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Abstract: Machine learning-based gait systems facilitate the real-time control of gait assistive tech-
nologies in neurological conditions. Improving such systems needs the identification of kinematic
signals from inertial measurement unit wearables (IMUs) that are robust across different walking
conditions without extensive data processing. We quantify changes in two kinematic signals, acceler-
ation and angular velocity, from IMUs worn on the frontal plane of bilateral shanks and thighs in 30
adolescents (8–18 years) on a treadmills and outdoor overground walking at three different speeds
(self-selected, slow, and fast). Primary curve-based analyses included similarity analyses such as
cosine, Euclidean distance, Poincare analysis, and a newly defined bilateral symmetry dissimilarity
test (BSDT). Analysis indicated that superior–inferior shank acceleration (SI shank Acc) and medial–
lateral shank angular velocity (ML shank AV) demonstrated no differences to the control signal in
BSDT, indicating the least variability across the different walking conditions. Both SI shank Acc and
ML shank AV were also robust in Poincare analysis. Secondary parameter-based similarity analyses
with conventional spatiotemporal gait parameters were also performed. This normative dataset of
walking reports raw signal kinematics that demonstrate the least to most variability in switching
between treadmill and outdoor walking to help guide future machine learning models to assist gait
in pediatric neurological conditions.

Keywords: gait analysis; treadmill; walking; IMU; wearable sensors; kinematics; similarity distance;
Poincare; spatiotemporal; adolescents

1. Introduction

Instrumented gait analysis of walking, a primary human locomotor action, is ben-
eficial for healthcare [1–4], robotics [5], gait biometrics [6,7], and sports performance
applications [8] and is evolving rapidly due to recent technological advances [1–4,7,8]. The
quantification of gait data requires precise collection and analysis of data; these processes
are inextricably linked.

Ground truth precision for gait data collection and analysis has been lab-based and is
well-standardized using instrumented motion capture [9,10]. Equipment used for instru-
mented motion capture includes high-frame-rate infrared cameras (instrumented motion
capture) [11,12], electromyography (EMG) [13], and force plates [14]. However, with trans-
formational changes in portable and wearable motion sensors that improved their reliability
and accuracy while reducing their power consumption, size, and cost, gait data collection
is shifting from a cumbersome and expensive laboratory-based gold standard to real-world
testing [15,16].

With the appropriate sensor setup, large amounts of data across patient populations,
terrains, walking conditions, and gait speeds can be reliably captured; with appropriate
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analysis and signal processing techniques, the resulting output could be helpful for diag-
nostic, therapeutic, and assistive gait protocols. Such potential applications include early
screening for Parkinson’s [17], gait training in cerebral palsy (CP) [9], and the development
of exoskeleton assistive devices for walking [11,16,18,19].

Inertial measurement units (IMUs) include motion sensors (accelerometers, magne-
tometers, and gyroscopes) and rechargeable batteries that enable untethered use to stream
and log gait data in and out of lab environments. Commercial IMUs such as the APDM
Opal (Portland, OR, USA) and Xsense MVN (Henderson, NV, USA) are now widely avail-
able for research and clinical applications and are capable of mounting on various locations
on the body. Additionally, low-cost consumer IMU versions common in smartphones and
watches make gait data collection and monitoring possible in many additional environ-
ments [2,20,21]. With these wearable sensors and defined gait assessment protocols, the
logical transition of gait monitoring systems from instrumented motion capture laborato-
ries to real-world applications is happening. Current untethered monitoring of gait using
IMUs includes indoor treadmill walking, indoor overground walking, outdoor walking,
and real-life walking during activities of daily living [22]. In addition to walking gait,
other forms of locomotion such as running and jumping are also studied using IMUs for
diagnostic or treatment protocols [23].

Despite the inherent advantages of wearables, such as affordability, accessibility, and
ease of use, their application in healthcare was tempered by both a lack of standardization
in data collection and data analysis [15,23,24]. In the absence of adequate systematic
studies to standardize IMU-based normal and pathological gait analysis, there needs to be
a consensus over which kinematic signals are best used in the proposed IMU-based gait
monitoring systems [24].

Gait kinematics vary substantially due to many factors, including patient popula-
tions, physical environments, and cognitive loads. Leveraging the advantages of IMUs,
collecting big data helps address this variability [15,16] to design better gait monitoring
and therapeutic devices [2,3,24]. Regardless of the data collection methodology, in the lab
or outdoors, the extensive steps required for processing large volumes of data further limit
the widespread commercial application of IMUs [23,25]. To objectively measure gait, both
classical statistical testing and threshold testing of specific parameters were used to identify
pathological gait; however, these parameters may fail to capture the full complexity of
risk factors and clinical variables. Thus, machine learning, using the entire gait curve and
waveform and not just specific parameters, was employed to more accurately analyze and
efficiently identify gait cycles [26].

Gait assessment with IMUs involves separating the triaxial (anterior–posterior (AP) vs.
medial–lateral (ML) vs. superior–inferior (SI)) signals, such as acceleration or angular veloc-
ity, into quantitative variables [20]. In gait lab studies, medial–lateral shank angular velocity
is a reliable signal for gait phase detection in pathologic gait in CP [10,27]. Furthermore,
Rastegari et al. [28] looked for signals that show maximal information gain with minimal
correlation (MIGMC) and noted that anterior–posterior acceleration and medial–lateral
acceleration show a pairwise correlation <80% and, when used together, play an essential
role in discriminating different gait in patterns machine learning algorithms. For measuring
these specific acceleration signals with stand-alone IMUs (or smartphones), the real-world
testing of such IMUs is necessary because there is high variability in axis orientation, mak-
ing standardization of the axis orientation crucial. To deal with the orientation problem, an
orientation-independent model was proposed [29]. Alternatively, in cases where multiple
signals from different body locations are available, fusing some of the signals gives greater
accuracy for lower limb gait analysis [30]. These latter techniques represent work that
aspires to identify the ideal signal type, a defined axis, and a preferred sensor location to
optimize gait monitoring models, especially for those using machine learning.

Recent progress was seen in the clinical implementation of gait monitoring sys-
tems by using machine learning, which enables greater efficiency in processing gait
parameters [2,15,31,32]. Thus, current state-of-the-art post hoc gait data analysis involves
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data processing, data modeling, and now, machine learning algorithms [32]. Gait phase
detection using machine learning, deep neural networks, and input from wearable sensors
measuring acceleration has shown promise, with gait phase detection accuracy ranging
from 75 to 95% in real-time [5] and nearly 99% when offline [18]. Zhen et al. used a long
short-term memory–deep neural network (LSTM-DNN) algorithm with three IMUs on one
leg (thigh, calf, and foot) for real-time detection. Vu et al. used an exponentially delayed
fully connected neural network (ED-FNN) with one IMU (shank) for offline detection. Via
similar machine learning investigations, effective algorithms can be developed to control
power active assistive devices and better address patient gait pathology, including pediatric
neuromuscular diseases such as cerebral palsy (CP) [2,19] and adult neuromuscular dis-
eases such as Parkinson’s disease (PD) [17]. An advantage of these signals-based algorithms
is the ability to utilize raw gait signals instead of waiting for the processed gait data, such as
measuring joint angles [17], which, in turn, may allow for less processing burden, improved
real-time capacity, and greater commercial adoption.

The effect of varying conditions, such as walking surfaces, age, gait speed, and load,
on walking gait was studied to different degrees. For example, ample published evidence
demonstrates differences between treadmill walking and indoor overground walking [33].
The gait kinematics of the pediatric population was extensively studied using the gold
standard lab analysis and somewhat studied with indoor overground walking using IMUs;
however, to date, the pediatric population was understudied outdoors [16,19,20,25]. Addi-
tionally, gait kinematics depends on walking speed and the age of the population [34–36].
To quantify speed and age-dependent changes in gait, a normative dataset of pediatric
gait was created for self-selected (SS) and fast-as-possible (FAP) speeds [12,16]. Thus,
when using kinematic signals for gait monitoring applications in the pediatric popula-
tion, signals that remain robust and reliable at different speeds and on different walking
surfaces/conditions are necessary.

Gait metrics, such as spatiotemporal parameters [12,16,37], were statistically com-
pared to demonstrate typical gait and deviations from typical gait. These studies, in turn,
led to the introduction of standardized indices for comparing pathological and typical
gaits, such as the Gait Deviation Index (GDI) [38], Gait Variable Score [39], and Movement
Deviation Profile [40]. Similarity measurements were used in non-healthcare fields to
compare individual subject characteristics in voice recognition, for example [41]. Recent
research deployed similarity measures to quantify variability and changes in gait kine-
matics [42], especially to compare typical and pathological gait. In comparing gait in
different conditions, image-recognition procedures [6] and similarity networks such as ag-
gregated correlation values [28] and percentage of statistical significance [43] were studied.
Standard distance-based similarity measures, such as cosine and Euclidean distance, as
opposed to parameter-based measures, such as aforementioned spatiotemporal measures,
are showing increased adoption [44]. Distance-based similarity measures, which consider
the entire dataset and not just a few specific features, are moving toward an accepted future
standard [14]. Using the conventional distance methodology, one can precisely measure
similarity. However, the statistical comparison of the changes in similarity or dissimilarity
across conditions is challenging.

As IMU-based gait studies and gait similarity evolve, there has yet to be a consensus
or standardization of which kinematic signals are most reliable across conditions that can
be used to develop robust gait monitoring systems. In our study, we propose analysis
methods that can identify the kinematic signals showing robust stability even when walking
conditions change, such as variability in gait speed or physical environment, similar to real-
world walking. The objectives of this study, therefore, were to provide proof of concept that
(1) reliable lower limb kinematic signals derived from IMUs, such as angular velocity and
acceleration, can be identified that are independent of treadmill and outdoor overground
walking conditions and (2) reliable lower limb kinematic signals can be identified that are
independent of walking speed, i.e., self-selected, slow, and fast speeds. Our overarching
goal was to identify optimal kinematic signals as the inputs of a reliable gait monitoring
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system. To quantify the effect of environmental and walking speed conditions for our
study group, we compared 3-dimensional patterns of angular velocity and acceleration
with IMUs during individual gait cycles. We defined a control metric (baseline) against
which similarities across surfaces can be compared to quantify the significance of similarity
measures. This procedure uses a Z-score as proposed by GDI to quantify the level of
similarity. The ultimate goal of this study is to identify specific candidate raw signals for
future real-time deep learning applications.

2. Materials and Methods
2.1. Participants

Thirty typically developing adolescents (ages 8–18 years old, 20 male/10 female) vol-
unteered as participants in this study (see Figure 1). These participants were recruited via
convenience sampling. Participants aged 18 were required to give written informed consent,
and participants under 18 were required to provide both written participant assent and writ-
ten parental consent. Individuals who reported orthopedic or neuromuscular conditions
affecting their gait and posture or marked visual and hearing deficits were excluded from
the study. All participants were required to have prior treadmill walking experience and to
complete a 40 min walking test to ensure gait data collected on the treadmill was reliable
and any differences between indoor treadmill walking and outdoor overground walking
were not due to unfamiliarity with treadmill walking. The study protocol was approved by
the Institutional Review Board of Sanford School (Hockessin, DE, USA, 29 July 2022).
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Figure 1. Participant demographics. N—number, M—male, F—female, SD—standard deviation,
y—years, cm—centimeters, kg—kilograms.

2.2. Instrumentation

Before arrival, participants were instructed to wear comfortable, closed-toe walking
shoes and attire suitable for light exercise. Before starting data collection, participants were
asked to strap the IMUs on the intended locations (frontal plane of the bilateral shanks
and thighs) with instruction from a researcher, ensuring that the IMUs were in the correct
location and did not shift with leg movement. The specific IMU mounting configuration
was chosen because it was studied for children with CP [19], and we plan future work
with this research protocol using data from individuals having CP. The same researcher
confirmed the patient data, consent, and IMU mounting with the correct orientation for
each participant.

Gait data were measured using the Opal IMU system from APDM Wearable Technolo-
gies (v1.0, Portland, OR, USA). As per manufacturer recommendations, a standardized
IMU orientation was implemented in which the IMUs were placed in the frontal plane
where z = AP axis, y = ML axis, and x = SI axis, as shown in Figure 2C.
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Figure 2. A sample participant wearing mounted IMUs while (A) treadmill walking and (B) outdoor
walking (with customized holder for wireless data collection laptop); (C) axis orientation for the
inertial measurement units (IMUs): Blue arrows indicate the following plains: Z axis = AP—anterior-
posterior, Y axis = ML—medial-lateral, X axis = SI—superior-inferior (Source: APDM Wearable
Technologies (v1.0, Portland, OR, USA)).

For this specific experiment, four Opal IMUs were used for each participant: one
on each shank and one on each thigh. These IMUs streamed three-dimensional angular
velocity and acceleration data at a sample rate of 128 Hz. Data were collected wirelessly via
APDM’s MotionStudioTM software using a laptop with an APDM Access Point. The data
were captured and managed nearby by a laptop-equipped researcher. Indoors, participants
walked on a treadmill (Bodyguard Radisson Plus, Bodyguard Fitness, Quebec, Canada),
and the same treadmill was used for all trials to minimize variation or calibration issues
(Figure 2A). The researcher’s laptop was on an adjacent table to minimize the probability
of losing data points. Outdoors, the participants walked overground, and the researcher’s
laptop was walked with the participants (Figure 2B). The same IMU setup was used in a
single continuous testing session per participant, starting with indoor treadmill walking
followed by outdoor overground walking, allowing for consistent data recording for each
participant, as shown in Figure 2.

Controlling for axis and standardizing axis orientation for IMUs is necessary for gait
studies, and this was addressed by either standardizing multiple IMU placement [18,19,30]
and walking direction [31] or creating an orientation-independent axis [29]. Axis orientation
variability was minimized proactively via researcher confirmation of each IMU placement
in the frontal plane (Figure 2C), avoiding turns while walking and limiting participant
ambulation activities to walking only.

2.3. Data Collection

Self-selected speed in overground walking is quantitatively similar to treadmill walk-
ing and was chosen over a fixed speed (for the entire participant population) to allow for
individual participant variability [12,45]. To determine their individual walking speeds,
participants were asked to perform a standardized 10 m walking test (10 mWT) to de-
termine self-selected speed, fast speed (20% faster), and slow speed (20% slower) [37].
Self-selected speed is also sometimes referred to as preferred walking speed (PWS), and
when determined overground, it is further termed O-PWS [21].

Starting with participants, progressing to the anatomic locations of the IMUs, and
culminating with the various walking trials, the data collection process is shown in Figure 3.
The order for the treadmill walking trials was self-selected speed, fast speed, and slow
speed, as outlined in Figure 3, with two 3 min trials at each speed. The treadmill’s speed
was adjusted by a researcher, and data collection started once the treadmill reached the
participant’s appropriate pre-determined self-walking speed. This protocol helped famil-
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iarize the participants with these speeds so they could more accurately replicate the speeds
in the outdoor trials. Previous research shows that the difference between treadmill and
overground gait decreases after 6 min of treadmill walking, representing an adaptation in
gait known as the treadmill accommodation phenomenon [45]. Thus, each treadmill trial
lasted three minutes, and breaks of up to two minutes were allowed between each trial as
we wanted to minimize the treadmill accommodation effect that occurs at approximately
6 min of continuous walking.
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with IMUs at four anatomic locations, recording two kinematic signals along three different axes;
walking was measured on the treadmill and outdoors at three different speeds for 3 min for each trial.
N—number, R—right, L—left, AP—anterior–posterior, ML—medial–lateral, SI—superior–inferior.

The order for outdoor walking trials (self-selected, fast, and slow) was also kept
consistent and mirrored that of the treadmill trials (see Figure 3). The same outdoor flat
asphalt section was used for all 30 participants to standardize the environmental load and
the overground surface. All walking tests were limited to days without extreme weather
(temperature range: 55–75 ◦F). We collected 27 min of gait kinematics (18 min treadmill
and 9 min outdoor) for each of the 30 participants. A total of 90 trials (two treadmill and
one outdoor session per participant) were recorded for each speed across participants.

Outdoor trials at three different speeds of 3 min each were, on average, 250–300 m
(820–984 ft) in length, and no turns or pauses were performed during each trial. Because
outdoor walking speed naturally fluctuates and is more difficult to control than during
treadmill walking, we measured cadence as a proxy to ensure actual changes in outdoor
walking speed were similar to that occurred on the treadmill. The IMUs chosen for data
collection in this study have a streaming live data transmission mode, which requires
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an active, powered wireless access point within the wireless transmission range of the
IMUs. Thus, the equipment needed for experimentation (access point, docking station,
and data collection laptop) was wired to a portable battery and supported on a custom
mount on a researcher’s bicycle (Figure 2B). The researcher walked with the bicycle behind
the participant to maintain proximity to the sensors, thus minimizing any streaming
lag or dropped data. The researcher trailed the participant to minimize any visual or
environmental load on the participant’s gait.

The three-dimensional (3D) angular velocity (AV) and acceleration (Acc) of each of the
four IMUs were used for our analyses. In summary, we analyzed 24 kinematic signals for
each individual: four locations (left and right shank and thigh), two sensors (AV and Acc),
and three axes per sensor (X = SI, Y = ML, and Z = AP).

2.4. Data Processing

Data were analyzed using Python algorithms in non-proprietary software. Primary
outcome measures of the kinematic signals were distance-based similarity (cosine and Eu-
clidean distance) and Poincare analysis, both of which are curve-based. Distance measures
(cosine and Euclidean distance) metrics were used to first rank the kinematic signals across
the walking conditions of gait, respectively and then to measure paired comparisons of
similarity across walking conditions of gait, respectively. Additionally, five spatiotempo-
ral features (parameter-based outcomes) were used as secondary outcome measures to
statistically compare the signals’ pattern between the treadmill and the overground.

Each participant’s two treadmill 3 min walking trials at each speed were appended
into a single 6 min trial. The use of 2 shorter trials at each speed was employed to mitigate
the effects of the treadmill accommodation phenomenon [45] and, when appended, allows
for a longer trial at each treadmill walking speed. Testing at all speeds results in 90 treadmill
datasets compared to 90 outdoor datasets.

2.4.1. Signal Conditioning

Recorded raw data was de-identified, converted into non-proprietary CSV format, and
subjected to a Python extraction function for file metadata. The first and last five seconds of
data from each file were removed to minimize possible errors from the participant speeding
up/slowing down. The conditioning steps were as follows.

Upon examining the raw data from the ML Shank AV, a 4th-order low-pass Butter-
worth filter with a cut-off frequency of 20 Hz was applied to smooth the raw signals. Then,
gait cycle initiation was identified as the time point where ML shank AV crossed the zero
line from a period of negative value (negative-to-positive zero-crossing in Figure 4, red
dots) [9]. Therefore, gait cycle duration was defined as the time between two consecutive
negative-to-positive zero-crossings, i.e., two consecutive red dots in Figure 4. To differen-
tiate between small fluctuations around the zero line and the actual zero-crossing at the
initiation of the gait cycle, and thereby, to avoid misdetection of gait cycles, the threshold
for the zero-crossing detection was set at −0.3 rad/s. A pattern monitoring algorithm was
used to exclude the aberrant gait cycles. This algorithm was based on the existence of a
valley, its preceding peak, and the 95% confidence interval of the mean gait cycle duration.
The average gait cycle duration was calculated across all participants using the 90 collected
trials. The pattern recognition algorithm removed any gait cycle that fell outside the 95%
confidence interval (mean gait cycle duration +/− two std). Of the 317,000 cycles identified
for all 30 participants, 97% of all cycles were retained after the 95% CI filter was applied.
The subject-by-subject analysis of the 95% CI filtering demonstrated that 95% to 99% cycles
of each subject were retained. The gait cycle patterns of each signal were generated by nor-
malizing the gait cycles to their duration and averaging them across all participants and all
the trails. We reported the pattern as the percentage of the gait cycle by linear interpolation
into 100 data points, as shown in Figure 4. A total of 24 (4 IMU locations × 2 kinematics
(acceleration, angular velocity) × 3 dimensions/axes) patterns were generated.
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Figure 4. Signal conditioning and data processing. Acceleration in meters per second square (m/s2),
angular velocity in radian per second (rad/s). Red dots indicate the start of each gait cycle.

2.4.2. Similarity Analysis

We combined the data from the left and right legs for this analysis, resulting in a total
of 12 kinematics signals (2 locations × 2 sensors × 3 axes). The primary and secondary
outcome measures in this study are listed in Figure 5. As part of the primary outcome
measures, to analyze the similarity between the treadmill and outdoor signals (across the
whole curve) averaged across all participants, we used distance-based similarity measures,
i.e., cosine and Euclidean. For a comparison of similarity, the aggregated data from all
subjects were ranked by kinematic signal, measuring indoor versus outdoor similarity. Note
that curve-based similarity testing of the signals affords the inclusion of the entire gait curve
data instead of representative points on the curve used in the parameter-base comparison.
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Additionally, we statistically compared the level of dissimilarity by paired comparison
of the subject-specific bilateral similarity during treadmill walking versus the similarity
between treadmill and outdoor walking. Although natural spatiotemporal asymmetry
between left and right sides exists [46], bilateral similarity during treadmill walking was
used as a realistic level of similarity, i.e., one of the highest levels of similarity in gait
that exists naturally. This level of treadmill bilateral similarity scoring was used as each
subject’s baseline and contrasted against the treadmill to outdoor similarity scoring. As
each subject’s data was paired with their own control, any potential influence of subject
height, leg length, or IMU mounting location on the IMU data would be consistent for each
subject’s paired data and, thus, not affect the similarity scores.

Finally, the nonlinear Poincare analysis was deployed on all 12 signals to offer a more
descriptive way of assessing the similarity between treadmill and outdoor walking by
capturing the changes in the variability when moved from treadmill to outdoor walking at
different speeds. The Poincare graph of the two most similar and the two most dissimilar
signals of the ranked order analysis was depicted to visualize these variabilities. Secondary
outcome measures of peak, range, valley, gait cycle duration, and swing/stance ratio were
calculated using the same datasets for comparison of treadmill walking to outdoor walking
(Figure 5).

Distance Similarity

To measure overall similarity, all data from each participant were aggregated by signal.
For these 12 signals, treadmill versus outdoor distance-based similarity measures were
calculated (cosine and Euclidean distance). These measures were then ranked for all
12 signals for each of the three walking speeds.

Cosine distance is defined as the dot product (·) of two vectors (v · w), i.e., treadmill
and outdoor kinematic signals, divided by the product of their magnitudes (|v| and |w|).

Cosine distance =
(v·w)

|v|×|w| = (v̂·ŵ) (1)

Euclidean distance is the distance between the normalized vectors v̂ and ŵ. The square
root of the sum of the squares, i.e., norm (‖ · ‖2), of the distances in each dimension of the
unit vectors.

Euclidean distance = ‖ ŵ − v̂ ‖2 (2)

Cosine has an ideal similarity at 1, and Euclidean distance has an ideal similarity at 0.
A novel process is proposed to compare the dissimilarity between the treadmill and

outdoor signals statistically using signal-specific kinematics. Healthy participants’ left and
right leg kinematics during indoor treadmill walking should be nearly symmetrical and
thus will have the highest level of similarity measure realistically possible for that particular
individual [46]. Therefore, this current study defined the similarity of treadmill walking
of left and right leg kinematics using Euclidean distance (Equation (2)) for each signal as
the signal-specific control value. Next, the similarity for treadmill and outdoor walking for
each of the 12 kinematics, i.e., the intervention values, were measured; these were defined
as the intervention values. The control value was then statistically compared to the paired
intervention values. If significantly different, the Z-score was used to indicate the level
of dissimilarities. In summary, we measured the Z-score and p-value of the differences
between baseline similarity (bilateral symmetry on the treadmill compared to the similarity
of the treadmill and outdoor kinematic signals). We termed this analysis Bilateral Symmetry
Dissimilarity Testing (BSDT), where a signal-specific control (similarity between treadmill
left and right sides) is compared against a signal-specific intervention (similarity between
treadmill and outdoor walking signals), as shown in Figure 6.



Sensors 2023, 23, 8275 10 of 24

Sensors 2023, 23, x FOR PEER REVIEW 10 of 25 
 

 

Cosine distance =  (𝑣𝑣 ⋅ 𝑤𝑤)
|𝑣𝑣| × |𝑤𝑤|

=  (𝑣𝑣� ⋅ 𝑤𝑤�) (1) 

Euclidean distance is the distance between the normalized vectors 𝑣𝑣�  and 𝑤𝑤�  . The 
square root of the sum of the squares, i.e., norm (|| ⋅ ||2), of the distances in each dimension 
of the unit vectors.  

Euclidean distance =  ||𝑤𝑤�  – 𝑣𝑣�||2 (2) 

Cosine has an ideal similarity at 1, and Euclidean distance has an ideal similarity at 0. 
A novel process is proposed to compare the dissimilarity between the treadmill and 

outdoor signals statistically using signal-specific kinematics. Healthy participants’ left 
and right leg kinematics during indoor treadmill walking should be nearly symmetrical 
and thus will have the highest level of similarity measure realistically possible for that 
particular individual [46]. Therefore, this current study defined the similarity of treadmill 
walking of left and right leg kinematics using Euclidean distance (Equation (2)) for each 
signal as the signal-specific control value. Next, the similarity for treadmill and outdoor 
walking for each of the 12 kinematics, i.e., the intervention values, were measured; these 
were defined as the intervention values. The control value was then statistically compared 
to the paired intervention values. If significantly different, the Z-score was used to indicate 
the level of dissimilarities. In summary, we measured the Z-score and p-value of the dif-
ferences between baseline similarity (bilateral symmetry on the treadmill compared to the 
similarity of the treadmill and outdoor kinematic signals). We termed this analysis Bilat-
eral Symmetry Dissimilarity Testing (BSDT), where a signal-specific control (similarity be-
tween treadmill left and right sides) is compared against a signal-specific intervention 
(similarity between treadmill and outdoor walking signals), as shown in Figure 6. 

 
Figure 6. Bilateral symmetry dissimilarity testing. The control group (the similarity of left to right 
signals) was compared to the intervention group (the similarity of the treadmill to outdoor signals) 
in the bilateral symmetry dissimilarity testing (BSDT). Both the t value and Z score were calculated 
to assess for significant differences. LR—left versus right, TO—treadmill vs. outdoors, std—stand-
ard deviation, µ—population mean. 

  

Figure 6. Bilateral symmetry dissimilarity testing. The control group (the similarity of left to right
signals) was compared to the intervention group (the similarity of the treadmill to outdoor signals) in
the bilateral symmetry dissimilarity testing (BSDT). Both the t value and Z score were calculated to
assess for significant differences. LR—left versus right, TO—treadmill vs. outdoors, std—standard
deviation, µ—population mean.

Poincare Similarity

Poincare produces plots of consecutive data points that can be used to quantify mea-
sures of short- and long-term variability in a signal [37].

The Poincare analysis is performed using a graphically modified version of the
pyHRV library. The standard approach for graphing self-similarity in this recurrence
plot was taken by plotting points (xt, xt + 1), (xt + 1, xt + 2), (xt + 2, xt + 3)... An ellipse is
then fitted to the resultant scatter plot. The standard deviation along the minor axis of this
ellipse (SD1) is a measure of the width of the plot or the short-term variability of the temporal
data. SD1 is calculated with the standard deviation of successive differences as follows:

SD1 =
√

0.5SDSD2 (3)

where SDSD is the standard deviation of successive differences (time domain parameters).
The standard deviation along the major axis of the ellipse (SD2) is a measure of the

variance of the total range of values or the long-term variability of the temporal data:

SD2 =
√

2SDNN2 − 0.5SDSD2 (4)

where SDNN is the standard deviation of the values of the time series. Note that the larger
SD1 and SD2, the higher the variability.

2.4.3. Spatiotemporal Parameters

Spatiotemporal parameters (STP) measures were either signal-specific or gait-specific
(see Figure 7). This parameter-based testing includes representative points or features
of the curve. For each kinematic signal, the signal-specific parameters of peak height
(maxima), valley depth (minima), and range (peak-to-valley distance) were extracted for
each kinematic signal and then averaged over their respective trial. Note that the selected
parameters, i.e., the extremums, of the kinematic signals used in our analysis are shown
to be associated with the start and end of the swing/stance phase of gait (heal-strike and
toe-off gait events) [10,47–49]. For comparison, we used the same features for all of the
signals [47–49]. Because gait cycle duration and swing/stance time ratio (S/S) are non-
signal-specific, they can be derived from one representative signal alone. These gait-specific
parameters were derived using ML shank AV. The mediolateral angular velocity of lower
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limbs, especially that of the shank, is used in various studies for gait segmentation and
event detection [50], specifically for measuring gait cycle duration [10,45] and S/S [23,51].
During ambulation, locomotion occurs via rotation around lower limb joints, i.e., around
the medial–lateral axis. Thus, angular velocity contains prominent information about
participants’ gait and is a reliable kinematic signal for gait analysis. Accordingly, via visual
inspection of our dataset, we confirmed the ML shank AV signal as having a relatively low
noise ratio across the sensors tested.
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Figure 7. Spatiotemporal (STP) gait parameters. Gait-based parameters: Gait cycle duration and
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second, %—percentage.

The gait-specific parameters, gait cycle duration, and S/S were measured on the ML
shank AV, resulting in two values. The three signal-specific parameters, peak height, valley
depth, and range, were measured on 12 signals (3D angular velocity and acceleration of
shank and thigh, left and right signals combined), resulting in 36 signal-specific values.

2.5. Statistical Analysis

Each of the 30 treadmills and 30 outdoor trials was analyzed for the mean and standard
deviation for each sensor signal. To compare the treadmill and outdoor spatiotemporal
parameters, all AP, ML, and SI data streams were first evaluated with parametric testing
using the Shapiro–Wilk test. A paired t-test was then used when both datasets being
compared were parametrically distributed. In contrast, a Wilcoxon Signed-Ranks test was
used if at least one of the compared datasets was nonparametric. The distribution and
significance test threshold were defined as less than or equal to 0.05.

Signal similarity measurements were analyzed using comparative and statistical
methods. For comparison, the aggregated data from all subjects were ranked by signal,
measuring indoor versus outdoor similarity. For the statistical study, individual data from
each subject were analyzed as a paired comparison of a bilateral similarity versus treadmill
to outdoor similarity.

Similarity measures between indoor treadmill and outdoor walking were statistically
compared for all three speeds using paired comparison of each participant’s control group
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data versus that participant’s intervention group data. The Z-score was also calculated for
each signal to provide the level of dissimilarity comparable across all the kinematic signals.

3. Results
3.1. Walking Speed

Our participants showed an average self-selected walking speed of 1.10 m/s, consistent
with previous work that measured self-selected walking speed between 0.75 and 1.67 m/s
(Figure 8) [12,16,34]. With fast walking on the treadmill 20% above and slow walking 20%
below each participant’s self-selected walking speed, we showed a range from 0.73 m/s
(lowest slow walking speed) to 1.74 (highest fast walking speed). Thus, the range of walking
speed in this study is essentially at or above a 0.80 m/s threshold, where accuracy drops
for wearable sensors on the ankle [2]. The measurement of walking cadence allowed for
comparison of indoor and outdoor speed changes between the three speeds. The average
cadence for both indoors and outdoors did confirm differences in the walking speeds in the
order of 10% magnitude (Treadmill slow 49.01, self-selected 54.08, and fast 56.84; outdoors
slow 53.69, self-selected 58.67, and fast 61.54). Thus, we infer the ability to measure gait in
both walking conditions at different speeds.
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Figure 8. Average walking speeds (slow, self-selected, and fast) for the participant pool. Values
within 1 SD around the mean are used to calculate cadence. m/s—meters/second, SD—standard
deviation, steps/min—steps per minute.

3.2. Signal Similarity Measures

When the aggregate data were ranked by cosine similarity between treadmill and out-
door walking, we observed relative similarity across all 12 combined data streams (cosine
similarity score, range 0.9184–0.9996) (Figure 9). This relative similarity was consistent
across the tested speeds: the self-selected, slow, and fast. For cosine similarity, there is
no defined cutoff for qualifying the different levels of similarity. In our data, however,
we detected three distinct bands: the High band was composed of the same five signals
across all three speeds, and the Low band was composed of the same three signals across
all three speeds. These bands were notable in that while signals showed some intraband
variability, there was no interband variability; signals stayed in their respective bands
regardless of speed. The High band included SI shank Acc, ML shank AV, SI thigh Acc,
ML thigh AV, and AP shank AV (from highest to lowest within the High band, all with
a similarity score > 0.9955), all of which moved rank within the High band (intraband
variability) (across the three speeds) but did not move into the Middle band at any time (no
interband variability). Furthermore, all five High band signals had similarity scores > 0.990
at all three speeds. The Low band included SI thigh AV, ML shank Acc, and ML thigh Acc
(all with similarity score < 0.973), and these three signals also did not move out of the Low
band at any speed, showing no interband variability. The remaining signals compose the
Middle band, as shown in Figure 9. Again, although these four Middle band signals shifted
rank across the three speeds, demonstrating intraband variability, they did not shift into
either the High or the Low band during any speed.
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Figure 9. Similarity score banding of group data. Aggregate data for participants showing distinct
banding patterns where certain signals remain in respective bands despite changes in walking speeds.
The banding pattern is shown with tri-color banding of similarity scores, ranked by cosine and
Euclidean distance at a self-selected speed. Bands are shown as High, Middle, or Low based on the
aggregate group data. Units: acceleration in (m/s2); velocity in (rad/s); Signals: Acc—acceleration,
AV—angular velocity, SI—superior–inferior, ML—medial–lateral, AP—anterior–posterior; Speeds:
self-selected, slow (−20%), fast (+20%); cos –cosine similarity, euc—euclidian similarity).

For Euclidean distance similarity, all aggregated signals remained in the same rank
as cosine across all speeds—showing a strong correlation between these two similarity
measures across all signals and all speeds. As the ideal cosine similarity is 1 and the
ideal Euclidean distance similarity is 0, the perfect correlation of the two signals would
be a correlation of −1. In such a case, the cosine would be increasing toward 1 while the
Euclidean distance would be decreasing to 0. In this study, the correlation between cosine
and Euclidean distance was highly correlated, with a very strong correlation of −0.96 for
self-selected walking, −0.96 for slow walking, and −0.97 for fast walking speed.

In the bilateral symmetry dissimilarity testing, individual participant signal data were
analyzed and reported in the same banding as delineated by the aggregate signal data.
Signals SI shank Acc and ML shank AV showed high similarity between treadmill and
outdoor walking across all speeds in the comparative aggregate rank (by ranking in the
High band). In addition, these same two signals of SI shank Acc and ML shank AV showed
high similarity across all speeds in the bilateral symmetry dissimilarity testing by showing
no significant difference across all speeds, as shown in Figure 10. These were the only two
signals showing both findings of having high similarity in aggregate testing and similarity
in the individual bilateral symmetry dissimilarity testing. In contrast, AP thigh Acc showed
similarity across all speeds in the individual data analysis (Figure 10) but did not show
high similarity in the aggregate data ranking in the Middle band in the banding in the
aggregated data (Figure 9). Therefore, AP thigh Acc was not a reliable kinematic signal
across the walking conditions. Other than AP thigh Acc, the remaining signals showed
statistically significant dissimilarity between treadmill versus outdoors. The dissimilarity
in paired comparison was different across speeds. Self-selected speed identified significant
dissimilarity in 8 of the 12 signals, whereas slow speed identified dissimilarity in 7 of the
12 signals, and fast walking speed identified 9 of the 12 as being significantly different.
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Figure 10. Bilateral symmetry dissimilarity testing (individual data). Tri-color banding similar-
ity score color (non-grey) denotes similarity (signals with no significant difference for cosine and
Euclidean distance for control vs. intervention groups). Grey denotes dissimilarity (significantly
different cosine and Euclidean distance for control vs. intervention groups). Bands are shown as
High, Middle, or Low based on the aggregate group data; Units: acceleration in meter per second
square (m/s2); velocity in radian per second square (rad/s); Signals: Acc—acceleration, AV—angular
velocity, AP—anterior–posterior, ML—medial–lateral, SI—superior–inferior; Speeds: self-selected,
slow (−20%), fast (+20%).

3.3. Poincare Analysis

The ratio of short-term variability (SD1) to long-term variability (SD2) indicators in
the ML shank AV (a high-band signal in the ranking) was substantially smaller than the
ML shank Acc (a low-band signal with the lowest signal in the ranking) in both treadmill
and outdoor walking conditions (see Figure 11). A lower SD1 to SD2 ratio indicates less
variability across treadmill and outdoor conditions, which can be defined as having greater
robustness across walking conditions. The short-term variability (SD1) and long-term
variability (SD2) of ML shank AV demonstrated greater robustness when compared with
the ML shank Acc. As can be seen in the High band of Figure 12, only SI shank Acc, one
of the most robust signals identified by BSDT, demonstrated no statistically significant
differences in long-term (SD2) and short-term (SD1) variability across walking speeds. Two
other signals, AP thigh AV from the Middle band and ML thigh Acc from the Low band,
also showed no significant differences in SD1 or SD2 across walking speeds. The other
BSDT identified robust signal, ML shank AV, demonstrated no statistical differences in SD1
and SD2 at the self-selected and slow walking speeds.
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Figure 11. Poincare analysis of self-selected speed. Plot to visualize a High-band signal (Mediolateral
shank angular velocity, shown in blue box) and a Low-band signal (mediolateral shank acceleration,
shown in red box) from the treadmill and outdoor datasets.
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Figure 12. Poincare analysis: pairwise evaluation of similarity of treadmill versus outdoors (by SD1
and SD2). SD1 is short-term variability, SD2 is long-term variability with a significance level of
p < 0.05, and Z score is shown. Tri-color banding similarity score color (non-grey) denotes similarity
(signals with no significant difference for cosine and Euclidean distance for control vs. interven-
tion groups). Grey denotes dissimilarity (significantly different cosine and Euclidean distance for
control vs. intervention groups). Bands are shown as High, Middle, or Low based on the aggre-
gate group data; Units: acceleration in meter per second square (m/s2); velocity in radian per
second square (rad/s); Signals: Acc—acceleration, AV—angular velocity, AP—anterior–posterior,
ML—medial–lateral, SI—superior–inferior; Speeds: self-selected, slow (−20%), fast (+20%).
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3.4. Spatiotemporal Parameters

Spatiotemporal parameters that were measured included both signal-specific parame-
ters, peak, range, and valley depth, and gait-specific parameters, gait cycle duration, and
swing/stance time ratio across all three speeds (Figure 13). The signal-specific data was
measured from all 12 signals and grouped by the banding, whereas the gait-specific data
was measured on ML shank AV.
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Figure 13. Spatiotemporal parameters (STP by band and across speeds). Comparison of the treadmill
to the outdoors for individual data where significance level, p < 0.05. Tri-color banding similarity score
color (non-grey) denotes similarity (signals with no significant difference for cosine and Euclidean
distance for control vs. intervention groups). Grey denotes dissimilarity (significantly different cosine
and Euclidean distance for control vs. intervention groups).

The statistical testing of the signal-specific parameters showed that all of the signals
in the High and the Low band demonstrated a statistically significant difference between
treadmill and outdoor walking in at least one of the test speeds (grey boxes). Middle-band
signal SI shank AV and Low-band signal SI thigh AV, however, were not significantly
different at any of the test speeds across all of the parameters (peak, valley, and range).
Slow walking speed showed the lowest level of dissimilarity between parameters compared
to the other two walking speeds. The ML thigh AV of the High band was the only signal
that showed robustness, measured by non-significant dissimilarity, only at self-selected
and slow speeds. Fast walking speed was the most variable, demonstrating significant
differences in 10 out of the 12 signals, followed by self-selected speed, eight signals, and
slow speed, with only four kinetic signals demonstrating statistically significant differences
in any of the parameters.

For gait-specific parameters, treadmill and outdoor walking gait cycle durations were
significantly different regardless of walking speed. The stance/swing ratio (S/S), however,
only showed significant differences between treadmill and outdoor walking for slow
walking speed.

4. Discussion

Defining the optimal kinematic signals, axes, and location(s) for IMU-based gait
assessment is challenging. This study aimed to identify these three factors in raw kinematic
data signals for use in real-time machine learning. We assessed the differences between
treadmill versus outdoor overground walking at three different speeds to identify the
optimal kinematic signals for IMU-based gait monitoring systems. A standardized IMU
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orientation was implemented in which the IMUs were placed in the frontal plane where
z = AP axis, y = ML axis, and x = SI axis. Statistically, we identified which raw kinematic
signals showed the highest similarity, i.e., reliability when changing walking conditions
and speed. Based on our analysis, ML shank AV and SI shank Acc showed the highest
similarity banding and the least dissimilarity in paired comparison tests of similarity
for treadmill versus outdoor walking across the three walking speeds. Based on these
criteria, the above-mentioned kinematic signals were the most robust for gait monitoring
applications across the varied walking conditions for our defined sensor placement. When
using the aggregated data of all participants, the cosine similarity measure shows distinct
high/middle/low banding with ML shank AV and SI Shank Acc, showing amongst the
highest similarity scores for treadmill versus outdoor walking. For statistical analysis, a
novel test assessing dissimilarity, bilateral symmetry dissimilarity testing (BSDT), showed
that the outdoor ML shank AV and SI shank Acc, the aforementioned signals with the
highest similarity between treadmill and outdoor walking, were not statistically dissimilar
to their overground versions. Among these two signals, SI shank Acc demonstrated
the highest level of reliability, being the least variable signal in both BSDT and Poincare
analysis while demonstrating robustness in spatiotemporal analysis at self-selected and
fast walking speeds.

4.1. Identifying the Optimal Kinematic Signals for IMU-Based Gait Monitoring Models

Past work on IMU-based gait monitoring systems included multiple processed kine-
matic signals from multiple sensors and, thus, came at a high computational cost. In a
minimalistic approach, we sought to identify the optimal raw kinematic signals for gait
monitoring systems to lower computational costs and increase adoption. To identify these
signals, different methods were proposed. Sherifi, Renani, et al. utilized deep learning
to predict spatiotemporal gait parameters in patients with osteoarthritis after total knee
arthroplasty [52] and, similar to our findings, demonstrated the shank as the location re-
sulting in the highest accuracy in predicting temporal parameters when compared with the
foot, thigh, and pelvis locations and their 15 different combinations. Separately, real-time
gait phase detection with ML shank AV was implemented by Wang et al. for gait retraining
in order to reduce knee adduction moment (KAM) in osteoarthritis [50], where KAM is an
important marker associated with disease progression. Using two different neural network
models, their gait phase detection accuracy reached 95% [53]. Asuncion et al. [54] used
two IMUs in the frontal plane on the thighs to emulate a smartphone carried in a pocket to
collect three axes of data from the accelerometer, gyroscope, and magnetometer sensors and
then used sensor fusion to provide orientation-independent IMU data for roll, pitch, and
yaw for machine learning with a convolutional neural network (CNN). With sensor fusion,
compared to individual sensors, they increased the overall accuracy of biometric gait iden-
tification by an average of 3–5%, resulting in accuracies between 96.70% and 98.42%. This
approach, however, comes with a high computational cost because the learning duration
of the CNN increased over three times when using the fused kinematic signals compared
to the single kinematic signal method [54]. Reducing the number of signals used in their
algorithm to those we identified as robust signals, such as ML shank AV and SI shank Acc,
one may decrease the computational burden of their algorithm. While the potential exists
for decreasing computational burden, reducing the number of inputs to an AI model may
result in poor performance or a complex structure. Here, however, we can find optimal
kinematic inputs in a more systematic manner using the comparisons provided here.

4.2. ML Shank AV and SI Shank Acc

Our work shows that the ML shank AV and the SI shank Acc signals have the highest
level of robustness when walking speed and walking condition change. Previous research
has shown that combined gyroscope and accelerometer data gives higher accuracy in gait
evaluation than accelerometer data alone [20]. Shank angular velocity and acceleration
were successfully utilized for the prediction of freezing of gait in patients with Parkinson’s
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disease [55], measuring spatiotemporal parameters in typical individuals, stepwise trajec-
tory estimation in young adults [56], monitoring gait normalcy in adults [57], gait event
detection in healthy adults and elderly [27,58], real-time gait event detection (swing and
stance period initiation) in healthy adults and individuals with spinal cord injury [59,60],
and gait phase detection in healthy adults [61] and children with cerebral palsy [9]. Some
of these studies used the ML axis for AV [55,59], whereas others used all three axes [56,57].
To evaluate the robustness of these two signals, we methodically assessed their similarity
in the face of varying walking conditions.

4.3. Similarity Measures

There is currently no universally accepted gait similarity measure. One early tech-
nique of continuous gait pattern analysis (which predates machine learning) was the Gait
Deviation Index (GDI) introduced by Schwartz and Rozumalski [38]. GDI was based on
singular value decomposition, used in image recognition applications, and compared gait
to the gait of control subjects, e.g., comparing the gait of children with CP to those of
typically developing children (control subjects). Similarity indices such as GDI can be used
to assess continuous gait data across surfaces (as tested in this study), assess participant
gait changes, or evaluate for gait pathology [38]. Additional types of continuous data
analysis for similarity include the Coefficient of Multiple Determinations (CMD), Statistical
Parameter Mapping (SPM), and the Linear Fit Method (LFM) [42,44,62]. Using two gait
datasets, 15 healthy and 34 cerebrovascular, of accident patients, Iosa et al. validated
a new method of waveform similarity testing, LFM, and showed 94.1% sensitivity and
93.3% specificity when used to compare the two datasets when plotted one versus the
other [62]. While the Iosa study advances curve testing and shows promise, it relies on
joint kinematic measures, which require more extensive processing steps when compared
with using the minimally processed raw kinematic signals. In a separate recent analysis
comparing different similarity indices that assess the similarity of curve patterns across
the whole gait cycle, Di Marco et al. evaluated RMSD (root mean square deviation), MAV
(mean absolute variability, CMC (coefficient of multiple correlation), and LFM (linear fit
method) [42]. They concluded that each of these four similarity indices provided partial,
but not complete, meaningful comparison (due to differing sources of gait variation) and
that each index also came with inherent limitations on the ideal conditions under which it
may be valid [42]. Thus, no specific similarity index or protocol is accepted for universal
use in the current literature. Building upon cosine and Euclidean distance as similarity
measures, we recommend a novel test to assess similarity scores for dissimilarity when
comparing a subject’s data across walking conditions.

4.4. Bilateral Symmetry Dissimilarity Testing (BSDT)

In our bilateral symmetry dissimilarity testing, our control condition consisted of
left-to-right similarity during treadmill walking as this side-to-side similarity has shown
less variability in comparison to treadmill versus overground similarity [46] and can be
considered as the subject-specific highest level of symmetry realistically possible for healthy
individuals. This concept of utilizing side-to-side symmetry termed bilateral symmetry
in this study, was explored by Hill et al. while establishing a healthy control baseline [63].
Hill’s Symmetry Score measured the degree of symmetry between the legs as a baseline in
indoor overground walking. Cabral et al. also measured symmetry, identifying a high level
of similarity between the left and right legs in typical gait when walking in a controlled
environment such as on a treadmill [46]. In the BSDT method, the control dataset is
recalibrated for each individual each time they walk on a treadmill to establish an ideal,
subject-specific similarity baseline or control. This ideal similarity baseline can then be
used for comparison to subsequent intervention, which in this study was outdoor walking.
The treadmill symmetry similarity score, as a control condition (both signal-specific and
subject-specific control), was statistically compared against the treadmill versus outdoors
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similarity score. By comparing the bilateral symmetry similarity score, the more robust
signals were identified.

4.5. Signals: ML Shank AV and SI Shank Acc

BSDT showed no significant difference between our walking conditions in these two
signals; however, some significant differences were observed in the less robust signals.
Poincare analysis also showed fewer significant differences in the robust signals within
the High band when compared to the less robust signals. The STP analysis, however, was
less discerning across the signals and did not show a pattern. The decreased variability
demonstrated in our Poincare and BSDT analysis, when compared with our parameter-
based spatiotemporal analysis, might indicate the strength of curve-based analysis over the
parameter-based analysis. Curve-based similarity testing, such as our proposed method
BSDT, consists of continuous gait-pattern testing inclusive of the entire continuum of the
biomechanical data in the gait curve as opposed to the parameter-based analysis, which
utilizes representative discreet features of the kinematic signals. Thus, curve-based analysis
might be more versatile in capturing the real differences in the comparing signals and,
therefore, is an evolving field within gait analysis. In prior literature, gait comparisons
between various conditions are mostly based upon discrete spatiotemporal parameters; this
type of parameter-based analysis demonstrated significant between gaits in various walking
conditions [34,37], as seen in Figure 13. With any discrete data analysis, however, emphasis
on a few specific features or data points may leave out potentially meaningful movement
patterns outside those discrete points [59,60]. Such omissions may explain why our STP
parameter-based analysis showed more variability in Figure 13 when compared with our
curve-based comparison, BSDT, and Poincare, as shown in Figures 10 and 12, respectively.

4.6. Spatiotemporal Differences in Gait

Some previous works noted that the treadmill gait was qualitatively and quantitatively
similar to overground walking [45]. Other work showed significant differences between
the treadmill and overground gait [. A systematic review noted that 4 of 9 studies showed
a difference between treadmill and overground gait [21]. Previous work showed that
walking speed affects gait-specific spatiotemporal parameters [13,16,34]. We demonstrated
some significant spatiotemporal differences between treadmill and outdoor walking during
self-selected and fast walking. However, fewer differences between the treadmill and
outdoor walking were detected in slow walking.

4.7. Limitations
4.7.1. Sample Size Limitations

Our participant sample was composed of 30 healthy adolescents, obtained via conve-
nience sampling, and thus limits the generalizability of our results beyond this population.
In contrast to past studies in adolescents, which compare either self-selected walking speed
treadmill protocols or outdoor walking, our study sample reflects a relatively large sample
size. As with all raw data gait research, inter-participant variability and gait perturbations
are significant factors that may limit adequate analysis due to limited usable data [2,12].
IMUs generally allow longer periods of gait assessment [22], and we conducted longer
gait assessments under both walking conditions, treadmill, and outdoors, as evidenced in
the large volume of data collected: 810 min in total walking time by 30 subjects with over
13,200 gait cycles per subject.

4.7.2. Subjectivity of IMU Studies as a Limitation

Traditional lab gait analysis is well standardized and validated at this point, and the
resulting data are comparable across labs regardless of the equipment [64]. The resulting
data is comparable across labs regardless of the equipment. In contrast, IMU usage is
relatively immature; therefore, IMU study protocols and placement locations are not yet
standardized. Systematic reviews report various techniques, making it hard to compare
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across studies or even participant populations [2,20]. That has led to incongruencies in the
data across studies and also encouraged benchmarking of systems against each other [13,65]
as there are no consensus guidelines yet for IMU application or reporting [2,20]. Thus,
any currently published IMU literature may be constrained by experimental conditions,
influenced by the chosen equipment, and/or limited by the data processing procedure for
that study. We believe this study minimized this risk by looking at curve-based similarity
measures as the prime outcomes measure rather than just the parameter-based comparison
(the measured spatiotemporal parameters) from the IMUs alone.

4.7.3. BSDT Limitation

By leveraging widely accepted side-to-side similarity in typical gait, our proposed
dissimilarity testing, BSDT, can simply provide subject and signal-specific control values
that indicate the magnitude of similarity in different conditions for any curve-based similar-
ity measure. The subject-specificity holds only if the individual has a typical symmetrical
gait. In the case of pathological gait, however, one may choose to use signal-specific bi-
lateral symmetry from a normative dataset of typical individuals to conduct a pairwise
statistical comparison.

4.8. Future Work

A recent systematic review showed ample published work on young adults comparing
treadmill walking to indoor overground walking [21]. However, there is a paucity of work
comparing treadmill walking and outdoor walking on typical developing adolescents with
IMUs. In this study, a total of 30 adolescent participants were studied walking for a total
of 27 min at self-selected, slow, and fast speeds. Twenty-four data streams (four sensors,
three axes, and two kinematics) were studied across a total of 317,000 recorded gait cycles.
Thus, the dataset resulting from this study can be utilized as a basis for a larger normative
database for these typically developing adolescents using IMUs. Additionally, the High-
band signals identified in this study included SI shank Acc, ML shank AV, SI thigh Acc,
ML thigh AV, and AP shank AV, and it would be productive to confirm and validate these
High-band signals with other normative datasets. Future work will include using our
analysis techniques with gait data from patients with neuromuscular disease, especially
children with cerebral palsy, and evaluating whether the similarity findings of this study
are comparable. Ultimately, because the study provides insight into which similarity
measures should be considered for machine learning applications, future work could
include adapting a machine learning model and comparing outcomes of these identified
similarity measures.

Similarity measure testing is not new and dates to square error clustering in the 1960s.
However, it is now being revisited as a more relevant topic in machine learning, image
processing, and pattern recognition. Due to the high dimensional nature of gait, however,
more deliberate and considerate applications of similarity are needed to study gait. It
is possible that our use of well-defined statistical similarity measures may be shown to
incompletely quantify differences between high dimensional data. As mentioned above,
other similarity measures were used for gait data, such as the Coefficient of Multiple
Determinations, Statistical Parameter Mapping, and the Linear Fit Method [42,62], and
some have introduced new gait-specific similarity measures [44] or gait indices [38]. This
myriad of similarity measures, indicating a current lack of standardization of similarity
measures, certainly shows that ongoing analysis of larger normative datasets will afford a
further understanding of similarity in gait assessment.

5. Conclusions

Together, gait data collection, gait analysis, and machine learning enable gait monitor-
ing systems for diagnostics, therapeutics, and assistive technologies. While many previous
works have examined parameter-based analysis such as spatiotemporal comparison to
quantify gait similarity, we used curve-based similarity analysis to identify reliable kine-
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matic signals when participants change walking conditions and speed. We identified that
IMUs aligned in the frontal plane and positioned on the shank were more ideal than IMUs
aligned in the frontal plane but located on the thigh. Medial–lateral angular velocity (ML
shank AV) and superior–inferior acceleration (SI shank Acc) were the most robust kinematic
signals when participants moved from treadmill to outdoor overground walking and at
three different walking speeds. These robust raw IMU signals can guide future machine
learning-based models for monitoring gait in the face of varying walking conditions while
optimizing the processing burden and, thereby, the adaptability of such systems.
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