A Coin-Sized Oxygen Laser Sensor Based on Tunable Diode Laser Absorption Spectroscopy Combining a Toroidal Absorption Cell
Abstract
:1. Introduction
2. Theory
3. Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heffner, J.E. The Story of Oxygen. Respir. Care 2013, 58, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.A.B.; Torresc, E.A.; Pereira, P.A.P. Critical Evaluation of the Oxygen-Enhanced Combustion in Gas Burners for Industrial Applications and Heating Systems. J. Braz. Chem. Soc. 2011, 22, 1841–1849. [Google Scholar] [CrossRef]
- Kazemi, A.; Mendoza, E.; Goswami, K.; Kempen, L. Fiber optic oxygen sensor detection system for harsh environments of aerospace applications. PLoS SPIE 2013, 8720, e872002. [Google Scholar]
- Guo, R.; Li, Y.H.; Lv, M.B. Nonlinear predictive filter based fault diagnosis of oxygen generation system by using electrolytic water in space station. Acta Astronaut. 2020, 168, 230–241. [Google Scholar] [CrossRef]
- Niederwieser, T.; Kociolek, P.; Klaus, D. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications. Life Sci. Space Res. 2018, 16, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Pogány, A.; Wagner, S.; Werhahn, O.; Ebert, V. Development and Metrological Characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) Spectrometer for Simultaneous Absolute Measurement of Carbon Dioxide and Water Vapor. Appl. Spectrosc. 2015, 69, 257–268. [Google Scholar] [CrossRef]
- Wienhold, F.G.; Fischer, H.; Hoor, P.; Wagner, V.; Schilling, T. TRISTAR—A tracer in situ TDLAS for atmospheric research. Appl. Phys. B 1998, 67, 411–417. [Google Scholar] [CrossRef]
- Zellweger, C.; Steinbacher, M.; Buchmann, B. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements. Atmos. Meas. Tech. 2012, 5, 2555–2567. [Google Scholar] [CrossRef]
- Pilston, R.G.; White, J.U. A Long Path Gas Absorption Cell. J. Opt. Soc. Am. 1954, 44, 572–573. [Google Scholar] [CrossRef]
- White, J.U. Long Optical Paths of Large Aperture. J. Opt. Soc. Am. 1942, 32, 285–288. [Google Scholar] [CrossRef]
- Herriott, D.; Kogelnik, H.; Kompfner, R. Off-Axis Paths in Spherical Mirror Interferometers. Appl. Opt. 1964, 3, 523–526. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, F.; Li, C.; Yang, X.; Li, N.; Liu, S.; Wei, J.; Qiu, X.; He, Q. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy. Opt. Lasers Eng. 2019, 115, 243–248. [Google Scholar] [CrossRef]
- Gurneesh, S.J.; Anthony, K.P.; Geckler, S.C.; Partridge, W.P. Absorption spectroscopy based high-speed oxygen concentration measurements at elevated gas temperatures. Sens. Actuators B Chem. 2019, 293, 173–182. [Google Scholar] [CrossRef]
- Chernin, S.M. New generation of multipass systems in high resolution spectroscopy. Spectrochim. Acta A 1996, 52, 1009–1022. [Google Scholar] [CrossRef]
- Feng, S.; Qiu, X.; Guo, G.; Zhang, E.; He, Q.; He, X.; Ma, W.; Fittschen, C.; Li, C. Palm-Sized Laser Spectrometer with High Robustness and Sensitivity for Trace Gas Detection Using a Novel Double-Layer Toroidal Cell. Anal. Chem. 2021, 93, 4552–4558. [Google Scholar] [CrossRef]
- Chang, H.; Feng, S.; Qiu, X.; Meng, H.; Guo, G.; He, X.; He, Q.; Yang, X.; Ma, W.; Kan, R.; et al. Implementation of the toroidal absorption cell with multi-layer patterns by a single ring surface. Opt. Lett. 2020, 45, 5897–5900. [Google Scholar] [CrossRef]
- Tuzson, B.; Mangold, M.; Looser, H.; Manninen, A.; Emmenegger, L. Compact multipass optical cell for laser spectroscopy. Opt. Lett. 2013, 38, 257–259. [Google Scholar] [CrossRef]
- Jouy, P.; Mangold, M.; Tuzson, B.; Emmenegger, L.; Chang, Y.C.; Hvozdara, L.; Herzig, H.P.; Wägli, P.; Homsy, A.; de Rooij, N.F.; et al. Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies. Analyst 2014, 139, 2039–2046. [Google Scholar] [CrossRef]
- Mangold, M.; Tuzson, B.; Hundt, M.; Jágerská, J.; Looser, H.; Emmenegger, L. Circular paraboloid reflection cell for laser spectroscopic trace gas analysis. J. Opt. Soc. Am. A 2016, 33, 913–919. [Google Scholar] [CrossRef]
- Chang, J.; He, Q.; Li, J.; Feng, Q. Oxygen detection system based on TDLAS–WMS and a compact multipass gas cell. Microw. Opt. Technol. Lett. 2022, 65, 1141–1145. [Google Scholar] [CrossRef]
- Wang, B.; Lu, H.; Li, A.; Chen, Y.; Dai, T.; Huang, S.; Lian, H. Research of TDLAS methane detection system using VCSEL laser as the light source. Infrared Laser Eng. 2020, 49, 7. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Chen, D.; He, Y.; You, K.; Zhou, Y.; Liu, J.; Liu, W. Oxygen Sensor Based on Tunable Diode Laser Absorption Spectroscopy with a Vertical Cavity Surface-Emitting Laser. Adv. Mat. Res. 2013, 760–762, 40–44. [Google Scholar] [CrossRef]
- Lian, H.; Wang, B.; Yu, Y.; Cheng, L.; Dai, T.; Huang, S. Carbon monoxide gas detection system based on VCSEL using TDLAS technology. In Proceedings of the International Conference on Sensors and Instruments (ICSI 2021), Qingdao, China, 28–30 May 2021; Volume 11887. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, M.; Gong, T.; Yuan, K.; Li, L.; Guo, G.; Sun, X.; Tian, Y.; Qiu, X.; Fittschen, C.; Li, C. A Coin-Sized Oxygen Laser Sensor Based on Tunable Diode Laser Absorption Spectroscopy Combining a Toroidal Absorption Cell. Sensors 2023, 23, 8249. https://doi.org/10.3390/s23198249
Mao M, Gong T, Yuan K, Li L, Guo G, Sun X, Tian Y, Qiu X, Fittschen C, Li C. A Coin-Sized Oxygen Laser Sensor Based on Tunable Diode Laser Absorption Spectroscopy Combining a Toroidal Absorption Cell. Sensors. 2023; 23(19):8249. https://doi.org/10.3390/s23198249
Chicago/Turabian StyleMao, Minxia, Ting Gong, Kangjie Yuan, Lin Li, Guqing Guo, Xiaocong Sun, Yali Tian, Xuanbing Qiu, Christa Fittschen, and Chuanliang Li. 2023. "A Coin-Sized Oxygen Laser Sensor Based on Tunable Diode Laser Absorption Spectroscopy Combining a Toroidal Absorption Cell" Sensors 23, no. 19: 8249. https://doi.org/10.3390/s23198249
APA StyleMao, M., Gong, T., Yuan, K., Li, L., Guo, G., Sun, X., Tian, Y., Qiu, X., Fittschen, C., & Li, C. (2023). A Coin-Sized Oxygen Laser Sensor Based on Tunable Diode Laser Absorption Spectroscopy Combining a Toroidal Absorption Cell. Sensors, 23(19), 8249. https://doi.org/10.3390/s23198249