Structural Health Monitoring of Chemical Storage Tanks with Application of PZT Sensors
Abstract
:1. Introduction
2. Description of the Experiment
2.1. Preparation of Specimens
- S1–S4, 285 mm apart from each other;
- S1–S3 and S2–S4, 215 mm apart from each other.
- 1.
- Flat bottom holes were drilled into the thermal weld of the PE layer, with depths of 5 mm (100% of the PE layer thickness), subsequently increasing in diameter (Figure 4): 5 mm, 8 mm, 10 mm, 12 mm, 14 mm, 16 mm, 18 mm. This type of model damage was intended to simulate the erosion of the PE layer caused by aggressive chemical agents. In a similar way, corrosion loss in metals is often represented in the field of non-destructive testing and structural health monitoring [35,36,37].
- 2.
- Cuts were made in the thermal weld of the PE layer with different depths (Figure 5): 25%, 50%, 75%, and 100% of the PE layer thickness. This type of damage aimed to represent cracks in the thermal weld of the PE layer, which could occur due to thermal and load cycles or relaxation of residual stresses. The lengths of the cuts ranged from 14 to 26 mm (Figure 3) and were associated with the cut depth and the diameter of the cutting blade used (Figure 5). Cracks of comparable sizes were observed in chemical storage tanks made of PE material during their operation (Figure 6).
2.2. Data Acquisition from PZT Sensors
- Excitation frequencies [kHz]: 100–360 kHz with a 20 kHz increment;
- Excitation window: Hanning;
- Number of periods of the excitation signal: 3, 8.
3. Results and Discussion of the Experiments
3.1. Application of PZT Sensors for Damage Detection of PE Layer
3.1.1. Detection Efficiency of Flat Bottom Holes Introduced in PE Layer
3.1.2. Detection Efficiency of Cuts Introduced in PE Layer
- 1.
- The damage index exhibited the best performance with the excitation signal duration of three periods for the distance between sensors equal to 215 mm (Figure 20);
- 2.
- The damage index was the most efficient for eight periods of the excitation signal for the distance between sensors equal to 285 mm (Figure 21).
3.2. Application of PZT Sensors for Passive Detection of Impacts and Acoustic Emission Events
3.2.1. Detection Efficiency of Impacts
3.2.2. Detection Efficiency of AE Events during Pressure Test
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Acoustic Emission |
DI (DIs) | Damage Index (Damage Indices) |
GFRP(s) | Glass Fiber Reinforced Polymer(s) |
PE | polyethylene |
PZT | lead zirconate titanate |
SHM | Structural Health Monitoring |
References
- Chang, J.I.; Lin, C.C. A study of storage tank accidents. J. Loss Prev. Process. Ind. 2006, 19, 51–59. [Google Scholar] [CrossRef]
- Moncalvo, D.; Davies, M.; Weber, R.; Scholz, R. Breathing losses from low-pressure storage tanks due to atmospheric weather change. J. Loss Prev. Process. Ind. 2016, 43, 702–705. [Google Scholar] [CrossRef]
- ISO 28300:2008; Petroleum, Petrochemical and Natural Gas Industries — Venting of Atmospheric and Low-Pressure Storage Tanks. International Organization for Standardization: Geneva, Switzerland, 2008.
- API STD 2000:2004; Venting Atmospheric and Low-Pressure Storage Tanks, 7th ed. American Petroleum Institute: Washington, DC, USA, 2014.
- ASTM D1998-21; Standard Specification for Polyethylene Upright Storage Tanks. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Kushwah, S.; Parekh, S.; Mistry, H.; Darji, J.; Gandhi, R. Analysis of cylindrical pressure vessels with dissimilar ends and material comparison. Mater. Today Proc. 2022, 51, 355–368. [Google Scholar] [CrossRef]
- EN 13121; GRP Tanks and Vessels for Use above Ground. European Committee for Standardization: Brussels, Belgium, 2021.
- Thomason, J.L. Glass fibre sizing: A review. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105619. [Google Scholar] [CrossRef]
- Taheri, F. Advanced fiber-reinforced polymer (FRP) composites for the manufacture and rehabilitation of pipes and tanks in the oil and gas industry. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Elsevier: Amsterdam, The Netherlands, 2013; pp. 662–704. [Google Scholar]
- Di Boon, Y.; Joshi, S.C.; Bhudolia, S.K. Filament winding and automated fiber placement with in situ consolidation for fiber reinforced thermoplastic polymer composites. Polymers 2021, 13, 1951. [Google Scholar] [CrossRef]
- Fraden, J. Handbook of Modern Sensors: Physics, Designs, and Applications, 4th ed.; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Boller, C.; Chang, F.K.; Fujino, Y. (Eds.) Encyclopedia of Structural Health Monitoring; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Staszewski, W.J.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures; Wiley Online Library: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mukhopadhyay, S.C. New Developments in Sensing Technology for Structural Health Monitoring; Springer: Berlin/Heidelberg, Germany, 2011; Volume 96. [Google Scholar]
- Adams, D. Health Monitoring of Structural Materials and Components: Methods with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent advances in machine learning for fiber optic sensor applications. Adv. Intell. Syst. 2022, 4, 2100067. [Google Scholar] [CrossRef]
- Jiang, T.; Yang, X.; Yang, Y.; Chen, X.; Bi, M.; Chen, J. Wavelet method optimised by ant colony algorithm used for extracting stable and unstable signals in intelligent substations. CAAI Trans. Intell. Technol. 2022, 7, 292–300. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Tian, T.; Deng, D.; Hu, M.; Ma, J.; Gao, D.; Zhang, J.; Ma, S.; Yang, L.; et al. A review in guided-ultrasonic-wave-based structural health monitoring: From fundamental theory to machine learning techniques. Ultrasonics 2023, 133, 107014. [Google Scholar] [CrossRef]
- Toh, G.; Park, J. Review of vibration-based structural health monitoring using deep learning. Appl. Sci. 2020, 10, 1680. [Google Scholar] [CrossRef]
- Gomez-Cabrera, A.; Escamilla-Ambrosio, P.J. Review of machine-learning techniques applied to structural health monitoring systems for building and bridge structures. Appl. Sci. 2022, 12, 10754. [Google Scholar] [CrossRef]
- Sircar, A.; Yadav, K.; Rayavarapu, K.; Bist, N.; Oza, H. Application of machine learning and artificial intelligence in oil and gas industry. Pet. Res. 2021, 6, 379–391. [Google Scholar] [CrossRef]
- Akinosho, T.D.; Oyedele, L.O.; Bilal, M.; Ajayi, A.O.; Delgado, M.D.; Akinade, O.O.; Ahmed, A.A. Deep learning in the construction industry: A review of present status and future innovations. J. Build. Eng. 2020, 32, 101827. [Google Scholar] [CrossRef]
- Heywang, W.; Lubitz, K.; Wersing, W. Piezoelectricity: Evolution and Future of a Technology; Springer: Berlin/Heidelberg, Germany, 2008; Volume 114. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring: With Piezoelectric Wafer Active Sensors, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Su, Z.; Ye, L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications; Springer: Berlin/Heidelberg, Germany, 2009; Volume 48. [Google Scholar]
- Stepinski, T.; Uhl, T.; Staszewski, W. Advanced Structural Damage Detection: From Theory to Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring of Aerospace Composites; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tuloup, C.; Harizi, W.; Aboura, Z.; Meyer, Y.; Khellil, K.; Lachat, R. On the use of in situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review. Compos. Struct. 2019, 215, 127–149. [Google Scholar] [CrossRef]
- Diamanti, K.; Hodgkinson, J.M.; Soutis, C. Detection of Low-velocity Impact Damage in Composite Plates using Lamb Waves. Struct. Health Monit. 2004, 3, 33–41. [Google Scholar] [CrossRef]
- Ochôa, P.; Infante, V.; Silva, J.M.; Groves, R.M. Detection of multiple low-energy impact damage in composite plates using Lamb wave techniques. Compos. Part B Eng. 2015, 80, 291–298. [Google Scholar] [CrossRef]
- Dziendzikowski, M.; Kurnyta, A.; Dragan, K.; Klysz, S.; Leski, A. In situ Barely Visible Impact Damage detection and localization for composite structures using surface mounted and embedded PZT transducers: A comparative study. Mech. Syst. Signal Process. 2016, 78, 91–106. [Google Scholar] [CrossRef]
- De Luca, A.; Caputo, F.; Khodaei, Z.S.; Aliabadi, M. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves. Compos. Part B Eng. 2018, 138, 168–180. [Google Scholar] [CrossRef]
- STEMiNC Inc. SMD05T04R111WL Sensors Datasheet. Available online: https://www.steminc.com/PZT/en/piezo-disc-transducer-450-khz (accessed on 2 October 2023).
- Sargent, J. Corrosion detection in welds and heat-affected zones using ultrasonic Lamb waves. Insight-Non-Destr. Test. Cond. Monit. 2006, 48, 160–167. [Google Scholar] [CrossRef]
- Fromme, P.; Lowe, M.; Cawley, P.; Wilcox, P. On the sensitivity of corrosion and fatigue damage detection using guided ultrasonic waves. In Proceedings of the IEEE Ultrasonics Symposium, Montreal, QC, Canada, 24–27 August 2004; IEEE: New York, NY, USA, 2004; Volume 2, pp. 1203–1206. [Google Scholar]
- Hettler, J.; Tabatabaeipour, M.; Delrue, S.; Van Den Abeele, K. Detection and characterization of local defect resonances arising from delaminations and flat bottom holes. J. Nondestruct. Eval. 2017, 36, 2. [Google Scholar] [CrossRef]
- Sreekumar, P.; Ramadas, C.; Anand, A.; Joshi, M. Attenuation of Ao Lamb mode in hybrid structural composites with nanofillers. Compos. Struct. 2015, 132, 198–204. [Google Scholar] [CrossRef]
- DIGILENT. Analog Discovery 2 Module Product Specification. Available online: https://digilent.com/reference/test-and-measurement/analog-discovery-2/start (accessed on 2 October 2023).
- A.A. LAB SYSTEMS LTD. A-303 High Voltage Amplifier Product Specification. Available online: https://www.lab-systems.com/products/amplifier/a303.html (accessed on 2 October 2023).
- Graff, K. Wave Motion in Elastic Solids; Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Willberg, C.; Duczek, S.; Vivar-Perez, J.M.; Ahmad, Z. Simulation methods for guided wave-based structural health monitoring: A review. Appl. Mech. Rev. 2015, 67, 010803. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Zak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Giurgiutiu, V. Stress, Vibration, and Wave Analysis in Aerospace Composites; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Lugovtsova, Y.; Bulling, J.; Boller, C.; Prager, J. Analysis of guided wave propagation in a multi-layered structure in view of structural health monitoring. Appl. Sci. 2019, 9, 4600. [Google Scholar] [CrossRef]
- Simonetti, F. Lamb wave propagation in elastic plates coated with viscoelastic materials. J. Acoust. Soc. Am. 2004, 115, 2041–2053. [Google Scholar] [CrossRef]
- Mori, N.; Biwa, S.; Hayashi, T. Reflection and transmission of Lamb waves at an imperfect joint of plates. J. Appl. Phys. 2013, 113, 074901. [Google Scholar] [CrossRef]
- Mori, N.; Biwa, S. Transmission characteristics of the S0 and A0 Lamb waves at contacting edges of plates. Ultrasonics 2017, 81, 93–99. [Google Scholar] [CrossRef]
- Wang, C.H.; Chang, F.K. Scattering of plate waves by a cylindrical inhomogeneity. J. Sound Vib. 2005, 282, 429–451. [Google Scholar] [CrossRef]
- Rajagopal, P.; Lowe, M. Short range scattering of the fundamental shear horizontal guided wave mode normally incident at a through-thickness crack in an isotropic plate. J. Acoust. Soc. Am. 2007, 122, 1527–1538. [Google Scholar] [CrossRef]
- Rajagopal, P.; Lowe, M. Scattering of the fundamental shear horizontal guided wave by a part-thickness crack in an isotropic plate. J. Acoust. Soc. Am. 2008, 124, 2895–2904. [Google Scholar] [CrossRef]
- Obenchain, M.B.; Cesnik, C.E. Guided wave interaction with hole damage using the local interaction simulation approach. Smart Mater. Struct. 2014, 23, 125010. [Google Scholar] [CrossRef]
- Bhuiyan, M.Y.; Shen, Y.; Giurgiutiu, V. Guided wave based crack detection in the rivet hole using global analytical with local FEM approach. Materials 2016, 9, 602. [Google Scholar] [CrossRef] [PubMed]
- Masserey, B.; Fromme, P. Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection. Ultrasonics 2017, 76, 78–86. [Google Scholar] [CrossRef]
- Matsushita, M.; Mori, N.; Biwa, S. Transmission of Lamb waves across a partially closed crack: Numerical analysis and experiment. Ultrasonics 2019, 92, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Castaings, M.; Le Clezio, E.; Hosten, B. Modal decomposition method for modeling the interaction of Lamb waves with cracks. J. Acoust. Soc. Am. 2002, 112, 2567–2582. [Google Scholar] [CrossRef]
- Mori, N.; Biwa, S.; Kusaka, T. Damage localization method for plates based on the time reversal of the mode-converted Lamb waves. Ultrasonics 2019, 91, 19–29. [Google Scholar] [CrossRef]
- Dziendzikowski, M.; Niedbala, P.; Kurnyta, A.; Kowalczyk, K.; Dragan, K. Structural health monitoring of a composite panel based on PZT sensors and a transfer impedance framework. Sensors 2018, 18, 1521. [Google Scholar] [CrossRef] [PubMed]
- Dziendzikowski, M.; Heesch, M.; Gorski, J.; Dragan, K.; Dworakowski, Z. Application of PZT ceramic sensors for composite structure monitoring using harmonic excitation signals and bayesian classification approach. Materials 2021, 14, 5468. [Google Scholar] [CrossRef]
- Calabrese, L.; Proverbio, E. A Review on the Applications of Acoustic Emission Technique in the Study of Stress Corrosion Cracking. Corros. Mater. Degrad. 2021, 2, 1–30. [Google Scholar] [CrossRef]
- Huang, J. Non-destructive evaluation (NDE) of composites: Acoustic emission (AE). In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Karbhari, V.M., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 12–32. [Google Scholar] [CrossRef]
- Barski, M.; Kedziora, P.; Muc, A.; Romanowicz, P. Structural Health Monitoring (SHM) Methods in Machine Design and Operation. Arch. Mech. Eng. 2014, 61, 653–677. [Google Scholar] [CrossRef]
- Beligni, A.; Kowalczyk, K.; Sbarufatti, C.; Giglio, M. An Impact Monitoring System for Aeronautical Structures. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 636–646. [Google Scholar]
- Masmoudi, S.; El Mahi, A.; Turki, S. Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures. Compos. Part B Eng. 2015, 80, 307–320. [Google Scholar] [CrossRef]
- Liu, H.; Lyu, X.; Zhang, Y.; Yun, L.; Li, L. Bending Resistance and Failure Type Evaluation of Basalt Fiber RPC Beam Affected by Notch and Interfacial Damage Using Acoustic Emission. Appl. Sci. 2020, 10, 1138. [Google Scholar] [CrossRef]
- Sause, M.G. In Situ Monitoring of Fiber-Reinforced Composites: Theory, Basic Concepts, Methods, and Applications; Springer International Publishing: Cham, Switzerland, 2016; Volume 242. [Google Scholar]
- Giurgiutiu, V.; Soutis, C. Enhanced Composites Integrity Through Structural Health Monitoring. Appl. Compos. Mater. 2012, 19, 813–829. [Google Scholar] [CrossRef]
- Perfetto, D.; Rezazadeh, N.; Aversano, A.; De Luca, A.; Lamanna, G. Composite Panel Damage Classification Based on Guided Waves and Machine Learning: An Experimental Approach. Appl. Sci. 2023, 13, 10017. [Google Scholar] [CrossRef]
- Gorgin, R.; Luo, Y.; Wu, Z. Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review. Ultrasonics 2020, 105, 106114. [Google Scholar] [PubMed]
- Dziendzikowski, M.; Heesch, M.; Gorski, J.; Kowalczyk, K.; Dragan, K.; Dworakowski, Z. A Method of Damage Detection Efficiency Enhancement of PZT Sensor Networks under Influence of Environmental and Operational Conditions. Sensors 2022, 23, 369. [Google Scholar] [CrossRef]
- Croxford, A.J.; Moll, J.; Wilcox, P.D.; Michaels, J.E. Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 2010, 50, 517–528. [Google Scholar] [CrossRef]
- Roy, S.; Ladpli, P.; Chang, F.K. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers. J. Sound Vib. 2015, 351, 206–220. [Google Scholar] [CrossRef]
- Dworakowski, Z.; Ambrozinski, L.; Stepinski, T. Multi-stage temperature compensation method for Lamb wave measurements. J. Sound Vib. 2016, 382, 328–339. [Google Scholar] [CrossRef]
- Salmanpour, M.S.; Sharif Khodaei, Z.; Aliabadi, M.F. Impact damage localisation with piezoelectric sensors under operational and environmental conditions. Sensors 2017, 17, 1178. [Google Scholar] [CrossRef]
- Abbassi, A.; Römgens, N.; Tritschel, F.F.; Penner, N.; Rolfes, R. Evaluation of machine learning techniques for structural health monitoring using ultrasonic guided waves under varying temperature conditions. Struct. Health Monit. 2023, 22, 1308–1325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziendzikowski, M.; Kozera, P.; Kowalczyk, K.; Dydek, K.; Kurkowska, M.; Krawczyk, Z.D.; Gorbacz, S.; Boczkowska, A. Structural Health Monitoring of Chemical Storage Tanks with Application of PZT Sensors. Sensors 2023, 23, 8252. https://doi.org/10.3390/s23198252
Dziendzikowski M, Kozera P, Kowalczyk K, Dydek K, Kurkowska M, Krawczyk ZD, Gorbacz S, Boczkowska A. Structural Health Monitoring of Chemical Storage Tanks with Application of PZT Sensors. Sensors. 2023; 23(19):8252. https://doi.org/10.3390/s23198252
Chicago/Turabian StyleDziendzikowski, Michal, Paulina Kozera, Kamil Kowalczyk, Kamil Dydek, Milena Kurkowska, Zuzanna D. Krawczyk, Szczepan Gorbacz, and Anna Boczkowska. 2023. "Structural Health Monitoring of Chemical Storage Tanks with Application of PZT Sensors" Sensors 23, no. 19: 8252. https://doi.org/10.3390/s23198252
APA StyleDziendzikowski, M., Kozera, P., Kowalczyk, K., Dydek, K., Kurkowska, M., Krawczyk, Z. D., Gorbacz, S., & Boczkowska, A. (2023). Structural Health Monitoring of Chemical Storage Tanks with Application of PZT Sensors. Sensors, 23(19), 8252. https://doi.org/10.3390/s23198252