Directional Resonant MEMS Acoustic Sensor and Associated Acoustic Vector Sensor
Abstract
:1. Introduction
1.1. Biologically Inspired Sensors
1.2. Directional Sensors
1.3. Resonant Sensors
1.4. Combined Resonant and Directional Sensors
2. Design and Modeling
2.1. Design Requirements
2.2. Sensor Construction
2.3. Analytical Modeling
2.4. Finite Element Modeling
2.5. DOA Estimation
3. Methods
3.1. Mechanical Sensitivity Measurements
3.2. Electrical Experimental Setup in Air
3.3. Field Experimental Setup
3.4. Experimental Setup under Water
4. Experimental Results
4.1. Operation in Air
4.2. Operations Underwater
5. Discussion/Conclusions
5.1. Sensor Performance
5.2. AVS Performance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahaman, A.; Kim, B. Microscale Devices for Biomimetic Sound Source Localization: A Review. J. Microelectromech. Syst. 2022, 31, 9–18. [Google Scholar] [CrossRef]
- Miles, R.N.; Robert, D.; Hoy, R.R. Mechanically Coupled Ears for Directional Hearing in the Parasitoid Fly Ormia ochracea. J. Acoust. Soc. Am. 1995, 98, 3059–3070. [Google Scholar] [CrossRef] [PubMed]
- Arthur, B.J.; Hoy, R.R. The Ability of the Parasitoid Fly Ormia ochracea to Distinguish Sounds in the Vertical Plane. J. Acoust. Soc. Am. 2006, 120, 1546–1549. [Google Scholar] [CrossRef]
- Akcakaya, M.; Nehorai, A. Performance Analysis of the Ormia ochracea’s Coupled Ears. J. Acoust. Soc. Am. 2008, 124, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.N.; Su, Q.; Cui, W.; Shetye, M.; Degertekin, F.L.; Bicen, B.; Garcia, C.; Jones, S.; Hall, N. A Low-Noise Differential Microphone Inspired by the Ears of the Parasitoid Fly Ormia ochracea. J. Acoust. Soc. Am. 2009, 125, 2013–2026. [Google Scholar] [CrossRef] [PubMed]
- Lisiewski, A.P.; Liu, H.J.; Yu, M.; Currano, L.; Gee, D. Fly-Ear Inspired Micro-Sensor for Sound Source Localization in Two Dimensions. J. Acoust. Soc. Am. 2011, 129, EL166–EL171. [Google Scholar] [CrossRef] [PubMed]
- Miles, R.N.; Cui, W.; Su, Q.T.; Homentcovschi, D. A MEMS Low-Noise Sound Pressure Gradient Microphone with Capacitive Sensing. J. Microelectromech. Syst. 2015, 24, 241–248. [Google Scholar] [CrossRef]
- Reid, A.; Windmill, J.F.C.; Uttamchandani, D. Bio-Inspired Sound Localization Sensor with High Directional Sensitivity. Procedia Eng. 2015, 120, 289–293. [Google Scholar] [CrossRef]
- Zhang, Y.; Bauer, R.; Jackson, J.C.; Whitmer, W.M.; Windmill, J.F.C.; Uttamchandani, D. A Low-Frequency Dual-Band Operational Microphone Mimicking the Hearing Property of Ormia ochracea. J. Microelectromech. Syst. 2018, 27, 667–676. [Google Scholar] [CrossRef]
- Zhang, Y.; Bauer, R.; Whitmer, W.M.; Jackson, J.C.; Windmill, J.F.C.; Uttamchandani, D. A MEMS Microphone Inspired by Ormia for Spatial Sound Detection. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 253–256. [Google Scholar]
- Zhang, Y.; Reid, A.; Windmill, J.F.C. Insect-Inspired Acoustic Micro-Sensors. Curr. Opin. Insect Sci. 2018, 30, 33–38. [Google Scholar] [CrossRef]
- Ishfaque, A.; Rahaman, A.; Kim, B. Bioinspired Low Noise Circular-Shaped MEMS Directional Microphone. J. Micro/Nanolithogr. MEMS MOEMS 2019, 18, 010501. [Google Scholar] [CrossRef]
- Rahaman, A.; Kim, B. Fly-Inspired MEMS Directional Acoustic Sensor for Sound Source Direction. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 905–908. [Google Scholar]
- Rahaman, A.; Kim, B. AI Speaker: A Scope of Utilizing Sub–Wavelength Directional Sensing of Bio–Inspired MEMS Directional Microphone. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar]
- Rahaman, A.; Kim, B. Sound Source Localization by Ormia ochracea Inspired Low–Noise Piezoelectric MEMS Directional Microphone. Sci. Rep. 2020, 10, 9545. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Jung, H.; Kim, B. Coupled D33 Mode-Based High Performing Bio-Inspired Piezoelectric MEMS Directional Microphone. Appl. Sci. 2021, 11, 1305. [Google Scholar] [CrossRef]
- Ren, D.; Qi, Z.-M. An Optical Beam Deflection Based MEMS Biomimetic Microphone for Wide-Range Sound Source Localization. J. Phys. Appl. Phys. 2021, 54, 505403. [Google Scholar] [CrossRef]
- Shen, X.; Zhao, L.; Xu, J.; Yao, X. Mathematical Analysis and Micro-Spacing Implementation of Acoustic Sensor Based on Bio-Inspired Intermembrane Bridge Structure. Sensors 2021, 21, 3168. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, A.; Kim, B. An Mm-Sized Biomimetic Directional Microphone Array for Sound Source Localization in Three Dimensions. Microsyst. Nanoeng. 2022, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Touse, M.; Sinibaldi, J.; Karunasiri, G. MEMS Directional Sound Sensor with Simultaneous Detection of Two Frequency Bands. In Proceedings of the 2010 IEEE SENSORS, Waikoloa, HI, USA, 1–4 November 2010; pp. 2422–2425. [Google Scholar]
- Touse, M.; Sinibaldi, J.; Simsek, K.; Catterlin, J.; Harrison, S.; Karunasiri, G. Fabrication of a Microelectromechanical Directional Sound Sensor with Electronic Readout Using Comb Fingers. Appl. Phys. Lett. 2010, 96, 173701. [Google Scholar] [CrossRef]
- Downey, R.H.; Karunasiri, G. Reduced Residual Stress Curvature and Branched Comb Fingers Increase Sensitivity of MEMS Acoustic Sensor. J. Microelectromech. Syst. 2014, 23, 417–423. [Google Scholar] [CrossRef]
- Wilmott, D.; Alves, F.; Karunasiri, G. Bio-Inspired Miniature Direction Finding Acoustic Sensor. Sci. Rep. 2016, 6, 29957. [Google Scholar] [CrossRef]
- Espinoza, A.; Alves, F.; Rabelo, R.; Da Re, G.; Karunasiri, G. Fabrication of MEMS Directional Acoustic Sensors for Underwater Operation. Sensors 2020, 20, 1245. [Google Scholar] [CrossRef]
- Rabelo, R.C.; Alves, F.D.; Karunasiri, G. Electronic Phase Shift Measurement for the Determination of Acoustic Wave DOA Using Single MEMS Biomimetic Sensor. Sci. Rep. 2020, 10, 12714. [Google Scholar] [CrossRef]
- Alves, F.; Park, J.; McCarty, L.; Rabelo, R.; Karunasiri, G. MEMS Underwater Directional Acoustic Sensor in Near Neutral Buoyancy Configuration. Sensors 2022, 22, 1337. [Google Scholar] [CrossRef]
- Alves, F.; Rabelo, R.; Karunasiri, G. Dual Band MEMS Directional Acoustic Sensor for Near Resonance Operation. Sensors 2022, 22, 5635. [Google Scholar] [CrossRef] [PubMed]
- Crooker, P.; Soule, I.; Ivancic, J.; Karunasiri, G.; Alves, F. Direction of Arrival Algorithm for Acoustic Sensors Operating Near Resonance. IEEE Sens. Lett. 2023, 7, 7002404. [Google Scholar] [CrossRef]
- Rayburn, R. Eargle’s the Microphone Book: From Mono to Stereo to Surround—A Guide to Microphone Design and Application, 3rd ed.; Routledge: New York, NY, USA, 2011; ISBN 978-0-240-82078-1. [Google Scholar]
- Schoess, J.N.; Zook, J.D.; Burns, D.W. Resonant Integrated Micromachined (RIMS) Acoustic Sensor Development. In Proceedings of the 1994 North American Conference on Smart Structures and Materials, Orlando, FL, USA, 13–18 February 1994; SPIE: Bellingham, WA, USA, 1994; Volume 2191, pp. 276–281. [Google Scholar]
- Schoess, J.N.; Zook, J.D. Test Results of a Resonant Integrated Microbeam Sensor (RIMS) for Acoustic Emission Monitoring. In Proceedings of the 5th Annual International Symposium on Smart Structures and Materials, San Diego, CA, USA, 1–5 March 1998; SPIE: Bellingham, WA, USA, 1998; Volume 3328, pp. 326–332. [Google Scholar]
- Baumgartel, L.; Vafanejad, A.; Chen, S.-J.; Kim, E.S. Resonance-Enhanced Piezoelectric Microphone Array for Broadband or Prefiltered Acoustic Sensing. J. Microelectromech. Syst. 2013, 22, 107–114. [Google Scholar] [CrossRef]
- Shkel, A.A.; Baumgartel, L.; Kim, E.S. A Resonant Piezoelectric Microphone Array for Detection of Acoustic Signatures in Noisy Environments. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 917–920. [Google Scholar]
- Liu, H.; Liu, S.; Shkel, A.A.; Kim, E.S. Active Noise Cancellation with MEMS Resonant Microphone Array. J. Microelectromech. Syst. 2020, 29, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Nomura, T.; Su, X.; Iizuka, H. Fano-Like Acoustic Resonance for Subwavelength Directional Sensing: 0–360 Degree Measurement. Adv. Sci. 2020, 7, 1903101. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Omori, T.; Watabe, K.; Toshiyoshi, H. Bandwidth and Sensitivity Enhancement of Piezoelectric MEMS Acoustic Emission Sensor Using Multi-Cantilevers. In Proceedings of the 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 868–871. [Google Scholar]
- Kusano, Y.; Segovia-Fernandez, J.; Sonmezoglu, S.; Amirtharajah, R.; Horsley, D.A. Frequency Selective MEMS Microphone Based on a Bioinspired Spiral-Shaped Acoustic Resonator. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 71–74. [Google Scholar]
- MEMSCAP|SOIMUMPs and MEMS Multi Project Wafer Service. Available online: http://www.memscap.com/products/mumps/soimumps/ (accessed on 24 January 2023).
- PolyJet Materials|StratasysTM Support Center. Available online: https://support.stratasys.com/en/materials/polyjet (accessed on 24 January 2023).
- Leslie, C.B.; Kendall, J.M.; Jones, J.L. Hydrophone for Measuring Particle Velocity. J. Acoust. Soc. Am. 1956, 28, 711–715. [Google Scholar] [CrossRef]
- Liu, C. Foundations of MEMS; Pearson Education India: Chennai, India, 2012. [Google Scholar]
- Gologanu, M.; Bostan, C.G.; Avramescu, V.; Buiu, O. Damping Effects in MEMS Resonators. In Proceedings of the CAS 2012 (International Semiconductor Conference), Sinaia, Romania, 15–17 October 2012; Volume 1, pp. 67–76. [Google Scholar]
- Sader, J.E. Frequency Response of Cantilever Beams Immersed in Viscous Fluids with Applications to the Atomic Force Microscope. J. Appl. Phys. 1998, 84, 64–76. [Google Scholar] [CrossRef]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics; John Wiley & Sons: Hoboken, NJ, USA, 2000; ISBN 978-0-471-84789-2. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Volume 6; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-1-4831-6104-4. [Google Scholar]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What Is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 2010, 19, 229–238. [Google Scholar] [CrossRef]
- Knowles High SNR, High AOP Analog Bottom Port SISONIC Microphone. Available online: https://media.digikey.com/pdf/Data%20Sheets/Knowles%20Acoustics%20PDFs/SPM0687LR5H-1_DS.pdf (accessed on 21 September 2023).
- Miniature Hydrophone|Type 8103|Brüel & Kjær. Available online: https://www.bksv.com/en/transducers/acoustic/microphones/hydrophones/8103 (accessed on 24 January 2023).
- Donzier, A.; Millet, J. Gunshot Acoustic Signature Specific Features and False Alarms Reduction. In Proceedings of the Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IV, Orlando, FL, USA, 28 March–1 April 2005; SPIE: Bellingham, WA, USA, 2005; Volume 5778, pp. 254–263. [Google Scholar]
- Maher, R.C. Acoustical Characterization of Gunshots. In Proceedings of the 2007 IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA, 11–13 April 2007; pp. 1–5. [Google Scholar]
- Luzi, L.; Gonzalez, E.; Bruillard, P.; Prowant, M.; Skorpik, J.; Hughes, M.; Child, S.; Kist, D.; McCarthy, J.E. Acoustic Firearm Discharge Detection and Classification in an Enclosed Environment. J. Acoust. Soc. Am. 2016, 139, 2723–2731. [Google Scholar] [CrossRef]
- Kolamunna, H.; Dahanayaka, T.; Li, J.; Seneviratne, S.; Thilakaratne, K.; Zomaya, A.Y.; Seneviratne, A. DronePrint: Acoustic Signatures for Open-Set Drone Detection and Identification with Online Data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 20. [Google Scholar] [CrossRef]
- Bernardini, A.; Mangiatordi, F.; Pallotti, E.; Capodiferro, L. Drone Detection by Acoustic Signature Identification. Electron. Imaging 2017, 2017, 60–64. [Google Scholar] [CrossRef]
- Kang, S.; Hong, H.-K.; Rhee, C.-H.; Yoon, Y.; Kim, C.-H. Directional Sound Sensor with Consistent Directivity and Sensitivity in the Audible Range. J. Microelectromech. Syst. 2021, 30, 471–479. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.; Woo, S.; Sly, D.J.; Campbell, L.J.; Cho, J.-H.; O’Leary, S.J.; Park, M.-H.; Han, S.; Choi, J.-W.; et al. A Microelectromechanical System Artificial Basilar Membrane Based on a Piezoelectric Cantilever Array and Its Characterization Using an Animal Model. Sci. Rep. 2015, 5, 12447. [Google Scholar] [CrossRef]
Model | Key Design Parameters [μm] | Resonant Freq Model [Hz] | Q1 | Q2 | Quality Factor Model | Resonant Freq Measured [Hz] | Quality Factor Measured |
---|---|---|---|---|---|---|---|
7-1 Air | Wing Width = 3000 Wing Length = 1450 Bridge Width = 80 Bridge Length = 1960 | 607 | 26 | 162 | 22 | 664 | 27 |
7-3 Air | Wing Width = 2400 Wing Length = 1595 Bridge Width = 500 Bridge Length = 1400 | 2345 | 53 | 1017 | 50 | 2340 | 59 |
7-3 Oil | 435 | 22 | 48 | 15 | 440 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivancic, J.; Karunasiri, G.; Alves, F. Directional Resonant MEMS Acoustic Sensor and Associated Acoustic Vector Sensor. Sensors 2023, 23, 8217. https://doi.org/10.3390/s23198217
Ivancic J, Karunasiri G, Alves F. Directional Resonant MEMS Acoustic Sensor and Associated Acoustic Vector Sensor. Sensors. 2023; 23(19):8217. https://doi.org/10.3390/s23198217
Chicago/Turabian StyleIvancic, Justin, Gamani Karunasiri, and Fabio Alves. 2023. "Directional Resonant MEMS Acoustic Sensor and Associated Acoustic Vector Sensor" Sensors 23, no. 19: 8217. https://doi.org/10.3390/s23198217
APA StyleIvancic, J., Karunasiri, G., & Alves, F. (2023). Directional Resonant MEMS Acoustic Sensor and Associated Acoustic Vector Sensor. Sensors, 23(19), 8217. https://doi.org/10.3390/s23198217