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Abstract: Near-field acoustic holography (NAH) based on compressing sensing (CS) theory enables
accurate reconstruction of sound fields using a limited number of sampling points. However, the
successful implementation of this technique depends on two crucial factors: (1) the appropriate
selection or construction of the spatial basis and (2) an effective sparse regularization process. To
enhance reconstruction performance for elongated sound sources, this paper proposes a novel sound
field reconstruction method that combines prolate spheroidal wave functions (PSWFs) with the
orthogonal matching pursuit (OMP) algorithm. In this method, PSWFs serve as a sparse spatial
basis for representing the radiated sound field. The sparse coefficients are determined by the OMP
algorithm in a linear subspace composed of basic functions that best match the residual error. The
OMP algorithm effectively identifies significant components before potentially selecting incorrect
ones by setting an appropriate stopping rule. Numerical simulations are conducted using a line-array
source model. The results show that the proposed method can accurately reconstruct the sound
pressures of the elongated source model using a relatively small number of samplings. In addition,
the proposed method exhibits robustness across a wide frequency range, diverse array configurations
and various sampling numbers. The experimental results further validate the feasibility and reliability
of the proposed method.

Keywords: near-field acoustic holography; prolate spheroidal wave functions; orthogonal matching
pursuit; sparse regularization

1. Introduction

Sound field reconstruction plays a crucial role in analyzing sound source character-
istics, understanding vibroacoustic coupling mechanisms, optimizing sound radiation
patterns and implementing noise control. Near-field acoustic holography (NAH) [1] is
an effective technology for reconstructing the sound field in three-dimensional space. By
measuring sound pressures in the near field, NAH can localize sound sources and visualize
sound fields with a high resolution. Over the past four decades, numerous NAH algorithms
with different sound field spatial bases and inverse methods have been proposed. Some
notable methods include spatial discrete Fourier transform-based NAH (DFT-NAH) [2–4],
the inverse boundary element method (IBEM) [5–7], statistically optimized near-field acous-
tic holography (SONAH) [8–10], Helmholtz equation least squares (HELS) [11–13] and the
equivalent source method (ESM) [14–16]. In these algorithms, the sound field is approx-
imated by a series of spatial bases, such as wave functions or simple sources, while the
weighting coefficients are estimated by the measured data. Then, a sound field transfer
matrix is established between the hologram locations and the reconstruction locations.
Finally, accurate reconstruction results can be obtained by including a suitable regulariza-
tion method to reduce the noise influence. However, achieving high resolution with these
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NAH algorithms relies on a sufficient number of transducers, which often results in high
measurement costs and implementation difficulties in engineering.

Compressing sensing (CS) [17–19] offers a promising approach for reducing measure-
ment requirements while preserving a high resolution of the reconstruction results. The
fundamental concept of CS theory is based on the assumption that the sound field can
be sparsely represented using only a few non-zero weighting coefficients. By leveraging
this sparsity, accurate reconstruction of the sound field can be achieved using a relatively
small number of samplings. The successful integration of CS theory into NAH depends on
two key factors: (1) the appropriate selection or construction of the spatial basis and (2) an
effective sparse regularization process. When the spatial basis matches the characteristics
of the sound field or the sound sources well, the sparsity of the sound field representa-
tion can be promoted. As a result, the inverse problem in NAH is simplified, and the
accuracy of the reconstruction results is improved. Chardon et al. [19] first combined a
set of plane wave functions and l1-norm sparse regularization to reconstruct the normal
velocity of plates in 2012. It was shown that sparsity principles for NAH were valid and the
measurement requirements could be mitigated. Furthermore, to address spatially sparse
sources, Hald [20] used a set of monopole point sources to match the sound field, while the
sparse regularization process was performed by an iterative algorithm called fast wideband
holography (WBH). For spatially extended sources, Fernandez-Grande [21] used block-
sparse regularization along with ESM to promote the sparse solutions. Bi [22] constructed
a sparse basis obtained from the eigen-decomposition of the power resistance matrix.
Hu [23] constructed a sparse basis by ESM and the singular value decomposition (SVD).
Additionally, plane wave functions [24], cylindrical wave functions and spherical wave
functions [25,26] can also be selected as the sparse spatial basis. As for the sparse regular-
ization, various algorithms have been applied to NAH successfully, such as direct l1-norm
sparse regularization [27], WBH [20], iterative sparse methods [28], Bayesian compressive
sensing [29,30], alternating direction method of multipliers [31], block sparse Bayesian
learning [32,33] and so on. Note that the computational efficiency, effective frequency range
and noise robustness of these sparse regularization algorithms may vary substantially with
different spatial bases and sound sources [28,34]. Therefore, it is important to consider
the characteristics of both the spatial bases and sound sources when implementing sparse
regularization algorithms.

Considering elongated sound sources, such as unmanned underwater vehicles with
large aspect ratios, line-array speakers, rockets and gas turbines, the radiated sound fields
may exhibit complex vertical directivities in three-dimensional space [35]. Cylindrical
wave functions are frequently used to represent this kind of sound field. In previous
studies, Williams [36,37] utilized cylindrical wave functions within the Fourier transform
framework, known as cylindrical NAH, to reconstruct the radiated sound field of finite
cylindrical shells. Lee [38] employed the virtual coherence method and cylindrical NAH to
visualize the sound field of a small ducted fan assembly. It should be noted that the perfor-
mance of cylindrical NAH was often affected by spatial windowing effects and wraparound
errors. To address this issue, Lee [39] proposed an iterative data extrapolation algorithm
to extend the measurement aperture. Cho [40] combined cylindrical wave functions with
the SONAH algorithm to reconstruct the sound field of a cylindrical refrigeration com-
pressor. However, when dealing with more complex, elongated sound sources, cylindrical
wave functions alone may not be adequate for accurately representing the sound field.
Consequently, Williams [4] employed the fast Fourier transform to solve a partial domain
problem caused by the unbaffled cylinder with flat endcaps. Cheng [10] expressed the
sound field of large conical surfaces as a superposition of characteristic elementary waves,
which are constructed by cylindrical wave functions through cylinder-cone coordinates
transformation. Overall, it is beneficial to carefully select or construct a spatial basis that
aligns well with the elongated sources. Such alignment has the potential to enhance the
efficacy of spatial basis in accurately representing the sound field, ultimately leading to
precise reconstruction results.
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To apply CS theory to sound field reconstruction for elongated sources, the spatial
basis should possess an excellent ability to represent the featured sound field. In other
words, the spatial basis should satisfy the conditions required for employing CS methods,
which imply that the radiated sound field can be sparsely or compressibly represented.
The references in this field are few. However, according to our simulation tests for a simple
unmanned underwater vehicle model, the reconstruction results near the endcaps do not
perform well when using cylindrical wave functions. As a result, prolate spheroidal wave
functions (PSWFs) [41,42] are investigated and utilized as a novel sparse spatial basis for
reconstructing the radiated sound field of an elongated sound source in our study. In
fact, PSWFs are the eigenfunctions of the Helmholtz equation in the prolate spheroidal
coordinate system. Similar to plane wave functions, cylindrical wave functions and spheri-
cal wave functions, PSWFs exhibit orthogonality and completeness in the spatial domain.
Additionally, the wavefronts of PSWFs can be set nearly conformal to the elongated sources,
which infers that PSWFs possess a strong capability to accurately represent the radiated
sound field. However, the usage of PSWFs has always been limited due to their complex
mathematical expressions and the challenges associated with performing precise calcula-
tions. In recent times, researchers, including Van Buren [43–45], Falloon [46], Ogburn [47]
and Adelman [48], have made efforts to enhance the accessibility of PSWFs. They have
generously shared their code scripts publicly, which serve as valuable resources for others
interested in utilizing PSWFs. These contributions have significantly reduced barriers
and facilitated the practical implementation of PSWFs in various applications, including
acoustic scattering [49], acoustic radiation [50] and electromagnetic scattering [42].

The effective sparse regularization process also plays a crucial role in applying CS
theory to reconstruct sound fields for elongated sources. However, our primary focus
in this study is to investigate whether the use of PSWFs can enhance the accuracy of
reconstruction results for elongated sources. To this end, we employ the orthogonal
matching pursuit (OMP) [51,52] method, which is one of the most reliable CS algorithms
for sparse regularization. Specifically, OMP is an iterative algorithm that reconstructs a
signal by progressively selecting atoms or features that are highly correlated with the target
signal. During each iteration, the algorithm generates an approximation of a given signal,
which guarantees two properties: the projection of the signal onto the subspace generated
by the selected atoms is orthogonal, and the norm of the corresponding residual error
is minimized.

This paper presents a novel method, termed PSWF-OMP, for reconstructing the ra-
diated sound field of an elongated sound source by combining PSWFs with the OMP
algorithm. PSWFs are utilized as a sparse spatial basis to accurately represent the sound
field, while the OMP algorithm is employed to find a sparse solution by identifying the most
relevant basis vectors and minimizing errors under a limited number of measurements.
Numerical and experimental evaluations are conducted to assess the performance of the
proposed PSWF-OMP method. Furthermore, a comparison is made between PSWF-OMP
and the traditional SONAH algorithm to highlight the advantages of the former in dealing
with elongated sound sources when measurements are not sufficient. Additionally, PSWF-
OMP is compared to a method that combines cylindrical wave representation with the
OMP algorithm to demonstrate the compatibility of PSWFs with elongated sound sources.
Moreover, the influences of sampling numbers and array configurations are investigated.

The outline of this paper is organized as follows. Section 2 introduces the basic
theories of PSWFs and sparse regularization. In Section 3, numerical simulations are
performed to validate the proposed method, and the influences of sampling numbers
and array configurations are discussed. The feasibility of the proposed method is further
demonstrated through experiments in Section 4. Lastly, the conclusions are summarized in
Section 5.
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2. Theory
2.1. Sound Field Expansion Using Prolate Spheroidal Wave Functions

Considering a time-harmonic sound field radiated by an elongated sound source
in an unbounded homogenous medium, the complex sound pressure p(r) satisfies the
Helmholtz equation: (

∇2 + k2
)

p(r) = 0, (1)

where∇2 is the Laplace operator, r is the position of a field point in the unbounded exterior
region, k = ω/v is the wave number, ω is the angular frequency, and v is the sound
speed. Since the Helmholtz equation is separable in curvilinear orthogonal systems, p(r) is
often expressed as a summation of certain basis wave functions. To effectively address the
sound radiation problem involving elongated geometries, the prolate spheroidal coordinate
system is employed in this study.

The prolate spheroidal coordinate system [41] is formed by rotating the two-dimensional
elliptic coordinate system about the major axis of the ellipses, consisting of confocal ellipses
and hyperbolas. In the prolate spheroidal coordinate system, a point is defined by three
coordinates (ξ, η, ϕ). As shown in Figure 1, the prolate spheroids (ξ = const), hyperboloids
(η = const) and half-planes (ϕ = const) are three orthogonal coordinate surfaces. d is the
interfocal distance. The major semi-axis of the prolate spheroid is dξ/2, while the minor
semi-axis is d

√
ξ2 − 1/2. Note that, a different d defines different prolate spheroid systems,

which can be manipulated to set nearly conformal prolate spheroidal surfaces to elongated
sound sources. In general, the z-axis is chosen as the axis of rotation, and prolate spheroidal
coordinates (ξ, η, ϕ) are related to Cartesian coordinates (x, y, z) by

x =
d
2

√
(ξ2 − 1)(1− η2) cos ϕ,

y =
d
2

√
(ξ2 − 1)(1− η2) sin ϕ,

z =
d
2

ξη,

(2)

where 1 ≤ ξ < ∞, −1 ≤ η ≤ 1, and 0 ≤ ϕ ≤ 2π. Inversely, (ξ, η, ϕ) can be derived by
(x, y, z) as follows: 

ξ = (R1 + R2)/d,

η = (R1 − R2)/d,

ϕ = atan2(y/x),

(3)

where R1 =
√
(z + d/2)2 + x2 + y2 and R2 =

√
(z− d/2)2 + x2 + y2 are the distances

from a field point to two foci, respectively. atan2(•) represents the four-quadrant inverse
tangent function.

In the prolate spheroidal coordinate system, the Helmholtz equation is rewritten
as follows:[

∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2

∂ϕ2 + c2(ξ2 − η2)

]
p(r) = 0, (4)

where c = kd/2 = πd/λ. Because the prolate spheroidal coordinate system is a curvilinear
orthogonal system, we can employ the separation of variables to derive three uncoupled
ordinary differential equations [41]. The solutions to the Helmholtz equation can be derived
as follows:

R(q)
mn(c, ξ)Smn(c, η)

{
cos(mϕ)

sin(mϕ)
, m = 0, 1, 2, . . . and n = m, m + 1, m + 2, . . . (5)
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where Smn(c, η) are the first kind of prolate spheroidal angle functions of degree n and
order m, R(q)

mn(c, ξ) are the qth kind of prolate spheroidal radial functions with q = 1, 2, 3, 4,
and cos(mϕ) and sin(mϕ) are the azimuthal functions.
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Figure 1. Prolate spheroidal coordinate system: (a) coordinate surfaces and (b) confocal ellipses
and hyperbolas.

Similar to spherical Hankel functions, the third and fourth kinds of prolate spheroidal
radial functions can be expressed by the first and second kinds [53]:{

R(3)
mn(c, ξ) = R(1)

mn(c, ξ) + iR(2)
mn(c, ξ),

R(4)
mn(c, ξ) = R(1)

mn(c, ξ)− iR(2)
mn(c, ξ),

(6)

where i represents the imaginary unit. When the time dependency is assumed as e−iωt, it is
reasonable to regard R(3)

mn(c, ξ) and R(4)
mn(c, ξ) as the distance dependency of the outgoing

and incoming wave functions, respectively [54]. Analogous to spherical harmonics, prolate
spheroidal harmonics can be generated by multiplying prolate spheroidal angle functions
and azimuthal functions [47]. In this case, the azimuthal functions should be changed
from cos(mϕ) and sin(mϕ) to eimϕ, and the negative integers of m must be considered.
As a result, the definitions of prolate spheroidal radial functions and angle functions
are extended:

R(3)
−mn(c, ξ) = R(3)

mn(c, ξ), (7)

R(4)
−mn(c, ξ) = R(4)

mn(c, ξ), (8)

S−mn(c, η) = (−1)m (n−m)!
(n + m)!

Smn(c, η). (9)

In the following, the subscripts of the three functions are redefined as n = 0, 1, . . . , ∞
and m = −n, . . . ,−1, 0, 1, . . . , n. Thus, prolate spheroidal harmonics can be constructed
as follows:

Hm
n (η, ϕ; c) =

√
2n + 1

4π

(n−m)!
(n + m)!

Smn(c, η)eimϕ. (10)

It should be noted that Hm
n (η, ϕ; c) are normalized and possess a unique double

orthogonality property [47]:∫ 2π

0
dϕ
∫ 1

−1
Hm

n (η, ϕ; c)Hm′
n′ (η, ϕ; c)∗dη = δmm′δnn′ , (11)
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where δmm′ and δnn′ are the Kronecker delta functions, and “*” represents the complex
conjugation. The double orthogonality property implies that Hm

n (η, ϕ; c) are orthogonal
with respect to a unit weighting function rather than the Jacobian matrix. Though the
double orthogonality property does not involve a conventional surface area integral, it
allows for simplifications in computations and leads to efficient mathematical formulations.
As a result, prolate spheroidal harmonics can form an orthogonal basis over the product
domain [47]. The real parts of the first few outgoing prolate spheroidal harmonics for
positive m are demonstrated in Figure 2.
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From the properties discussed, the outgoing and incoming PSWFs can be constructed
by combining prolate spheroidal radial functions with prolate spheroidal harmonics:

Φout
mn(ξ, η, ϕ; c) = R(3)

mn(c, ξ)Hm
n (η, ϕ; c), (12)

Φin
mn(ξ, η, ϕ; c) = R(4)

mn(c, ξ)Hm
n (η, ϕ; c). (13)

It is inferred that outgoing and incoming PSWFs can form an orthogonal and complete
spatial basis. This implies that any radiated sound field can be represented by outgoing
and incoming PSWFs as follows:

p(ξ, η, ϕ) =
∞

∑
n=0

n

∑
m=−n

[
amn(c)Φout

mn(ξ, η, ϕ; c) + bmn(c)Φin
mn(ξ, η, ϕ; c)

]
, (14)

where amn(c) and bmn(c) are complex weighting coefficients. For an exterior acoustic
problem, there are no incoming PSWFs converging inward, so bmn(c) = 0. Therefore, the
exact solution to an exterior problem can be expressed as follows:

p(ξ, η, ϕ) =
∞

∑
n=0

n

∑
m=−n

amn(c)Φout
mn(ξ, η, ϕ; c). (15)

However, in practice, this expansion must be truncated to a finite order for computa-
tional purposes:

p(ξ, η, ϕ) ≈
J

∑
j=1

aj(c)Φout
j (ξ, η, ϕ; c), (16)

where the subscripts of the outgoing PSWFs are replaced by j = n2 + n + m + 1.
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2.2. Sound Field Reconstruction Model

The sound field reconstruction model involves the measurement of sound pressures in
the near field of sound sources and the subsequent reconstruction of the three-dimensional
sound field using measured data as boundary conditions. Assuming that there are L
transducers on the hologram plane and the truncation number J is appropriately chosen,
the measured sound pressures can be expressed as follows:

ph = Ψha + n, (17)

where ph = [p(rh1), p(rh2), . . . , p(rhl), . . . p(rhL)]
T is a column vector representing the mea-

sured pressures, a =
[
a1(c), a2(c), . . . , aj(c), . . . aJ(c)

]T is a column vector of the weighting
coefficients, n is the white Gaussian noise vector, and Ψh is an L× J matrix of the outgoing
PSWFs evaluated at the measurement points:

Ψh =



Φout
1 (rh1; c) Φout

2 (rh1; c) · · · Φout
j (rh1; c) · · · Φout

J (rh1; c)

Φout
1 (rh2; c) Φout

2 (rh2; c) · · · Φout
j (rh2; c) · · · Φout

J (rh2; c)

...
...

. . .
...

. . .
...

Φout
1 (rhl ; c) Φout

2 (rhl ; c) · · · Φout
j (rhl ; c) · · · Φout

J (rhl ; c)

...
...

. . .
...

. . .
...

Φout
1 (rhL; c) Φout

2 (rhL; c) · · · Φout
j (rhL; c) · · · Φout

J (rhL; c)


(18)

Once the weighting coefficients are determined, the pressures on the reconstruction
plane can be expressed as follows:

pr = Ψra, (19)

where pr is the column vector of reconstructed pressures and Ψr is a matrix of outgoing
PSWFs evaluated at reconstruction locations.

The determination of the weighting coefficients is an acoustic inverse problem. Since
the matrix Ψh in Equation (17) often performs ill-conditioned, the measurement noise
can be greatly amplified during the inverse-solving process, resulting in compromised
outcomes. To deal with the ill-posed problem, Tikhonov regularization [55] is usually used
in conventional NAH:

argmin
a

{
‖ph −Ψha‖2

2 + λ‖a‖2
2

}
, (20)

where λ is the regularization parameter. By minimizing the l2-norm of the residual vector
and the coefficient vector, the least-square solution can be found:

a =
(

ΨH
h Ψh + λI

)−1
ΨH

h ph (21)

where I is the identity diagonal matrix, “H” represents the Hermitian transpose and (•)−1

represents the pseudo-inverse. Generally, λ can be determined via the generalized cross
validation (GCV) method or the L-curve method [55]. However, the least-square coefficient
vector often performs “smooth” instead of “sparse”, which may allocate too much energy to
high-wavenumber components and amplify the impact of noise contamination. In ESM, the
least-square solution may lead to ghost sources near the real sound source and decrease the
accuracy of sound source recognition. Furthermore, in order to guarantee the uniqueness
of the least-square solution, Equation (17) should remain overdetermined. This implies
that the number of measurements needs to exceed the number of wave functions.

2.3. Sparse Regularization via Orthogonal Matching Pursuit

In engineering applications, sufficient measurements cannot always be satisfied. When
the number of measurements is fewer than the number of wave functions, the inverse-
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solving problem becomes underdetermined. In this case, sparse regularization is used to
enhance the accuracy and reliability of the sound field reconstruction. The fundamental
principle behind sparse regularization is that the real sound field exhibits sparsity and can
be accurately represented using only a few significant coefficients in a specific transform
domain. In our study, PSWFs are specially chosen for elongated sources as the sparse
spatial basis to fulfill the sparsity condition. The use of PSWFs offers advantages in
three main aspects. Firstly, the completeness of PSWFs allows for the reconstruction of
any type of radiated sound field. Secondly, the orthogonality of PSWFs enhances the
uniqueness of the weighting coefficients during the inverse-solving process. Thirdly, the
nearly conformal wavefronts of PSWFs contribute to a more concise representation of the
sound field, resulting in increased sparsity.

When the sparse basis is determined, the weighting coefficients are usually obtained
by solving the l1-norm minimization problem:

argmin
a
‖a‖1 subject to ‖ph −Ψha‖2 ≤ ε, (22)

where ε is the error threshold. In this study, sparse regularization is performed by the OMP
algorithm. As an iterative and greedy algorithm, the OMP has been widely used due to
its simplicity and competitive performance. In fact, OMP can incrementally identify the
significant features that contribute the most to the signal of interest. At each step, OMP
selects a sparse basis function that is most correlated with the current residual. The selected
sparse basis function is then added to a linear subspace composed of previously selected
basis functions. Finally, the residual is updated by projecting the measured pressures onto
the linear subspace. Note that, the basis functions are called “atoms” in OMP, and the linear
subspace is called “sub-dictionary”. In addition, the residual after each step in the OMP
algorithm is orthogonal to all the selected atoms, so no atom is selected twice, and the set
of selected atoms grows at each step.

Since the OMP algorithm is usually applied to problems involving real-valued data,
the complex vector ph and matrix Ψh should be separated into real and imaginary parts.
Therefore, the complex-valued linear system in Equation (17) is transformed into a real-
valued linear system as follows:

~
ph =

~
Ψh

~
a +

~
n, (23)

where
~
ph =

[
Re(ph)

Im(ph)

]
,

~
a =

[
Re(a)

Im(a)

]
,

~
n =

[
Re(n)

Im(n)

]
, (24)

and
~
Ψh =

[
Re(Ψh) −Im(Ψh)

Im(Ψh) Re(Ψh)

]
. (25)

Re(·) and Im(·) represent the real and imaginary parts, respectively. Furthermore, the
framework of the OMP algorithm is presented in Algorithm 1. Note that the selection of the
most correlated basis function with the residual is accomplished by finding the largest inner
product. The index of the selected basis function is then recorded in Λk. Simultaneously, the
weighting coefficient vector in the kth iteration is estimated using a least square approach.

One of the key components of OMP is the stopping rule. As Cai [52] suggested, if the
noise vector is bounded with ‖n‖2 ≤ ε, the stopping rule can be set to ‖Rk‖2 ≤ ε. In this
case, OMP can identify all the large components before possibly selecting incorrect ones.
Furthermore, OMP can demonstrate good tolerance to additive noise in the measurements.
Due to its iterative nature and the ability to selectively choose basis functions that contribute
the most to reducing the residual error, unnecessary or redundant information can be
suppressed, resulting in a more concise and accurate representation of the sound field. In
other words, the OMP algorithm can mitigate noise by highlighting its essential components
while filtering out irrelevant details.
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Algorithm 1 OMP Algorithm.

1: Input matrix
~
Ψh, column vector

~
ph and error threshold ε.

2: Initialize residual vector R0 =
~
ph, linear subspace Ω0 = ∅, indices of selected basis

functions Λ0 = ∅ and iteration count k = 0.
3: While ‖Rk‖2 > ε

4: k ++

5: index = arg max
j/∈Λk−1

∣∣∣∣RH
k−1

~
Ψh

∣∣∣∣
6: Λk = Λk−1 ∪ {index}

7: Ωk = Ωk−1 ∪
{

~
Ψh

}
index

8:
~
a

sub
k =

(
ΩH

k Ωk
)−1

ΩH
k

~
ph

9: Rk =
~
ph −Ωk

~
a

sub
k

10: End while

11: Return Λk
~
a

sub
k Rk

3. Numerical Simulations

In the simulation, the proposed method is evaluated by a set of line-array monopoles.
As shown in Figure 3, 101 monopoles are placed along the z-axis, evenly distributed in the
range of z = −0.5 ∼ 0.5 m. The monopoles are spaced 0.01 m from each other. Additionally,
all the monopoles have identical source strengths and phases. In such a configuration, a
strong interference effect can be stimulated, which means that the radiated sound field
exhibits a strong near-field effect at low frequencies and complex vertical directivity at
high frequencies. The origin of the Cartesian coordinate system is set at the center of the
elongated source model. The fluid medium is assumed to be air. The sound speed is set to
340 m/s. The theoretical sound pressures from the line-array monopoles are all calculated
with the free-field Green’s function. The hologram surface is located at x = 0.2 m with a
size of 1.2× 1.2 m2. Simulated pressures are measured on the hologram surface with a total
of 25× 25 = 625 evenly distributed sampling points. To evaluate the proposed method
in a sparse framework, a subset of sampling points is randomly selected from the total
625 measurements. Additional white Gaussian noise with a signal-to-noise ratio (SNR) of
30 dB is added to the pressures on the hologram surface to simulate the real environment.
Meanwhile, the reconstruction surface is the same size as the hologram surface and is
placed at x = 0.1 m. Similar to the hologram surface, the reconstruction surface is also
meshed into 25× 25 = 625 points with a grid spacing of 0.05 m.
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The performance of the proposed method is compared with traditional SONAH al-
gorithms [9] that employ cylindrical wave functions to represent the radiated sound field
of elongated sources. A modified Tikhonove regularization method is employed in the
SONAH algorithm, while the regular parameter is found through the GCV method. Addi-
tionally, a sound field reconstruction method that combines cylindrical wave representation
with the OMP algorithm is compared with the proposed method to reveal whether PSWFs
can match with elongated sound sources well. It is important to note that both PSWFs and
cylindrical wave functions are orthogonal and complete in three-dimensional space, allow-
ing them to approximate any type of sound field. However, there are distinct differences in
the characteristics of wavefronts and spatial symmetry between these two wave functions.
As a result, the conciseness of representation between these two wave functions may vary
when depicting the sound field. Considering the noise influence and the ill-posed problem
in NAH, a sparse and accurate representation of the sound field is always being pursued.
Consequently, the ability of PSWFs and cylindrical wave functions are investigated and
compared with respect to the line-array source model. In the simulation, cylindrical wave
functions are formulated as follows:

Φc
n,kz

(ρ, ϕ, z) =

_
H

(1)

n (krρ)
_
H

(1)

n (krρ0)

einϕeikzz, (26)

kr =

{ √
k2 − k2

z, k2 > k2
z

i
√

k2
z − k2, k2 < k2

z
, (27)

where Φc
n,kz

(ρ, ϕ, z) are outgoing cylindrical wave functions with respect to cylindrical

coordinates (ρ, ϕ, z);
_
H

(1)

n (krρ) are the nth-order Hankel functions of the first kind with
n = −9,−8, . . . ,−1, 0, 1, . . . , 8, 9; kr is the radial wavenumber; ρ0 is a small reference radius;
|kz|max = π/0.1 m−1; and ∆kz = 2π/2.4 m−1. Since the maximum analytical frequency is
1000 Hz, corresponding to the wavelength of 0.34 m, the configurations of the cylindrical
wave functions can meet our requirements to represent the sound field [1]. For the sake of
simplicity, the method combining cylindrical wave functions with the OMP algorithm is
abbreviated as CWF-OMP. Traditional SONAH algorithms that employ cylindrical wave
functions are abbreviated as CWF-SONAH. As for PSWFs, the interfocal distance is set to
d = 1.2 m, which is slightly larger than the length of the elongated source model. In this
case, as the singularities in the three-dimensional sound field, all the sound sources are
incorporated into the singularities of the PSWFs (the line between two focuses), making the
sound field reconstruction reliable and robust. Meanwhile, the wavefronts of the PSWFs
can be set nearly conformal to the sound sources, promoting the sparse representation of the
radiated sound field. Note that, the error threshold is set to ε = n2 in the OMP algorithm.

To quantitatively evaluate the reconstruction performance, the reconstruction error is
defined as follows:

RE =
‖pcal − pthe‖2
‖pthe‖2

× 100%. (28)

where pcal is the reconstructed pressure and pthe is the theoretical pressure.

3.1. Validation of the Proposed Method with Sparse Sampling

In this subsection, the sound field reconstruction is carried out at 500 Hz and 1000 Hz
based on a small number of samplings. As shown in Figure 4, the number of randomly
selected sampling points is set to 50, which is fewer than one tenth of the total number
of sampling points (625) on the hologram surface. Figure 5 compares the reconstructed
pressures by CWF-SONAH, CWF-OMP and PSWF-OMP with the theoretical pressures at
500 Hz. Figure 6 compares the reconstructed pressures at 1000 Hz. It is apparent that the
theoretical pressures exhibit long strip patterns along the z-axis at both 500 Hz and 1000 Hz.
The interference effect is particularly pronounced at 1000 Hz, where three vertical lobes
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can be observed in Figure 6a. Note that the sound field reconstruction results obtained
through PSWF-OMP demonstrate a good match with the theoretical pressures, as depicted
in Figures 5d and 6d. The reconstruction errors are evaluated to be 5.5% at 500 Hz and
4.5% at 1000 Hz, indicating a high level of accuracy. In contrast, the reconstruction errors
of CWF-OMP are found to be 13.7% at 500 Hz and 17.2% at 1000 Hz, both of which are
higher compared to PSWF-OMP. The reconstruction errors of CWF-SONAH are 14.6%
at 500 Hz and 4.7% at 1000 Hz. The performance of CWF-SONAH at low frequencies
appears to be inadequate, indicating the need for further measurements. Additionally, the
reconstructed patterns obtained through CWF-OMP exhibit compression in the z-direction
at both frequencies, suggesting a potential occurrence of larger errors near the edge of
the reconstruction surface. The reconstructed pattern obtained through CWF-SONAH at
500 Hz manifests obvious distortion, which may be caused by incorrect selection of the
regularization parameter. Furthermore, in terms of peak distribution features, PSWF-OMP
demonstrates a closer visual resemblance compared to CWF-OMP at both frequencies.
Overall, the results demonstrate that PSWF-OMP yields good reconstruction outcomes at
both low and high frequencies. The reconstruction errors obtained through the proposed
method are all below 6%, indicating its effectiveness in achieving sound field reconstruction
with a reduced number of measurement points.
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In order to gain a more detailed observation of the reconstruction results, Figure 7
displays the sound pressure levels (SPLs) calculated through CWF-SONAH, CWF-OMP and
PSWF-OMP at 500 Hz and 1000 Hz along the middle column line and middle row line on
the reconstruction surface. In Figure 7a,c, noticeable disparities between the reconstructed
SPLs by CWF-OMP and the theoretical values can be observed at edge points. For CWF-
SONAH, the evident deviation in Figure 7a suggests a failure in sound field reconstruction
at 500 Hz. Additionally, Figure 7d reveals the presence of redundant ripples obtained
through CWF-OMP at edge points, which could potentially stem from incorporating
high wavenumber components. This suggests that a few high-order cylindrical wave
functions have been utilized to approximate the interference pattern on the hologram
surface. However, due to measurement noise, it becomes challenging to determine the
accurate weighting coefficients. As a result, a portion of the energy that belongs to the lower
wavenumber components is misallocated to the higher wavenumber components. During
the inverse reconstruction process, the amplitudes of these high-order wave functions
undergo significant amplification, leading to the emergence of ripples on the reconstruction
surface, and consequently resulting in substantial reconstruction errors. In contrast, the
PSWF-OMP method demonstrates a remarkable ability to achieve close agreement with the
theoretical values along both the middle column line and middle row line. The accurate
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reconstruction at edge points indicates the strong abilities of PSWFs in representing the
radiated sound field of line-array monopoles.
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Figure 6. Pressure on the reconstruction surface with respect to line-array monopoles at 1000 Hz.
(a) Theoretical; (b) reconstructed by CWF-SONAH; (c) reconstructed by CWF-OMP; (d) reconstructed
by PSWF-OMP.

Figure 8a–d illustrates the normalized coefficient amplitudes obtained through CWF-
SONAH, CWF-OMP and PSWF-OMP at 500 Hz and 1000 Hz. The values represented on
the horizontal axes correspond to the wavenumber components, with larger absolute values
indicating higher wavenumbers. It can be seen that at 500 Hz, CWF-OMP employs eight
wave functions to approximate the radiated sound field, whereas PSWF-OMP only utilizes
two wave functions. Similarly, at 1000 Hz, CWF-OMP employs 11 wave functions, while
PSWF-OMP employs only 3 wave functions. As for CWF-SONAH, more wave functions
are always used to represent the sound field at both frequencies. This discrepancy in the
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number of wave functions employed by the three methods suggests that PSWF-OMP is able
to achieve comparable or even better reconstruction accuracy with fewer wave functions.
The concise representation in PSWF-OMP highlights the efficiency and effectiveness of the
PSWF-OMP approach in reconstructing the sound field. It can be seen that both CWF-OMP
and PSWF-OMP preferentially choose low-order wave functions for modeling the radiated
sound field. However, PSWF-OMP can realize more accurate reconstruction results (see
Figures 6 and 7). This characteristic signifies the strong matching performance of PSWFs
to the elongated sound source model. Furthermore, it is important to highlight that a
considerable portion of the weighting coefficients, specifically those associated with high
wavenumber components, are set to zero in PSWF-OMP. This can efficiently mitigate
the influences of noise. Overall, PSWF-OMP performs a sparser representation, and the
impact of noise on the reconstructed pressures can be greatly reduced, leading to improved
accuracy and quality of the reconstruction results.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 23 
 

 

In order to gain a more detailed observation of the reconstruction results, Figure 7 
displays the sound pressure levels (SPLs) calculated through CWF-SONAH, CWF-OMP 
and PSWF-OMP at 500 Hz and 1000 Hz along the middle column line and middle row 
line on the reconstruction surface. In Figure 7a,c, noticeable disparities between the recon-
structed SPLs by CWF-OMP and the theoretical values can be observed at edge points. 
For CWF-SONAH, the evident deviation in Figure 7a suggests a failure in sound field 
reconstruction at 500 Hz. Additionally, Figure 7d reveals the presence of redundant rip-
ples obtained through CWF-OMP at edge points, which could potentially stem from in-
corporating high wavenumber components. This suggests that a few high-order cylindri-
cal wave functions have been utilized to approximate the interference pattern on the hol-
ogram surface. However, due to measurement noise, it becomes challenging to determine 
the accurate weighting coefficients. As a result, a portion of the energy that belongs to the 
lower wavenumber components is misallocated to the higher wavenumber components. 
During the inverse reconstruction process, the amplitudes of these high-order wave func-
tions undergo significant amplification, leading to the emergence of ripples on the recon-
struction surface, and consequently resulting in substantial reconstruction errors. In con-
trast, the PSWF-OMP method demonstrates a remarkable ability to achieve close agree-
ment with the theoretical values along both the middle column line and middle row line. 
The accurate reconstruction at edge points indicates the strong abilities of PSWFs in rep-
resenting the radiated sound field of line-array monopoles. 

 
Figure 7. A comparison of the reconstructed pressures by CWF-SONAH, CWF-OMP and PSWF-
OMP with the theoretical pressures along the middle column line and middle row line on the re-
construction surface at 500 Hz and 1000 Hz. 

Figure 8 illustrates the normalized coefficient amplitudes obtained through CWF-
SONAH, CWF-OMP and PSWF-OMP at 500 Hz and 1000 Hz. The values represented on 
the horizontal axes correspond to the wavenumber components, with larger absolute val-
ues indicating higher wavenumbers. It can be seen that at 500 Hz, CWF-OMP employs 
eight wave functions to approximate the radiated sound field, whereas PSWF-OMP only 
utilizes two wave functions. Similarly, at 1000 Hz, CWF-OMP employs 11 wave functions, 
while PSWF-OMP employs only 3 wave functions. As for CWF-SONAH, more wave func-
tions are always used to represent the sound field at both frequencies. This discrepancy in 
the number of wave functions employed by the three methods suggests that PSWF-OMP 
is able to achieve comparable or even better reconstruction accuracy with fewer wave 
functions. The concise representation in PSWF-OMP highlights the efficiency and effec-
tiveness of the PSWF-OMP approach in reconstructing the sound field. It can be seen that 
both CWF-OMP and PSWF-OMP preferentially choose low-order wave functions for 

Figure 7. A comparison of the reconstructed pressures by CWF-SONAH, CWF-OMP and PSWF-OMP
with the theoretical pressures along the middle column line and middle row line on the reconstruction
surface at 500 Hz and 1000 Hz.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 23 
 

 

modeling the radiated sound field. However, PSWF-OMP can realize more accurate re-
construction results (see Figures 6 and 7). This characteristic signifies the strong matching 
performance of PSWFs to the elongated sound source model. Furthermore, it is important 
to highlight that a considerable portion of the weighting coefficients, specifically those 
associated with high wavenumber components, are set to zero in PSWF-OMP. This can 
efficiently mitigate the influences of noise. Overall, PSWF-OMP performs a sparser repre-
sentation, and the impact of noise on the reconstructed pressures can be greatly reduced, 
leading to improved accuracy and quality of the reconstruction results. 

 
Figure 8. A comparison of the normalized coefficients in CWF-SONAH, CWF-OMP and PSWF-
OMP at 500 Hz and 1000 Hz. 

3.2. Effect of Array Configurations 
To examine the influence of sampling array randomness on the reconstruction re-

sults, a total of 30 different sampling array configurations are utilized. Each configuration 
consists of 50 sampling points randomly selected from the original 625 measurements. 
The obtained results, as shown in Figure 9, reveal that the mean reconstruction error 
achieved by PSWF-OMP is 5.5% at 500 Hz and 4.3% at 1000 Hz. In contrast, the mean 
reconstruction error attained by CWF-OMP is significantly higher, reaching 13.7% at 500 
Hz and 13.5% at 1000 Hz. The mean reconstruction error attained by CWF-SONAH is 
15.5% at 500 Hz and 5.3% at 1000 Hz. Additionally, it is worth noting that the reconstruc-
tion errors obtained by PSWF-OMP exhibit slighter fluctuations across different sampling 
array configurations at both frequencies, while CWF-OMP and CWF-SONAH show dra-
matic fluctuations. This observation suggests that PSWF-OMP is more robust and less sen-
sitive to variations in the sampling array randomness, further highlighting its reliability 
and consistent performance. 

 

Figure 8. A comparison of the normalized coefficients in CWF-SONAH, CWF-OMP and PSWF-OMP
at 500 Hz and 1000 Hz.



Sensors 2023, 23, 8312 14 of 22

3.2. Effect of Array Configurations

To examine the influence of sampling array randomness on the reconstruction results,
a total of 30 different sampling array configurations are utilized. Each configuration consists
of 50 sampling points randomly selected from the original 625 measurements. The obtained
results, as shown in Figure 9, reveal that the mean reconstruction error achieved by PSWF-
OMP is 5.5% at 500 Hz and 4.3% at 1000 Hz. In contrast, the mean reconstruction error
attained by CWF-OMP is significantly higher, reaching 13.7% at 500 Hz and 13.5% at
1000 Hz. The mean reconstruction error attained by CWF-SONAH is 15.5% at 500 Hz and
5.3% at 1000 Hz. Additionally, it is worth noting that the reconstruction errors obtained by
PSWF-OMP exhibit slighter fluctuations across different sampling array configurations at
both frequencies, while CWF-OMP and CWF-SONAH show dramatic fluctuations. This
observation suggests that PSWF-OMP is more robust and less sensitive to variations in the
sampling array randomness, further highlighting its reliability and consistent performance.
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3.3. Effect of Sampling Numbers

In this subsection, we analyze the impact of the number of sampling points on the
reconstruction results by CWF-SONAH, CWF-OMP and PSWF-OMP at frequencies of
500 Hz and 1000 Hz. The sampling numbers range from 50 to 625. For a fixed number
of sampling points, 10 different configurations of the sampling array are evaluated. As a
result, the mean reconstruction error can be derived for assessment. Additionally, error bars
are used to evaluate the robustness of the reconstruction methods to different sampling
array configurations.

As depicted in Figure 10, when the number of measurement points increases, the
reconstruction errors obtained through the three algorithms exhibit a steady decrease trend.
At the same time, the fluctuations in reconstruction errors become less prominent with
increasing measurement points. Moreover, the error curves for PSWF-OMP, CWF-OMP
and CWF-SONAH tend to converge at a high sampling number at both frequencies. This
suggests that the sound field information may be recorded sufficiently at high sampling
numbers, enabling a good approximation with a large number of wave functions. Therefore,
the reconstruction accuracy can be enhanced and converge to the limit level. However,
at low sampling numbers, the reconstruction errors produced by CWF-OMP and CWF-
SONAH exhibit significant fluctuations and consistently remain at a high level. Specifically,
the maximum reconstruction errors for CWF-OMP are nearly 30% at 500 Hz and approxi-
mately 35% at 1000 Hz. It seems that CWF-SOANH is rather sensitive to the measurement
numbers since the maximum reconstruction errors are larger than 60% at both frequencies.
In contrast, the mean errors obtained using PSWF-OMP remain below 10% across the
entire range of sampling numbers at both frequencies. This implies that PSWF-OMP is less
sensitive to the sampling numbers.
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Figure 10. Reconstruction errors of CWF-SONAH, CWF-OMP and PSWF-OMP with respect to
line-array monopoles under different sampling numbers. (a) 500 Hz, (b) 1000 Hz.

To explain the sensitivity of PSWF-OMP versus the sampling numbers, Figure 11
presents the coefficient sparsity changes in PSWF-OMP and CWF-OMP. In fact, sparsity
refers to the number of wave functions employed to approximate the radiated sound field.
It can be seen that the higher sampling numbers enable more cylindrical wave functions
incorporated to model the radiated sound field, which can reduce the reconstruction errors
at both frequencies (see Figure 9). This indicates that the performance of CWF-OMP is easily
influenced by the sampling numbers, necessitating a greater number of wave functions to
achieve higher reconstruction accuracy. In contrast, the coefficient sparsities in PSWF-OMP
exhibit fewer changes with respect to sampling numbers, demonstrating a robust capability
of PSWFs in representing the radiated sound field. In other words, the implementation of
PSWF-OMP can significantly reduce the sampling requirements.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 11. The sparsity of PSWF-OMP and CWF-OMP with respect to line-array monopoles under 
different sampling numbers. (a) 500 Hz, (b) 1000 Hz. 

3.4. The Behavior across a Wide Frequency Range 
Figure 12 illustrates the reconstruction errors obtained through CWF-SONAH, CWF-

OMP and PSWF-OMP over a frequency range of 50~1000 Hz. The simulations utilized 50 
sparse sampling points. To assess the impact of sampling array randomness, 10 different 
configurations of the sampling array were employed. The mean reconstruction errors and 
error bars were calculated to evaluate the performance of the reconstruction methods at 
each frequency. The results demonstrate that the mean reconstruction errors of PSWF-
OMP consistently remain below 12% across the entire frequency range. Meanwhile, the 
mean reconstruction errors of CWF-OMP range from 10% to 28%, consistently higher than 
those of PSWF-OMP, except at 750 Hz. This exception may suggest that both PSWF-OMP 
and CWF-OMP exhibit similar representation sparsity for the interference pattern on the 
hologram surface at 750 Hz. The mean reconstruction errors of CWF-SONAH exhibit sig-
nificant fluctuations, ranging from 5% to 23%. The comparison of the error bars indicates 
that the randomized sampling array has minimal impact on the reconstructed results of 
PSWF-OMP across a wide frequency range. Overall, the low level of mean reconstruction 
errors and the small error bars can provide strong evidence for the frequency robustness 
of the PSWF-OMP. 

 
Figure 12. Reconstruction errors of CWF-SONAH, CWF-OMP and PSWF-OMP versus frequency 
with 50 sampling points. 

Time complexity is another important indicator for evaluating different reconstruc-
tion algorithms. The calculation time for 20 frequencies in Figure 12 using MATLAB 
2022(a) was 1.41 s for CWF-SONAH, 0.97 s for CWF-OMP and 0.95 s for PSWF-OMP. The 
calculations were performed on a ThinkStation P300 manufactured by Lenovo in China, 
and only the time spent for regularizations and sound field reconstructions was included. 
Obviously, PSWF-OMP is the most efficient method. In other words, the proposed method 
has the best computational efficiency for the elongated source model. 

Figure 11. The sparsity of PSWF-OMP and CWF-OMP with respect to line-array monopoles under
different sampling numbers. (a) 500 Hz, (b) 1000 Hz.

3.4. The Behavior across a Wide Frequency Range

Figure 12 illustrates the reconstruction errors obtained through CWF-SONAH, CWF-
OMP and PSWF-OMP over a frequency range of 50~1000 Hz. The simulations utilized
50 sparse sampling points. To assess the impact of sampling array randomness, 10 different
configurations of the sampling array were employed. The mean reconstruction errors and
error bars were calculated to evaluate the performance of the reconstruction methods at
each frequency. The results demonstrate that the mean reconstruction errors of PSWF-
OMP consistently remain below 12% across the entire frequency range. Meanwhile, the
mean reconstruction errors of CWF-OMP range from 10% to 28%, consistently higher than
those of PSWF-OMP, except at 750 Hz. This exception may suggest that both PSWF-OMP
and CWF-OMP exhibit similar representation sparsity for the interference pattern on the
hologram surface at 750 Hz. The mean reconstruction errors of CWF-SONAH exhibit
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significant fluctuations, ranging from 5% to 23%. The comparison of the error bars indicates
that the randomized sampling array has minimal impact on the reconstructed results of
PSWF-OMP across a wide frequency range. Overall, the low level of mean reconstruction
errors and the small error bars can provide strong evidence for the frequency robustness of
the PSWF-OMP.
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with 50 sampling points.

Time complexity is another important indicator for evaluating different reconstruction
algorithms. The calculation time for 20 frequencies in Figure 12 using MATLAB 2022(a) was
1.41 s for CWF-SONAH, 0.97 s for CWF-OMP and 0.95 s for PSWF-OMP. The calculations
were performed on a ThinkStation P300 manufactured by Lenovo in China, and only the
time spent for regularizations and sound field reconstructions was included. Obviously,
PSWF-OMP is the most efficient method. In other words, the proposed method has the best
computational efficiency for the elongated source model.

4. Experiment

To further examine the feasibility of the proposed method, an experiment was con-
ducted in an anechoic chamber. The experimental setup is depicted in Figure 13. Two
Bluetooth loudspeakers with dimensions of 0.105× 0.105× 0.184 m were used as the sound
sources. They were positioned at coordinates (0, 0, 0.175) m and (0, 0, −0.175) m to simulate
a virtual elongated sound source extending along the z-direction. The origin of the Carte-
sian coordinate system was set at the midpoint between the two loudspeakers. Sinusoidal
signals with frequencies ranging from 100 to 1000 Hz and an interval of 100 Hz were
generated by a smartphone to drive the two loudspeakers (100 Hz is replaced by 150 Hz
due to the mechanical resonance). Both loudspeakers were driven with the same amplitude
and phase. The hologram surface and reconstruction surface were located at x = 0.2 m
and x = 0.1 m, respectively. A planar array consisting of 8× 8 microphones was used to
measure the sound pressures on both the hologram surface and reconstruction surface. By
sequential scanning, four patch measurements were integrated to expand the measuring
area with the help of a fixed reference microphone. Finally, a total of 16× 16 = 256 grid
points were measured on the hologram surface and reconstruction surface with an identical
dimension of 0.75× 0.75 m2 and a uniform spatial interval of 0.05 m.

In our experiment, the hologram aperture was sufficiently large compared to the size of
the virtual elongated sound source, and the microphone spacing was sufficiently small com-
pared to half of the smallest wavelength across the frequency range of 100–1000 Hz. To val-
idate the proposed method within a sparse framework, we randomly selected 80 sampling
points from the hologram surface. The pressures at these sparse sampling points were
utilized to reconstruct the pressures on the reconstruction surface. The measured pressures
on the reconstruction surface are regarded as benchmark values. By comparing the recon-
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structed pressures with the benchmark values, we were able to evaluate the performance
of different reconstruction methods.
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Figures 14 and 15 compare the reconstructed pressures obtained from CWF-SONAH,
CWF-OMP and PSWF-OMP with the benchmark values at 500 Hz and 1000 Hz on the
reconstruction surface. It is clear that both CWF-SONAH and PSWF-OMP exhibit similar
reconstruction patterns to the benchmark pressures at 500 Hz. Moreover, the reconstructed
patterns appear smoother than the measured pressure in Figure 14d, indicating a noise
suppression effect in PSWF-OMP. Upon evaluating the reconstruction errors at 500 Hz, we
find a 21.2% error for PSWF-OMP, a 17.5% error for CWF-SONAH and a 26.5% error for
CWF-OMP. However, at 1000 Hz, the reconstruction errors significantly increase to 33.4%
for PSWF-OMP, 41.6% for CWF-SONAH and 48.7% for CWF-OMP. Notably, the increase
in error for PSWF-OMP is smaller compared to those of CWF-OMP and CWF-SONAH.
Furthermore, the reconstructed patterns of CWF-OMP and CWF-SONAH at 1000 Hz
display noticeable distortions near the edges, suggesting that utilizing only 80 sampling
points may not be sufficient. Overall, PSWF-OMP demonstrates low-level reconstruction
errors at both frequencies, indicating the superior performance of the proposed method
compared to CWF-OMP and CWF-SONAH when the number of sampling points is limited.

Figure 16 displays the reconstruction errors of CWF-SONAH, CWF-OMP and PSWF-
OMP for different sampling numbers. The mean reconstruction errors and error bars are
calculated based on ten randomly selected sparse arrays with the same sampling number.
It is evident that the reconstruction errors decrease as the sampling number increases
for both methods at 500 Hz and 1000 Hz. Across the entire range of sampling numbers,
PSWF-OMP consistently exhibits lower mean reconstruction errors and smaller error bars
compared to CWF-OMP. This indicates that PSWF-OMP is less sensitive to changes in sam-
pling numbers. Though CWF-SONAH outperforms PSWF-OMP in terms of reconstruction
accuracy at several intermediate sampling numbers at 500 Hz, the reconstruction errors
escalate significantly when the number of measurements decreases below 50. Figure 17
provides the coefficient sparsities of PSWF-OMP and CWF-OMP for different sampling
numbers. Consistent with the simulation results, the coefficient sparsities in PSWF-OMP
show minimal changes with respect to the sampling numbers at 500 Hz, highlighting its
lower requirement for sampling numbers. However, at 1000 Hz, there is an observable
increasing trend in the coefficient sparsities of PSWF-OMP, although they remain consis-
tently lower than those of CWF-OMP. This phenomenon may be attributed to the complex
sound field structure generated by the two loudspeakers. As a result, more wave functions
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are needed to approximate the radiated sound field. Overall, PSWF-OMP demonstrates
greater robustness in reconstructing the radiated sound field compared to CWF-OMP, as
evidenced by its lower reconstruction errors and smaller sensitivity to sampling numbers.
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Figure 18 illustrates the reconstruction errors of CWF-SONAH, CWF-OMP and PSWF-
OMP versus frequency with 80 sampling points. It is evident that the reconstruction errors
of PSWF-OMP remain below 30% in the frequency range of 100 to 700 Hz, which is lower
than those of CWF-OMP and CWF-SONAH. However, when the frequencies exceed 800 Hz,
the differences in error between CWF-OMP and PSWF-OMP become less prominent, and
both methods achieve comparable results. The reason for this observation may lie in the fact
that using only two loudspeakers is not sufficient to construct a featured elongated sound
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source model, especially at high frequencies. As a result, the advantages of PSWF-OMP for
elongated source models cannot be fully displayed. At high frequencies, the radiated sound
field has a strong interference effect, requiring higher wavenumber components of both
PSWFs and CWFs to approximate the sound field (as shown in Figure 17b). In such cases,
the superior matching performance of PSWFs for elongated sound source models is not
prominently demonstrated. Overall, the PSWF-OMP demonstrates better reconstruction
results across the entire frequency range, particularly at low frequencies.
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5. Conclusions

A sound field reconstruction method based on prolate spheroidal wave superposi-
tion and sparse regularization is suggested to reconstruct the radiated sound field of an
elongated sound source model. The proposed method represents the radiated sound field
as a linear superposition of the prolate spheroidal wave functions (PSWFs) and uses the
orthogonal matching pursuit (OMP) algorithm to find the sparse coefficient solutions via
a small number of measurements. In the numerical simulations, A comparison is con-
ducted between the proposed method and the traditional SONAH algorithm, emphasizing
the advantages of the former in handling elongated sound sources when the number of
measurements is insufficient. Moreover, the proposed method is compared to a method
that integrates cylindrical wave representation with the OMP algorithm to illustrate the
compatibility of PSWFs with elongated sound sources. The results show that the proposed
method can realize better reconstruction accuracy with a reduced number of measurement
points. The robustness of the proposed method is validated by the smaller reconstruction
errors with respect to a wide frequency range, different array configurations and a broad
range of sampling numbers. The experimental results align with the simulation results,
further validating the feasibility and reliability of the method.

The proposed method still has limitations regarding the calculation of PSWFs. This
calculation is dependent on the parameter c = kd/2 = πd/λ. Furthermore, when the
interfocal distance d is set too large or the frequency is too high, the calculation precision of
PSWFs may decrease, thereby affecting the accuracy of the reconstructed sound field.

In future studies, the application of PSWFs will be extended to more complex elongated
source models, such as real unmanned underwater vehicles. Furthermore, alternative
sparse regularization techniques will be explored and integrated with PSWFs to assess
their performance. In addition, the configurations of PSWFs, such as the interfocal distance,
will be further investigated to match the sources. A suitable geometry configuration of the
hologram surface and the arrangement of measurement points will also be explored.
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Abbreviations
The following abbreviations are used in this manuscript:

NAH Near-field Acoustic Holography
DFT-NAH Discrete Fourier Transform-based NAH
IBEM Inverse Boundary Element Method
SONAH Statistically Optimized Near-Field Acoustic Holography
HELS Helmholtz Equation Least Squares
ESM Equivalent Source Method
WBH Fast Wideband Holography
CS Compressing Sensing
PSWFs Prolate Spheroidal Wave Functions
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CWFs Cylindrical Wave Functions
OMP Orthogonal Matching Pursuit
GCV Generalized Cross Validation
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
SPLs Sound Pressure Levels
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