here we
extracted example artifacts by sending mixed EEG data to independent component analysis.
We broadcast known artifactual sources into the phantom head using a digital-to-analogue
converter, targeting various amplitudes at the scalp (150 uV neck muscles, 300 uV facial
muscles, 150 uV eyes).

3.4. Conditions Tested

We tested 6 conditions of different source mixes. The six conditions were: Brain, Brain
+ Walking Motion Artifacts, Brain + Eye Artifacts, Brain + Neck-Muscle Artifacts, Brain + Facial-
Muscle Artifacts, and Brain + All Artifacts (i.e., all artifacts simultaneously present). The Brain
condition represented relatively clean EEG data at rest, with no other artifacts purposefully
introduced. The Brain condition, however, still contained trace amounts of 60 Hz line noise
which could not be avoided. We broadcast muscle and eye artifacts into the phantom
non-brain antennae. For motion artifacts (Brain + Motion and Brain + All Artifacts), we
placed the phantom on the robotic platform to induce phantom movement matching
walking head trajectory at 1.5 m/s [36]. For the conditions which did not involve motion
(Brain, Brain + Neck Muscles, Brain + Facial Muscles, and Brain + Eyes), the platform was
stationary with the motors turned off. For conditions where muscle and/or eye artifacts
were not involved, the associated sources were not broadcast to the antennae (i.e., turned
off electrically by setting the output gain to zero).
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3.5. EEG Recording Apparatus

We recorded EEG with a custom-made 128 + 128 channel dual-layer scalp electrode
system (ActiveTwo, BioSemi, Amsterdam, The Netherlands) [40]. The dual-layer system
records raw noise signals (motion and line-noise artifact) alongside traditional EEG elec-
trodes. We also recorded from 8 extra electrodes connected to the same EEG system. We
placed these extra electrodes over the neck location on the phantom head, near the neck-
muscle antennae locations underneath (2 per muscle; 1 superior, 1 inferior). We did not
place extra electrodes over the facial-muscle antennae or eye antennae of the phantom
because we prioritized having reference noise signals available for removing neck-muscle
artifacts. To promote cable sway and increase motion artifact during the Brain + Walking
Motion and Brain + All Artifacts conditions, we hung the electrode cables loosely. The
digital-to-analog converter and EEG system were synchronized with trigger events at the
beginning and end of each trial. This allowed us to directly compare the 10 ground-truth
brain signals, which were broadcast into the phantom head, with the 128-channel EEG data
recorded at the scalp. A video demonstration of the phantom head undergoing walking
motion is provided in Video S4.

3.6. Parameter Sweep

We tested iCanClean against competing cleaning methods in a large parameter sweep
(Figure 3). Raw EEG data were imported and high-pass filtered to remove large DC (0 Hz)
offsets and slow drifts (eegfiltnew function, 1 Hz high pass = −6 dB at 0.5 Hz). No channels
were rejected or re-referenced. After basic preprocessing, the data were sent to one of
four methods: iCanClean, ASR, Auto-CCA, and Adaptive Filtering, with variations on
each method and their parameters. We also tested an IMU-based Filtering approach for
removing motion artifacts.
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rejection or re-reference the data. Minimally processed data were then sent through various cleaning
algorithms, each with their own parameter sweep. After each preprocessing iteration, the cleaning
effectiveness was quantified by a Data Quality Score, using ground-truth knowledge of the underlying
brain sources. (B) Summary of the conditions that were tested and which conditions had reference
noise recordings available that could be used to assist cleaning. (C) Summary of cleaning algorithms
tested and the main parameters that were varied. (D) How the data quality score was calculated
based on Pearson’s R2 correlation. The raw score was calculated by summing the R2 correlation
across brain sources and taking the average correlation across EEG channels. A correction factor
was then included to penalize any accidental deletion of brain activity. Since the ground-truth brain
sources are known, we were able to calculate each brain source’s variance accounted for (VAF) via
regression, i.e., the best that each brain source could possibly be reconstructed using a linear mixture
of the EEG channels. By taking the minimum ratio of VAF Post to VAF Pre cleaning across all brain
sources, we strongly penalized accidental deletion of any of the ground-truth brain sources.

3.6.1. iCanClean

For iCanClean, we varied two main parameters of interest. First, we varied the R2

threshold cutoff from 0 (max cleaning) to 1 (no cleaning). The R2 parameter adjusts the
overall aggressiveness of the cleaning by determining how many noise components to
remove (see File S1, Equation (2)). Second, we varied the type of reference noise signals. The
choices varied between signals recorded by dual-layer EEG sensors (useful for removing
motion and line-noise artifacts), signals recorded by neck-muscle electromyography (useful
for removing neck-muscle artifacts), and pseudo-reference signals created from temporally
filtered EEG (useful for removing artifacts when reference noise signals are otherwise
not available). For demonstration purposes, we also tested the effect of temporarily re-
referencing the EEG and noise signals prior to iCanClean (useful when noise signals are
initially recorded with the same reference as the EEG signals). We tested cleaning the EEG
data using mixtures of the EEG channels themselves (File S1, Equation (3)) versus using
mixtures of the noise channels (Equation (3b)) versus using mixtures of both (Equation (3c)).

3.6.2. Adaptive Filtering

For Adaptive Filtering, we varied an R2 threshold from 0 (max cleaning) to 1 (no
cleaning) as well as the reference noise signal type, similar to iCanClean. The R2 threshold
was used to determine which noise channels were sufficiently correlated to each EEG
channel prior to performing linear regression. Typically for Adaptive Filtering, all noise
channels would be included in the regression problem (i.e., always set R2 threshold = 0
for max aggressiveness). However, we implemented a range of thresholds to provide the
fairest comparison possible (i.e, to demonstrate iCanClean’s improved performance is not
due to the R2 thresholding aspect). For the Brain + Walking Motion condition, we also tested
out an extension to Adaptive Filtering, described in [25], which cleans EEG data using
accelerometer signals from an inertial measurement unit (IMU) attached to the head.

3.6.3. Auto-CCA

For Auto-CCA, we varied the R2 threshold (0–1), the lag amount (1, 2, 3, or 4 samples at
512 Hz), and whether high- or low-correlation Auto-CCA components were removed. Note
for Auto-CCA that R2 values of 0 and 1 can flip roles (max cleaning versus no cleaning),
depending on the rejection setting (high/low correlation). In the literature, typically only
low-correlation components are removed and only a lag of 1 is used. We also tested
removing high-correlation components and tested multiple lags for completeness.

3.6.4. ASR

For ASR, we varied the burst criterion value (1–250 standard deviations), which adjusts
the overall aggressiveness of the cleaning. We also tested directly providing a clean dataset
to ASR (external calibration) versus asking ASR to automatically find clean sections from
the same data to be cleaned (auto calibration). For the external dataset, we provided ASR



Sensors 2023, 23, 8214 9 of 24

with clean, stationary data from the Brain (only) condition (i.e., the ideal scenario with no
eye, muscle, or movement artifacts).

3.6.5. IMU-Based Filtering

For IMU-based Filtering, we implemented an equivalent offline version of the algo-
rithm described in [25], including the 2nd order Volterra expansion terms and cascade
filtering approach. For the parameter sweep, we varied the filter bank frequencies (base
frequency, 0.85–1.05 Hz; number of harmonics, 1–4) and the optimization type (minimize
L2 norm versus Linfinity norm).

3.7. Quantifying Cleaning Performance (Data Quality Score)

We quantified the cleaning performance with a Data Quality Score, based on correla-
tion between EEG channels and ground-truth brain sources. We first time-warped the EEG
data to the ground-truth brain sources using event markers (start and stop of each trial). We
then calculated Pearson’s R2 correlation matrix between the EEG channels and the ground-
truth sources (128 EEG channels by 10 brain sources). We summed the R2 values across
all ground-truth brain sources to calculate, for each EEG channel, the percentage variance
which is explained by the brain sources. We then averaged across all channels to yield a
scalar value that quantifies how well the EEG data can be explained by linear mixtures of
the ground-truth brain sources (0–100%, higher is better). Note that a score of 100% can be
achieved when all of the EEG channels are strictly mixtures of the 10 brain sources, with at
least one brain source projecting onto any given EEG channel, and nothing else (no other
extraneous sources to introduce noise). However, note that a score of 100% could also be
achieved in the case where 1 or more brain sources are accidentally deleted during cleaning,
so long as no artifacts remain on the EEG channels. Therefore, we introduced a correction
factor (penalty term) to emphasize we do not want to accidentally delete brain activity
during cleaning. The correction factor was calculated as follows. For each ground-truth
brain signal, we used linear regression to first determine the best possible reconstruction
that could be produced using linear mixtures of the minimally processed EEG data (Pre).
After cleaning, we recalculated the best possible reconstruction for each ground-truth brain
signal using mixtures of cleaned EEG data (Post). We quantified potential deletion of each
ground-truth brain source using the ratio of the best reconstructions (variance accounted
for Post divided by variance accounted for Pre). A ratio of 1 indicates no brain source
removal, whereas a ratio of 0.75 would indicate 25% removal of brain activity (Post relative
to Pre). After calculating the ratio for each of the 10 brain sources, we took the minimum
value across all brain sources. We multiplied this correction factor to the raw score to
calculate the final (corrected) data quality score.

3.8. Summarizing Results and Reproducability

We summarized the quantitative results for iCanClean, ASR, Auto-CCA, and Adaptive
Filtering by comparing each algorithm’s best cleaning performance (i.e., Data Quality Score)
for each condition. We then constructed time-series snapshots and power spectral density
plots to qualitatively compare the algorithms at their optimal settings. We are providing all
relevant data and scripts so others can replicate and build on our findings. Similarly, we are
also providing the iCanClean algorithm as a downloadable plugin for EEGLAB, complete
with a graphical user interface, to make it easier for others to test out the iCanClean
algorithm on their own data.

4. Results
4.1. Summarized Quantitative Results (Main Takeaway)

We tested tens of thousands of parameter sets for iCanClean and competing methods
(ASR, Auto-CCA, and Adaptive Filtering). We gathered the best outcome (best Data Quality
Score) for each cleaning algorithm tested, condition by condition. As depicted in Figure 4,
the iCanClean algorithm at its optimal settings consistently outperformed other real-time-
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capable EEG cleaning algorithms at their respective optimal settings. iCanClean achieved
the highest score for all conditions except for the Brain condition (no purposefully imposed
artifacts, only line noise present) where iCanClean placed second. iCanClean’s ability to
clean the Brain + All Artifacts condition was particularly noteworthy (see highlighted yellow
bow in Figure 4). Its Data Quality Score could not be matched by competing methods.
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Figure 4. Results showing each cleaning method’s best Data Quality Score for each condition tested.
Conditions are sorted from left to right in terms of their raw Data Quality Score (no cleaning, gray
bar). The horizontal dashed line represents the Data Quality Score of the Brain condition prior to any
cleaning (57%). This represents a reasonable target score when cleaning the Brain + artifact conditions
(eye, neck, walking, facial, all). iCanClean (green bar) consistently outperformed the other cleaning
methods and was the only method that could suitably clean the Brain + All Artifacts conditions.

4.2. Qualitative Results (Supplementary Detail)
4.2.1. Brain

All algorithms except ASR slightly cleaned the Brain condition, which had mild line-
noise artifact contamination (unintended) but no purposefully imposed (experimentally
manipulated) artifacts. This was the only condition where iCanClean was not the top
performer, but iCanClean still performed well (second place) and the difference in the Data
Quality Scores is negligible (59.1% iCanClean vs. 59.5% Adaptive Filtering; Figure 4). See
Figure 5 for example time scrolls and PSDs before and after cleaning the Brain condition
with each method. Note that Adaptive Filtering appeared to have removed some brain
activity in addition to the line noise, as can be seen in the difference plot.
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Figure 5. Qualitative (visual) assessment of the Brain condition before and after each processing
method (iCanClean, Adaptive Filtering, Auto-CCA, ASR), using their respective ideal settings
(maximized Data Quality Score after cleaning). Top row: time-series plot of raw EEG data for the
Brain condition. Brain signals were sent to the phantom starting at time 0.5 s. Second row: ideally
cleaned data. Third row: relative difference (what was removed during cleaning). Individual time-
series plots in the Raw, Clean, and Difference plots are spaced 50 µV apart from each other, on center.
Bottom row: power spectral density plots of the associated time-series data (Raw = red, Clean = blue,
and Difference = black; solid lines = the median power across channels as a function of the frequency,
dashed lines = the 25% and 75% percentiles).

4.2.2. Brain + Eyes

All algorithms improved the Brain + Eyes condition, but iCanClean (58.6%) and Auto-
CCA (58.5%) were the best performers (Figure 4). See Figure 6 for example time scrolls
and PSDs before and after cleaning the Brain + Eyes condition with each method. Note
that Adaptive Filtering appears to have accidentally deleted some brain activity, as can
be seen in the difference plot. Also note that the shape of the eye-blink artifacts that were
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removed are distorted (more sinusoidal) for Adaptive Filtering (see Difference plot around
time = 2.5 s). This is due to Adaptive Filtering using band-stop filtered EEG channels as
the pseudo-reference noise channels (no electrooculogram sensors/recordings available).
Here, iCanClean used the same pseudo-reference noise channels as Adaptive Filtering,
but iCanClean was able to extract a more accurate estimate of the eye-blink artifacts.
Surprisingly, ASR did little to remove eye artifacts.
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Figure 6. Qualitative (visual) assessment of the Brain + Eyes condition before and after each processing
method (iCanClean, Adaptive Filtering, Auto-CCA, ASR), using their respective ideal settings
(maximized Data Quality Score after cleaning). Top row: time-series plot of raw EEG data for the
Brain + Eyes condition. Brain and eye signals were sent to the phantom starting at time 0.5 s. Second
row: ideally cleaned data. Third row: relative difference (what was removed during cleaning).
Individual time-series plots in the Raw, Clean, and Difference plots are spaced 50 µV apart from
each other, on center. Bottom row: power spectral density plots of the associated time-series data
(Raw = red, Clean = blue, and Difference = black; solid lines = the median power across channels as a
function of the frequency, dashed lines = the 25% and 75% percentiles).
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4.2.3. Brain + Neck Muscles

All algorithms improved the Brain + Neck Muscles condition, but iCanClean (58.1%)
and Adaptive Filtering (56.4%) were the best performers (Figure 4). See Figure 7 for example
time scrolls and PSDs before and after cleaning the Brain + Neck Muscles condition with
each method. Note that iCanClean was the only algorithm to simultaneously remove
neck-muscle artifacts and 60 Hz line noise. All other algorithms left the line noise in place.
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Figure 7. Qualitative (visual) assessment of the Brain + Neck Muscles condition before and after each
processing method (iCanClean, Adaptive Filtering, Auto-CCA, ASR), using their respective ideal
settings (maximized Data Quality Score after cleaning). Top row: time-series plot of raw EEG data for
the Brain + Neck Muscles condition. Brain and neck-muscle signals were sent to the phantom starting
at time 0.5 s. Second row: ideally cleaned data. Third row: relative difference (what was removed
during cleaning). Individual time-series plots in the Raw, Clean, and Difference plots are spaced
50 µV apart from each other, on center. Bottom row: power spectral density plots of the associated
time-series data (Raw = red, Clean = blue, and Difference = black; solid lines = the median power
across channels as a function of the frequency, dashed lines = the 25% and 75% percentiles).
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4.2.4. Brain + Walking Motion

All algorithms improved the Brain + Walking Motion condition, but iCanClean (54.3%)
clearly outperformed the rest (Figure 4; next best score = 43.3%). See Figure 8 for example
time scrolls and PSDs before and after cleaning the Brain + Walking Motion condition with
each method. Note that iCanClean not only removed motion artifacts but also 60 Hz line
noise and other electromagnetic interference from the motors on the hexapod motion plat-
form. Auto-CCA removed milder motion (low amplitude, consistent frequency) artifacts
along with line noise (see Difference plot); however, Auto-CCA was not able to remove
more severe artifacts (large amplitude fluctuations remain in the ‘Clean’ plot, especially
prior to 2 s). Meanwhile, ASR was only responsive to cleaning the worst contaminated
section (first 2 s) and largely was not helpful for removing motion artifacts. iCanClean was
not sensitive to the sub-type of motion artifact; it performed well at all time points.
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Figure 8. Qualitative (visual) assessment of the Brain + Walking Motion condition before and after each
processing method (iCanClean, Adaptive Filtering, Auto-CCA, ASR), using their respective ideal
settings (maximized Data Quality Score after cleaning). Top row: time-series plot of raw EEG data
for the Brain + Walking Motion condition. Brain signals were sent to the phantom and the hexapod
motion platform began to move at time 0.5 s. Second row: ideally cleaned data. Third row: relative
difference (what was removed during cleaning). Individual time-series plots in the Raw, Clean, and
Difference plots are spaced 50 µV apart from each other, on center. Bottom row: power spectral
density plots of the associated time-series data (Raw = red, Clean = blue, and Difference = black; solid
lines = the median power across channels as a function of the frequency, dashed lines = the 25% and
75% percentiles).
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4.2.5. Brain + Facial Muscles

All algorithms improved the Brain + Facial Muscles condition, but iCanClean (57.9%)
and ASR (54.3%) were the best performers (Figure 4). See Figure 9 for example time
scrolls and PSDs before and after cleaning the Brain + Facial Muscles condition with each
method. Note that iCanClean not only removed facial-muscle artifacts but also 60 Hz line
noise. Adaptive Filtering with pseudo-reference noise signals (band-stop filtered EEG)
accidentally deleted brain activity, while iCanClean used the same pseudo-reference noise
signals but kept brain activity intact.
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Figure 9. Qualitative (visual) assessment of the Brain + Facial Muscles condition before and after each
processing method (iCanClean, Adaptive Filtering, Auto-CCA, ASR), using their respective ideal
settings (maximized Data Quality Score after cleaning). Top row: time-series plot of raw EEG data for
the Brain + Facial Muscles condition. Brain and facial-muscle signals were sent to the phantom starting
at time 0.5 s. Second row: ideally cleaned data. Third row: relative difference (what was removed
during cleaning). Individual time-series plots in the Raw, Clean, and Difference plots are spaced
50 µV apart from each other, on center. Bottom row: power spectral density plots of the associated
time-series data (Raw = red, Clean = blue, and Difference = black; solid lines = the median power
across channels as a function of the frequency, dashed lines = the 25% and 75% percentiles).
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4.2.6. Brain + All Artifacts

When all artifacts were simultaneously involved, iCanClean offered a substantial
improvement over all other methods. Starting from a score of 15.7% (before cleaning),
the Brain + All Artifacts condition improved to 55.9% after iCanClean. Meanwhile, it only
improved to 27.6%, 27.2%, and 32.9% after ASR, Auto-CCA, and Adaptive Filtering. For
context, the Brain (only) condition scored 57.2% without cleaning, which is a reasonable
value to target. See Figure 10 for example time scrolls and PSDs before and after cleaning
the Brain + All Artifacts condition with each method. Note how the power spectra for the
Brain + All Artifacts data (after iCanClean) resembles the already clean data in the Brain
(only) condition (compare the blue curve in the last row of Figure 10 with the blue curve in
the last row of Figure 5).
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Figure 10. Qualitative (visual) assessment of the Brain + All Artifacts condition before and after each
processing method (iCanClean, Adaptive Filtering, Auto-CCA, ASR), using their respective ideal
settings (maximized Data Quality Score after cleaning). Top row: time-series plot of raw EEG data for
the Brain + All Artifacts condition. Brain, eye, neck-muscle, and facial-muscle signals were sent to the
phantom and the hexapod motion platform moved starting at time 0.5 s. Second row: ideally cleaned
data. Third row: relative difference (what was removed during cleaning). Individual time-series plots
in the Raw, Clean, and Difference plots are spaced 50 µV apart from each other, on center. Bottom
row: power spectral density plots of the associated time-series data (Raw = red, Clean = blue, and
Difference = black; solid lines = the median power across channels as a function of the frequency,
dashed lines = the 25% and 75% percentiles).
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5. Discussion
5.1. Background and Objective

The objective of this work was to validate iCanClean, a novel method to identify
and remove a wide variety of electroencephalography (EEG) artifacts, with or without
reference noise signals. Compared to other popular cleaning algorithms, such as Adaptive
Filtering, Auto-CCA, and ASR, our novel method has several theoretical advantages. Unlike
Adaptive Filtering, which only considers one EEG channel at a time, iCanClean searches for
latent relationships that exist between the entire set of EEG channels and the entire set of
reference (or pseudo-reference) noise channels. iCanClean can identify noise components
as they exist in the subspace of all EEG channels, similar to ICA. This should lead to better
cleaning performance (i.e., better Data Quality Scores) in the scenario where noise sensors
are imperfect or where the projection from the noise sources to the sensors differs between
the EEG and the noise electrodes. Unlike Auto-CCA, which searches for relationships
between EEG data and a lagged version of itself, iCanClean uses canonical correlation
analysis (CCA) to search for relationships between EEG signals and reference (or pseudo-
reference) noise signals. Thus, iCanClean exploits an extra set of valuable information
not utilized by Auto-CCA, which should lead to better cleaning performance and reduce
the likelihood of accidentally removing brain activity. Unlike ASR, which requires clean
example data (user-provided or automatically determined), iCanClean does not depend on
clean example data. iCanClean can theoretically be applied directly to contaminated data,
thereby saving time (unnecessary data collection).

5.2. Main Findings

The empirical results of this phantom EEG study support our theoretical foundation
for iCanClean. Unlike Adaptive Filtering, Auto-CCA, and ASR, our novel method provided
consistently high Data Quality Scores, regardless of the type or number of artifacts present
(i.e., for all conditions). Of particular note was the Brain + All Artifacts condition where
iCanClean was the only algorithm to clean the data to satisfactory levels (i.e., similar score
to data from the Brain condition). Thus, iCanClean shows promise as an all-in-one solution
for removing a wide variety of artifacts.

5.3. Patterns Supporting the Theoretical Foundation of iCanClean

There are some patterns within the results worth noting that suggest ways to optimize
artifact cleaning. First, there was a benefit to cleaning EEG data using mixtures of the EEG
channels themselves. Whereas Adaptive Filtering cleans EEG data strictly using mixtures of
reference noise signals, iCanClean can also use mixtures of the EEG channels, if desired. As
anticipated, we saw improved performance when iCanClean was set to clean the corrupted
EEG channels using mixtures of (raw) EEG channels themselves rather than using mixtures
of reference (or pseudo-reference) noise channels. For example, iCanClean improved the
Brain + All Artifacts condition to 55.9% using mixtures of EEG channels versus 39.0% using
mixtures of noise channels. Second, there was a benefit to using CCA to identify common
information between corrupt EEG data and reference noise signals prior to linear regression.
Even when iCanClean was set to clean the corrupted EEG channels using only mixtures of
noise channels (similar to Adaptive Filtering), iCanClean still achieved higher scores than
Adaptive Filtering. For example, for the Brain + All Artifacts condition, iCanClean achieved
a score of 39.0% using only mixtures of pseudo-reference noise channels, and Adaptive
Filtering with the same pseudo-reference noise channels scored 32.9%. Third, there was a
benefit to using reference noise signals to guide CCA toward finding noise components
(i.e., the iCanClean approach) as opposed to applying CCA to a lagged copy of the EEG
signals for blind separation (i.e., the Auto-CCA approach). Besides better Data Quality
Scores in general, the advantage of iCanClean over Auto-CCA is readily evident in the
number of components that were removed for the Brain + Neck Muscle condition. A total of
four independent neck-muscle sources were sent into the phantom head. Therefore, in the
ideal scenario, we expect a cleaning algorithm to identify exactly four distinct artifactual
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sources (or five with line noise). When 8-channel neck EMG data were available as the
reference noise signals, iCanClean removed a total of 4 components and achieved a score
of 56.4%. When no neck EMG signals were available, iCanClean removed 6 components
and achieved a score of 58.1%. Meanwhile, Auto-CCA removed 43 components to achieve
a score of 54.8%. This emphasizes that Auto-CCA may be more likely to remove brain
activity, or to not remove artifacts at all, because Auto-CCA does not exploit reference noise
signals like iCanClean does to direct CCA toward finding the underlying artifacts.

5.4. Other Patterns Worth Noting

Regarding using IMU signals to help remove EEG motion artifacts, as expected we
saw improved performance when the base frequency of the filter bank matched the main
frequency of the motion (0.95 Hz), but the effect was mild (37.8% at 0.95 Hz vs. 37.7 at
0.85 Hz; 4 harmonics and cascade filtering). We observed poor performance using an
Linfinity solution (see [25]) as opposed to the traditional L2 solution for adaptive filtering
(2.43% vs. 34.39%; 0.95 Hz, 1 harmonic). We also found that simultaneously fitting all
reference IMU signals to the EEG channels with the traditional regression approach was
better than the cascade approach proposed in [25] (41.4% vs. 37.8%; 0.95 Hz, 4 harmonics).
Regarding ASR, we found its performance was improved with the use of an external
calibration dataset as opposed to automatically determining clean subsections of the data
to use for calibration (27.6% vs. 23.4 for Brain + All Artifacts).

5.5. Unexpected Results

There were also unexpected results. First, Auto-CCA did surprisingly well with eye
artifact removal. Auto-CCA typically aims to remove low-correlation Auto-CCA compo-
nents such as muscle artifacts. Here, for sake of completeness, we also tested removing
high-correlation Auto-CCA components. Auto-CCA achieved good results removing
high-correlation eye-blink artifacts at the optimal settings. Note, however, that Auto-CCA
components containing brain activity will have a relatively high correlation, similar to
eye artifacts. Users should be cautious when rejecting high-correlation components with
the Auto-CCA approach. Second, we were surprised that the pseudo-reference version of
iCanClean worked so well. We expected that dedicated noise sensors such as dual-layer
EEG would better capture motion artifacts than pseudo-reference signals, but this may
not always be the case. For the Brain + Neck Muscles condition, using neck EMG reference
electrodes scored 56.4% while the pseudo-reference version of iCanClean scored 58.1%. For
the Brain + Walking Motion condition, using dual-layer noise sensors scored 45.6% while
the pseudo-reference version of iCanClean scored 54.3%.

5.6. Broader Implications of iCanClean

There are two main outcomes from this study. First, iCanClean increases the fidelity of
EEG mobile brain-imaging studies done without accurate EEG noise sensors and suggests
that some studies may not need noise sensors at all. Second, due to its minimal processing
time, iCanClean would be particularly helpful for real-time brain–computer-interfaces in
mobile applications (e.g., thought control of virtual reality, thought control of exoskeletons,
and neurofeedback for physical rehabilitation).

On the first point, one downside to Adaptive Filtering is its reliance on accurate
noise sensors. When saving cost is a major consideration, an inertial measurement unit
(IMU) on the head is a popular choice of noise sensor [25,41–44]. IMU technology is
cheap and readily available in a small form factor. Intuition suggests that signals from
an IMU placed on the head should contain information about the motion artifacts of the
electrodes placed on the head. However, in our experience, IMU signals are not strongly
related to the motion artifacts that appear on EEG electrodes [6,45]. Note that motion
artifacts are largely due to cable sway, which is not directly related to the movement of the
head. Indeed, motion artifacts can be induced simply by moving the cables themselves,
even if the head is stationary and the electrodes do not move relative to the scalp [14].
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Considering the relatively poor quality of IMU signals as reference noise signals, additional
modifications to Adaptive Filtering may need to be employed to remove motion artifacts.
For example, in [25], the IMU-based algorithm employs narrow filter banks, a Volterra series
expansion [46], an H-infinity update law [47], and cascade filtering [48]. We implemented
an equivalent offline version of the IMU-based filtering algorithm in [25]. We found that the
IMU-based algorithm did not provide suitable cleaning performance, despite the various
modifications to Adaptive Filtering. Meanwhile, we showed that iCanClean can remove
motion artifacts (and other artifacts in general), using only pseudo-reference signals (no
dedicated noise sensors). Thus, iCanClean may advance mobile brain-imaging research
by alleviating the need for accurate noise sensors and, perhaps, the need for noise sensors
at all.

On the second point, iCanClean ran very quickly without extensive computational
power. For the Brain + All Artifacts condition, iCanClean took 6 s to complete, whereas
ASR, Auto-CCA, and Adaptive Filtering took 523, 6, and 87 s, respectively. Although we
implemented the cleaning algorithms offline in the present manuscript, the iCanClean
algorithm was computationally efficient and shows potential for real-time cleaning appli-
cations. iCanClean may prove valuable in providing an all-in-one clearing approach for
mobile brain–computer interfaces by removing multiple types of artifacts, simultaneously,
in a computationally efficient manner, without requiring dedicated hardware to record
reference noise signals.

5.7. Study Limitations

There were some limitations to this study. First, it was not feasible to test every cleaning
algorithm in the literature, so we limited our selection to ASR, Auto-CCA, and Adaptive
Filtering. For example, we did not test the algorithm in [40], which used dual-layer EEG and
a fast Fourier transform-based method to identify frequency bins for removal. However,
we made it easy for others to validate our findings and test out their own algorithms
by providing the data used in the experiment as well as the iCanClean algorithm as a
downloadable plugin for EEGLAB. Included in the data are all the raw phantom EEG data
and all MATLAB scripts used for processing and analysis. The second limitation to this
study is we did not attempt to cancel eye blinks using electrooculogram (EOG) sensors on
our phantom head apparatus. Our primary concern was to collect reference noise signals
for the Brain + Neck Muscle condition. Future studies could incorporate EOG sensors on
real humans using iCanClean to measure the efficacy of the approach, both at rest and for
mobile tasks.

5.8. Recommendations for Practical Implementation of iCanClean

We have some recommendations for the practical implementation of iCanClean. First,
when reference noise signals contain brain activity, average re-referencing to temporarily
remove brain activity may generally be a good idea (see EEGLAB pop_reref function).
For example, our neck muscle EMG recordings shared a reference electrode with the EEG
system, so the raw EMG recordings naturally contain some brain activity. If CCA were
used to search for latent relationships between the raw EMG and EEG recordings, it could
remove brain activity (because brain activity would be in common to both the reference
noise signals and the contaminated EEG). To average re-reference the EMG sensors to
themselves, first calculate the average across all EMG channels (with their raw reference).
Next, subtract this average value (time series) from each of the original EMG channels
(forcing their new average to be 0). In this way, the average re-rereferencing can remove
common activity across all EMG sensors, and one rank of data is deleted. Our results show
this can help attenuate brain activity prior to CCA and improve performance (improved
data quality scores) in this scenario. Second, to determine the best R2 threshold, we
recommend new users view an optional plot with the iCanClean GUI that shows the R2

correlation as a function of the CCA component number (“Plot R2 correlation” checkbox in
Figure S2). This should make it easier to more quickly determine the optimal range of R2
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values for their particular setup (type of noise sensors, number of sensors, the task being
studied, etc.). Third, users may want to vary the window size for their application. When
using CCA to identify the noise components (File S1, Equation (1)), the user has a choice as
to what sections of data (time windows) to include. The noise components can be calculated
on the entire set of data or with a moving window. Assuming the data is stationary, longer
windows should be better able to find and delete latent noise components by exploiting
more total data. Meanwhile, shorter windows could better handle non-stationary data.

5.9. Recommendations for Future Research

Future research could focus on determining optimal parameter settings for iCanClean
in various scenarios. In previous work, we showed that a moving-window version of
iCanClean with 120 + 120 dual-layer EEG sensors can improve the ICA decomposition of
motion-artifact data, for both table tennis [6] and uneven-terrain treadmill walking [49].
Based on [49], it appears that a shorter time window (2–4 s) is better for removing motion
artifacts with dual-layer EEG in human data, as opposed to a longer window. We suspect
this is due to nonstationarity in the data. Further research is needed to determine if
performance can be improved by incorporating larger windows of data. If there proves to
be a benefit to using more data, then it is possible we could implement CCA recursively
in the future, given that recursive CCA algorithms exist in the literature [42,50–52]. This
would reduce the computational cost of calculating CCA on a very large (and ever growing)
window of data for real-time applications. The performance using a moving 2 s window is
already relatively good [6,49]. This makes iCanClean easy to implement in real-time and
minimizes computational cost. As a brief demonstration of iCanClean’s real-time cleaning
capability, we applied iCanClean to remove artifacts from human data in pseudo-real time
(see Figures S5 and S6). In future work, we would also like to attempt to remove other
types of artifacts. For example, we believe there is significant potential for iCanClean to
improve EEG studies that simultaneously record fMRI [53] or apply transcranial magnetic
stimulation (TMS) [54], both of which induce large artifacts on the EEG recordings. For
example, the work in [55–58] may be improved by applying iCanClean.

Finally, the last bit of future research we are excited to share is iCanClean’s potential
to identify brain components from noisy EEG data, similar to ICA, but with less total
data needed. Given the surprisingly good performance of the pseudo-reference version
of iCanClean removing artifacts from channel-level data, we further explored the data,
and we discovered that iCanClean was not only identifying noise sources for removal, but
it was also identifying brain sources worth keeping. Additionally, iCanClean made the
brain sources easy to identify based on their R2 sorting from canonical correlation analysis.
The 10 ground-truth brain sources were exactly contained in the 10 highest numbered
iCanClean components (the components that least resembled noise, i.e., those with the
lowest R2 value). In Figure 11, we quantify iCanClean’s ability to identify brain components
from the Brain + All Artifacts phantom dataset. Impressively, iCanClean recovered 6 (out of
10) brain sources with a score of at least 85%, and 9 (out of 10) brain sources were recovered
scoring at least 75%. Based on these preliminary results, we decided to release an additional
option to find candidate brain components with iCanClean as a plugin for EEGLAB (see
Figure S3). We also briefly tested the concept on human data and saw promising results
(finding candidate brain components using as little as 3 min of data with no preprocessing
needed), but further systematic testing is needed.
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Figure 11. Ability of iCanClean to recover ground-truth brain sources from the Brain + All Artifacts
condition. Here we used pseudo-reference signals in iCanClean (band stop 4–50 Hz), but instead of
using iCanClean to clean the channels, we checked if any of the iCanClean components resembled
the ground-truth brain components. Plotted is the R2 correlation between each ground-truth brain
component (10 total, labeled by anatomical location in the phantom head) and the iCanClean com-
ponent that best matches it. Note that these values have been normalized according to the best that
any linear unmixing algorithm could do (e.g., ICA). For example, the best possible R2 correlation for
the left hand is 63.1% (strictly limited to using linear mixtures of the EEG channels), and iCanClean
found a candidate component with an R2 correlation of 58.3%. After normalizing, the ground-truth
recovery value for this brain source is 92.4% (58.3/63.1 = 92.4%). Overall, iCanClean did surprisingly
well as it reconstructed 6 out of 10 brain components with a score > 85% and 9 out of 10 > 75%.
Identifying brain sources was not our original goal, but it helps explain why the pseudo-reference
version performed so well. Note also that iCanClean auto sorted all the brain components to the
end of the list. Out of 128 total components, the best matching components were #119-128 (i.e., the
last 10).

6. Conclusions

iCanClean is a promising, all-in-one, real-time-capable cleaning algorithm which
could facilitate the analysis of EEG data corrupted by a wide variety of artifacts. It is
computationally efficient and can simultaneously remove multiple types of artifacts. We
included relevant scripts and data associated with this work for download for validation
by other research groups. We encourage others to test out the iCanClean algorithm on their
data, and, similarly, we invite others to test out their own algorithms on the phantom EEG
dataset with known ground-truth signals.

7. Patents

“Removing Latent Noise Components from Data Signals”, non-provisional patent
application submitted to United States Patent and Trademark Office on 25 August 2021,
Application No. PCT/US21/71283. Published under International Publication No. WO
2022/061322 on 24 March 2022. Claims priority to provisional patent application “A Novel
Electroencephalography (EEG) Cleaning Algorithm that Uses Reference Noise Record-
ings and Canonical Correlation Analysis to Identify and Remove Artifacts”, previously
submitted on 18 September 2020, Serial No. 63/080,475

“Using Pseudo Reference Noise Signals to Remove Latent Noise from Data Signals and
Identify Data Sources”, provisional patent application submitted to United States Patent
and Trademark Office on 5 September 2023, Serial No. 63/580,664.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23198214/s1, File S1: Mathematics of iCanClean; Figure S2:
Graphical user interface (GUI) implementation of iCanClean; Figure S3: Graphical user interface for
finding brain components with iCanClean; Video S4: Demonstration of head phantom undergoing
1.5 m/s walking motion trajectory; Figure S5: Example real-time cleaning of motion artifacts from
mobile EEG; Figure S6: Example real-time cleaning of eye blink artifacts from stationary EEG.
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ASR Artifact Subspace Reconstruction
CCA Canonical Correlation Analysis
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