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Abstract: Resistance bands are widely used nowadays to enhance muscle strength due to their
high portability, but the relationship between resistance band workouts and conventional dumbbell
weight training is still unclear. Thus, this study suggests a convolutional neural network model
that identifies the type of band workout and counts the number of repetitions and a regression
model that deduces the band force that corresponds to the one-repetition maximum. Thirty subjects
performed five different exercises using resistance bands and dumbbells. Joint movements during
each exercise were collected using a camera and an inertial measurement unit. By using different
types of input data, several models were created and compared. As a result, the accuracy of the
convolutional neural network model using inertial measurement units and joint position is 98.83%.
The mean absolute error of the repetition counting algorithm ranges from 0.88 (seated row) to 3.21
(overhead triceps extension). Lastly, the values of adjusted r-square for the 5 exercises are 0.8415
(chest press), 0.9202 (shoulder press), 0.8429 (seated row), 0.8778 (biceps curl), and 0.9232 (overhead
triceps extension). In conclusion, the model using 10-channel inertial measurement unit data and
joint position data has the best accuracy. However, the model needs to improve the inaccuracies
resulting from non-linear movements and one-time performance.

Keywords: one-repetition maximum; resistance band; weight training; convolution neural network;
health; fitness; prediction

1. Introduction

Increasing muscle strength is important for improving physical abilities such as jump-
ing, sprinting, and reorientation [1]. Assessment of muscle strength can be effective
for monitoring health conditions [1,2], evaluating physical imbalances, and preventing
injuries [3]. Muscular strength can be assessed in various ways. Common laboratory
techniques are the manual muscle test [4–6], isokinetic dynamometry [7–9], and isometric
dynamometry [10–12]. The manual muscle test is widely used because it is fast and inex-
pensive, but it delivers low accuracy and sensitivity [13]. A dynamometer gives accurate
measurements [14,15] but is expensive, limited to laboratory environments, and applica-
ble only to single-joint targets [16]. In general purpose assessments, the one-repetition
maximum (1−RM) of a resistive exercise using typical weighted objects, such as plates,
dumbbells, and barbells, has become the gold standard [17,18]. Strength assessment using
resistance bands (as alternatives to weighted objects) also delivers high validity and relia-
bility, like those of the optimal standard [19]. This assessment is measured as the force of
the bands [20].
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Resistance bands have traditionally been used in rehabilitation exercises but have
recently been used for muscle strength enhancement. Muscular exercise using resistance
bands can enhance motor ability and muscle growth similarly to traditional resistance
exercises [21,22]. In addition, the increasing trend of contactless training has driven the
increasing preference for highly portable, low-cost equipment such as resistance bands [23].
The resistance band market is currently estimated at $1091.1 million, and its compound
annual growth rate is expected to exceed 9.6% by 2028 [24]. Research on muscular exercises
using resistance bands with various sensors, such as smart wristbands, inertial measure-
ment unit (IMU) sensors, and camera-based motion capture, is currently ongoing [25,26].

At present, muscular strength assessments using resistance bands rely on the maxi-
mum exerted force, which is limited to the band motion. The relationship between band
force (BF) and RM, the gold-standard evaluation of muscular strength, remains unclear. To
clarify this relationship, the present research estimates 1−RM values from the correlation
between band force data and dumbbell-based 1−RM data.

The parameters of the traditional 1−RM equation are type of exercise, number of
repetitions, exercise weight, and exercise speed [27–29]. To measure parameters, various
types of sensors are used. The most commonly used sensor is the IMU sensor, which
achieves an exercise classification accuracy of 95% or higher [30–33]. Joint position data is
also used for exercise type recognition [34]. These sensors are used for not only exercise
type recognition but also for counting the repetitions of the exercise [32,33]. Due to sensor-
based research, various exercise feature data can be quantitatively measured and analyzed.
Recently, sensor-based studies have been mainly conducted on a single exercise, and further
studies on utilization plans are needed.

In this research, we propose and verify the regression equations between band force
and 1−RM. First, the exercise types and their frequencies are identified by recording and
analyzing IMU sensor data (quaternion, gyro, and acceleration data). The joint position
estimation data are then converted into open-source software. Finally, the relationship
between the BF and 1−RM data is expressed as a polynomial equation.

2. Materials and Methods
2.1. Subjects

Thirty healthy participants participated in this study. Thirteen men and seventeen
women aged between nineteen and twenty-nine were randomly recruited through public
advertisements. The inclusion criterion was to have less than three months of exercise
experience. The exclusion criterion was muscle strength (1−RM) exceeding the maximum
weight of the dumbbell (24 kg). Prior to the experiment, all participants were informed
of the purpose, background, precautions, and compensation of the experiment through
consent and a description of the experimental protocol. This agreement was approved by
the IRB of Handong Global University. It also complied with the Declaration of Helsinki
and was approved by the Local Ethical Committee (2022-HGUR017).

2.2. Experimental Exercise

Each subject performed a variety of upper-extremity muscular exercises: chest presses
(Ex1), shoulder presses (Ex2), seated rows (Ex3), biceps curls (Ex4), and overhead triceps
extensions (Ex5) targeting the chest, shoulder, back, biceps, and triceps, respectively. During
each exercise, the break time was recorded as the non-exercise class (Ex6) for the artificial
intelligence (AI) classification.

Before the experiment, the subjects were trained on exercise posture and practiced with
a 2 kg dumbbell. To reduce the individual differences between rounds and sets, stretching
was performed before each exercise.

2.3. Experimental Setup

All five exercises (Ex1–Ex5) were performed using dumbbells and bands in a sitting
position. The dumbbells were Melkin weight-controlled dumbbells (25 kg, Melkin Sports,
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Gwangjin-gu, Seoul, Korea), on which the weight can be graduated from 2.5 kg to 24 kg in
15 stages. The resistance bands (TheraBand, Performance Health, Akron, OH, USA) were
1.47 m long and available in seven graduations of BF. In this research, all bands were folded
in half and used as doubles. The ends of two bands were connected to exercise handles
to minimize the contact points with the user’s body. To ensure accurate movements, all
exercises were performed on an exercise bench with an adjustable backrest.

The experimental data were recorded with RGB cameras and IMU sensors. The RGB
camera (STREAMCAM, Logitech, Seoul, Korea) supports up to 1080-pixel (p) resolution,
and its frame rate is 60 frames per second (fps). In this experiment, the video was recorded
at 1080 p and 30 fps. The camera was located 1.5 m in front of the experimenter at a height of
1.2 m to capture the subjects during the exercises. The IMU sensor consists of a transmitter
(EBIMU24GV5, E2BOX, Hanam-si, Gyeonggi-do, Korea) and a receiver (EBRCV24GV5,
E2BOX, Hanam-si, Gyeonggi-do, Korea), which can record quaternion, gyro, acceleration,
and geomagnetic data at rates of up to 1000 fps. In this experiment, the quaternion, gyro,
and acceleration data were recorded at 30 fps. To obtain accurately recorded data while
minimally interfering with the user, the receiver of the IMU sensor was installed on an
exercise band wound around the user’s left wrist. The transmitter of IMU was attached to
the outside of the wrist. The receiver was installed at a height of 1.5 m on the left side of
the user’s sitting position, closest to the transmitter because any obstruction between the
transmitter and receiver can cause data loss and interference. (Figure 1).
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Figure 1. Schematic of the experimental environment. An RGB camera is located 1.5 m in front of the
subject at a height of 1.2 m. An inertial measurement unit (IMU) sensor is attached to the subject’s
left wrist. The resistance bands are folded in half and used as double layers.

2.4. Experimental Procedure
2.4.1. Dumbbell 1−RM Estimation

The exercise weight at which the 1−RM could be estimated from fewer than 10 exercise
measurements was identified in a preliminary experiment [28,29]. Guided by the experi-
menter, the subjects were trained on the posture and method of exercise and familiarized
themselves with the exercise using the lowest-weight dumbbell (2kg).

After one dumbbell 1−RM estimation experiment, the dumbbell weight was selected
by calculating the 1−RM weight based on each subject’s weight and gender with Table 1 [35].
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Each subject then completed one set of exercises until the subject could no longer perform
the exercise.

Table 1. Bodyweight ratio by sex and exercise type. [35].

Exercise Male Female

Chest press (Ex1) ×0.20 ×0.10
Shoulder press (Ex2) ×0.15 ×0.10

Seated row (Ex3) ×0.20 ×0.10
Biceps curl (Ex4) ×0.10 ×0.05

Overhead triceps extension (Ex5) ×0.05 ×0.05

Breaks of 2–3 and 3–5 minutes were provided between the exercise sets and exercises,
respectively. The experimental days were spaced by 3–4 days to allow recovery of damaged
muscles. When the subjects had completed 11 or more exercises, they were assigned a new
set of the same exercise with an increased weight. The same exercise was repeated until the
number of exercises reached 10 or fewer. When the number of exercises fell below ten, the
weight and number of exercises were recorded (Figure 2a).

Sensors 2023, 23, 1003 4 of 26 
 

 

exercise measurements was identified in a preliminary experiment [28,29]. Guided by the 
experimenter, the subjects were trained on the posture and method of exercise and famil-
iarized themselves with the exercise using the lowest-weight dumbbell (2kg). 

After one dumbbell 1−RM estimation experiment, the dumbbell weight was selected 
by calculating the 1−RM weight based on each subject's weight and gender with Table 1 
[35]. Each subject then completed one set of exercises until the subject could no longer 
perform the exercise. 

Table 1. Bodyweight ratio by sex and exercise type. [35]. 

Exercise Male Female 
Chest press (Ex1) ×0.20 ×0.10 

Shoulder press (Ex2) ×0.15 ×0.10 
Seated row (Ex3) ×0.20 ×0.10 
Biceps curl (Ex4) ×0.10 ×0.05 

Overhead triceps extension (Ex5) ×0.05 ×0.05 

Breaks of 2–3 and 3–5 minutes were provided between the exercise sets and exercises, 
respectively. The experimental days were spaced by 3–4 days to allow recovery of dam-
aged muscles. When the subjects had completed 11 or more exercises, they were assigned 
a new set of the same exercise with an increased weight. The same exercise was repeated 
until the number of exercises reached 10 or fewer. When the number of exercises fell below 
ten, the weight and number of exercises were recorded (Figure 2a). 

 

 
(a) (b) 

Figure 2. Flowchart of (a) dumbbell 1−RM estimation and (b) band force. 

2.4.2. Band Force Test 
Before the band force test, a reference length was needed for each exercise. The ref-

erence length is the length between the end of the fingertips and the band fixing part. It 
was measured using a tape measure while maintaining the maximum range of motion 
posture for each exercise. The length of the band was reduced to half the reference length 
(ensuring a tensile rate of 100% in the corresponding posture) and was folded into a 

Figure 2. Flowchart of (a) dumbbell 1−RM estimation and (b) band force.

2.4.2. Band Force Test

Before the band force test, a reference length was needed for each exercise. The
reference length is the length between the end of the fingertips and the band fixing part.
It was measured using a tape measure while maintaining the maximum range of motion
posture for each exercise. The length of the band was reduced to half the reference length
(ensuring a tensile rate of 100% in the corresponding posture) and was folded into a double
layer. Based on the manufacturer’s specification, a band with the force most similar to
the dumbbell-based 1−RM estimated force was selected as the starting weight of the
experiment [20,36]. Up to three bands of different colors were used in layers.
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The band force test was conducted twice. In one experiment, two sets were performed
for each of the five types of exercise. In each set, the weight of all exercises was increased
from that of the previous set unless the repetition number of the previous set was zero (in
such cases, the weight of the band was lowered). One set of an exercise was repeated until
the subject could no longer complete the exercise. The color and repetition of the exercises
were recorded up to 20 times, even if the number of repetitions exceeded 20 (Figure 2b).

As mentioned above, the exercise sets were separated by 2–3 min and the exercises
were separated by 3–5 min. The experimental days were spaced three to four days apart to
allow for recovery of the damaged muscles.

2.5. Data Acquisition

The data were measured in two tests. In the dumbbell 1−RM estimation test, the
experimenter recorded the weight and number of movements of the subject’s dumbbell
during the exercises. In the band force test, the experimenter manually recorded the band
color and number of exercises, while the IMU sensor data and RGB image data were
recorded during each set.

2.5.1. Dumbbell 1−RM Estimation

During the dumbbell exercises, the mass of the dumbbell was recorded, and the 1−RM
was estimated using the traditional load-repetition relationship [37]. During the band
exercises, the band’s color was recorded and replaced with the corresponding BF. Regarding
the repetition of exercises, if the posture was inaccurate, the repetition was not counted.

2.5.2. IMU sensor

The receiver of the IMU sensor was hardwired to the experimental laptop via a USB-A
type connector. The data were measured after synchronizing the computer time with the
RGB camera. The IMU sensor measured the quaternion, gyro, and acceleration data at a
frame rate of 30 fps.

The quaternion data consist of four values (x, y, z: rotation axis values and w: rotation
angle values) in a specified order: z, y, x, and w, recorded up to the fourth decimal place.
The gyro data record the angular velocities along the x, y, and z axes in degrees per second
(DPS) up to the first digit below the decimal point. Meanwhile, the acceleration data (x, y, z
axis) report the gravitational acceleration g (in units, where 1 denotes 9.81 m/s2) up to the
third decimal place. The representative data of quaternion, gyro, acceleration are presented
in Figure 3.
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2.5.3. RGB Camera and Pose Estimation

The RGB camera was hardwired to the experimental laptop through a USB−A type
connector, and the data were measured after synchronizing the time with that of the IMU
sensor. The RGB videos were recorded at an image quality of 1080 p and a frame rate
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of 30 fps. Each RGB video was converted into joint position estimation data through an
open-source program prior to use (Figure 4).
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The present research adopted OpenPose joint positioning software [38,39]. OpenPose
outputs the estimations of systemic joint positions in two main formats: Common Objects
in Context (COCO) and Body_25. In this research, the Body_25 model was used because
the Body_25 model presents more joint position data. Figure 5 shows an example of x and
y positions of 25 joints estimated by the Body_25.
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2.6. Data Processing
2.6.1. Statistical Analysis

Paired t-tests and regression analyses were performed using IBM SPSS Statistics
21 (IBM Corp, New York, NY, USA) and R software version 4.2.2 (R Project for Statistical
Computing, Vienna, Australia). The relationship between the dumbbell weight and BF
was also determined through a statistical analysis. To verify that BF and RM are the same
indicators, a corresponding sample t-test was performed between the 1−RM data and
the BF closest to the 1−RM of each exercise type. If the test result was insignificant, the
number of BF exercises was checked, and if it exceeded one, BF and RM were judged as
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different indicators. The relationship between the two indicators was then determined with
a regression analysis.

In the regression analyses, each subject’s 1−RM estimate was assumed as the dependent
variable, and two separate datasets were used as the independent variables. Among the four
measured datasets, the two datasets with stronger BFs were used. Of the two datasets, the
dataset with a lighter BF was used as dataset 1, and the dataset with a heavier BF was used as
dataset 2. The BF (w), repetition (r), square of BF (w2), square of repetition (r2), and interaction
between BF and repetition (r : w) of each dataset were used as variables (Table 2).

Table 2. Definition of variables.

Definition of Variables Dataset 1 Dataset 2

BF (w) w1 w2

Repetition (r) r1 r2

Square of BF (w2) w2
1 w2

2

Square of repetition (r2) r2
1 r2

2

Interaction between BF and repetition (r : w) r1 : w1 r2 : w2

2.6.2. Convolutional Neural Network (CNN) Architecture

Exercises were classified using an exercise classification algorithm based on a convolu-
tion neural network. The algorithm inputs the quaternion (xq, yq, zq, wq), gyro (xg, yg, zg),
and acceleration (xa, ya, za) data of the IMU sensor and the estimated x and y coordinates of
25 major joints based on the Body_25 model. When the estimated joint positions became
occluded, that is, a body part became covered by an opaque object while recording the three-
dimensional space as a two-dimensional image or photograph, the estimation was omitted.
To minimize the effect of occlusion, we filtered the joint position estimation data through
a 15-window-sized moving median filter (MMF). When using the MMF, we included one
datum and its peripheral values, sorted the values in order, and took the intermediate value
to cope with occlusions occurring within a short time (≤0.25 s).

The joint position estimation data included the coordinates of the joints extracted
from the RGB images with OpenPose. As occurs in general image data, location bias
may cause misclassifications of the model. In typical deep-learning image processing, the
model improves its performance by learning various data. Considering the numerical
characteristics of the joint position information, the model in this study instead removes the
biased offset data through position normalization, which expresses the location data of the
other joints ([xi, yi], i ∈ {0, 1, . . . , 24}) in coordinates [x′ i, y′ i], i ∈ {0, 1, . . . , 25} relative
to the coordinates of the neck ([x1, y1]). Position normalization removes the local bias in
the RGB data and retains only the relative information between joints:

x′ i = xi − x1, i ∈ {0, 1, . . . , 25} (1)

y′ i = yi − y1, i ∈ {0, 1, . . . , 25} (2)

An overlapping window is used for separating and analyzing parts of the data within
the specified window size and is universally applied to data with varying lengths. In this
paper, the window size and overlapping rate were set to 60 and 0.9, respectively. The data
for learning were separated into 2-s chunks moved in units of 0.2 s. This separation was
expected to achieve exercise classification for some rather than all the data.

To classify the motion, the CNN model was fed with the quaternion, gyro, acceleration,
and joint position data measured at the same time (Figure 6). The models were trained for
four types of input data: all IMU sensor data and joint position data (N = 60), IMU sensor
data (N = 10), joint position data (N = 50), and the upper body joint position data excluding
the head and lower body data (N = 16). The input data were sized N × 60 × 1 and the
size of the first convolutional layer was changed accordingly. After extracting the features
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between the IMU sensors and location information through the second convolutional layer,
the features for motion classification were found through a fully connected layer (Figure 7).
Finally, the exercises were classified through SoftMax. The six classification categories
(labeled Ex1–Ex6) were chest Press, shoulder press, seated row, biceps curl, overhead triceps
extension, and non-exercise.
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Eighty percent of the learning data generated by the overlap window were selected as the
learning data; the remaining twenty percent of the data were reserved for model verification.
To find the appropriate model and input data, we computed the recalls, precisions, and F1
scores of the four input data models and visualized them in confusion matrices.

2.6.3. Repetition-Counting Algorithm

To count repetitions of exercises, we proposed an algorithm based on the position data
of the hand for five types of exercise. The counting algorithm analyzes the periodicity of
the hand position for each exercise to count the repetition. Considering the characteristics
of exercise, four types of exercise except chest press estimate the repetition based on the
y-coordinate of the left hand, and chest press estimates the repetition of an exercise based
on the x-coordinate of the left hand.

A preprocessing and filtering process was conducted for input data. Position normal-
ization (Equations (1) and (2)) was performed. To unify the distance and physical conditions
between the camera and the user, scale normalization is conducted. Scale normalization
starts by calculating the length of the torso (ltorso) as the Euclidean distance between the
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neck
([

x′1, y′1
])

and the hip ([x′8, y′8]). Then, we divide the relative coordinates by the length
of the torso and multiply by 100 to unify the scale.

ltorso =
√
(x′ i − x8)

2 − (y′ i − y8)
2 (3)

xi,ScaleNormalized =
x′ i

ltorso
× 100, i ∈ {0, 1, . . . , 25} (4)

yi,ScaleNormalized =
y′ i

ltorso
× 100, i ∈ {0, 1, . . . , 25} (5)

The influence of occlusion is minimized by using the intermediate value filter used in
the CNN architecture, and the DC offset is removed by subtracting the average value of the
input data.

3. Results
3.1. RM Regression Equation
3.1.1. Comparison between Dumbbell RM and BF

The 1−RM estimates were numerically compared against the BFs used in the experi-
ment. Table 3 shows the results of a paired t-test for a subject’s 1−RM value and the BF
of each exercise. The p-values of Ex1 to 4 were 0.5 or above, but a significant difference
appeared for Ex5 (p < 0.001, CI: −5.52 to −3.44). Table 4 shows the average number of
exercise repetitions.

Table 3. Paired t-test for band force and 1−RM.

Mean Standard
Deviation Standard Error Mean

95% Confidence Significance
(2-Tailed)Lower Upper

BF1–RM1 0.34445 1.04577 0.19093 –0.04605 0.73495 0.082
BF1–RM2 0.16000 0.67361 0.12298 –0.09153 0.41153 0.204
BF1–RM3 –0.03757 0.67295 0.12286 –0.28885 0.21372 0.762
BF1–RM4 –0.13733 0.61292 0.11190 –0.36620 0.09154 0.230
BF1–RM5 –4.48081 2.77822 0.50723 –5.51821 –3.44340 0.000 *

Based on the estimated marginal means. * The mean difference is significant at the 0.05 level.

Table 4. Statistical analysis of exercise repetitions (reps).

Reps of Ex1 Reps of Ex2 Reps of Ex3 Reps of Ex4 Reps of Ex5

N
Available 30 30 30 30 30

Not available 0 0 0 0 0
Mean 16.87 7.40 17.53 15.17 8.83

Standard deviation 4.125 3.892 4.108 5.160 4.639
Sum 506 222 526 455 265

3.1.2. Analysis of Chest Press Regression

The regression equation was constructed with 10 terms (w1, r1, w2
1, r2

1, r1 : w1, w2, r2,
w2

2, r2
2, r2 : w2) representing the chest press 1−RM and two sets of BF and repetition. The

terms with high p-values were sequentially removed. Table A1 describes a model (Model 2)
in which the p-values are 0.05 or less for all terms other than the intercept, and the 2 flanking
models (Model 1 and Model 3). Model 1 has a 0.158 lower residual standard error and a
0.0175 higher adjusted R-squared error than Model 2 but uses 1 more term. Meanwhile,
Model 2 has a 0.286 lower residual standard error and a 0.03495 higher adjusted R-Squared
error than Model 3 but uses 1 more term than Model 3.

Figure A1 shows the goodness-of-fit results for the three models. The residuals versus
fitted plot of Model 3 is spread uniformly around the zero line, and the bias is reduced
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from that of Model 1. Meanwhile, the normal Q–Q graphs of Model 3 and Model 1 are not
significantly different, and their data points are located closer to the line than in the graph
of Model 2. The scale-location plot and residuals versus leverage plots did not significantly
differ among the models. We concluded that Model 3 best describes the chest press 1−RM
because all parameters of the Model 3 polynomial were significantly significant, and the
number of terms was small.

3.1.3. Analysis of Shoulder Press Regression

The regression equation for the shoulder press data included ten terms representing
the shoulder press 1−RM and two sets of BF and repetition. Again, terms with a high
p-value were sequentially removed. Table A2 shows the regression results for Model 3, in
which the p-value is 0.05 or less for all terms except the intercept, along with Models 1 and
2. In Model 2, the residual standard error is higher than in Models 1 and 3 (by 0.041 and
0.01, respectively) and the adjusted R-squared error is lower than in Models 1 and 3 (by
0.0058 and 0.0015, respectively).

Figure A2 shows the goodness-of-fit results for the three models. The residuals versus
fitted plot of Model 3 is evenly spread around the zero line and there is no significant
difference among the plots of all models. In addition, although the data points in the normal
Q–Q plots of all models are clustered around the 1:1 line, the plot of Model 3 is clearly
superior to that of Model 1 and statistically comparable to that of Model 2. Meanwhile,
the scale-location and residuals versus leverage plots do not significantly differ among the
models. We concluded that Model 3 best describes the shoulder press 1−RM because all
parameters of the Model 3 polynomial are significant and the number of terms is small.

3.1.4. Regression Analysis of Seated Row

The regression equation for seated row included ten terms representing the seated
row 1−RM and two sets of BF and repetition. Terms with high p-values were sequentially
removed. Table A3 shows Model 1, in which the p-value is 0.05 or less for terms other than
the intercept, and Models 2 and 3 with additional terms removed. In Model 2, the residual
standard error is 0.203 higher than in Model 1 and 0.336 lower than in Model 3; meanwhile,
the adjusted R-squared error is 0.0259 lower than in Model 1 and 0.0478 higher than in
Model 3. Model 2 uses one more term than Models 1 and 3.

Figure A3 shows the goodness-of-fit results for the three seated row models. The residuals
versus fitted plot of Model 2 shows less bias from the fitted value than the Model 1 plot,
whereas that of Model 3 is uniformly spread around the zero line. In addition, the data points
in the normal Q–Q graph are located closer to the 1:1 line in Model 1 than in Models 2 and 3.
The scale-location graphs are not significantly different among the models but in the residuals
versus leverage plots, the points are located closer to the center in Model 3 than in the other
models. We selected Model 2 as the most valid equation for the seated row 1−RM instead of
Model 3. Although the goodness-of-fit result for Model 3 is better than that for Model 2, the
adjusted R-squared of Model 2 is much better than that of Model 3.

3.1.5. Regression Analysis of Biceps Curl

The regression equations for biceps curl included ten terms representing the biceps
curl 1−RM and two types of BF and repetition. Terms with a high p-value were sequentially
removed. Table A4 shows the regression results for Model 3 and the previous models
(Models 1 and 2), in which the p-value was 0.1 or less for terms other than the intercept. In
Model 2, the residual standard error is 0.2034 higher than in Model 1 and 0.022 lower than
in Model 3; meanwhile, the adjusted R-squared error is 0.0016 lower than in Model 1 and
0.0049 higher than in Model 3. Model 2 uses one more term than Models 1 and 3.

Figure A4 shows the goodness-of-fit results for the three biceps curl models. The
residuals versus fitted plots, scale-location plots, and residual versus leverage plots are not
significantly different among the models. The data points of the normal Q–Q plot of Model
2 are more closely clustered around the 1:1 line than those of the other models. We selected
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Model 3 as the most effective equation for the biceps curl 1−RM because it reduces the
number of parameters without significantly increasing the adjusted R-squared and residual
standard errors from those of Models 1 and 2.

3.1.6. Analysis of Overhead Triceps Extension Regression

The regression equation for overhead triceps extension included ten terms representing
the overhead triceps extension 1−RM, two types of BF, and repetitions. The terms with high p-
values were sequentially removed. Table A5 shows the regression results for Model 3 and the
previous models (Models 1 and 2) with p-values of 0.5 or less for terms other than the intercept.
In Model 2, the residual standard error is 0.0322 higher than in Model 1 and 0.092 lower than
in Model 3; meanwhile, the adjusted R-squared error is 0.0056 lower than in Model 1 and
0.0017 higher than in Model 3. Model 2 uses one more term than Models 1 and 3.

Figure A5 shows the goodness-of-fit results for the three triceps extension models. The
residuals versus fitted plots of Models 1 and 3 are spread out from the zero line, whereas
the residuals of Model 2 tend to decrease with an increasing fitted value. No significant
differences are observed in the normal Q–Q, scale-location, and residuals versus leverage
plots of the three models. We selected Model 3 as the most valid equation for the overhead
triceps extension 1−RM equation because it reduces the number of parameters without
significantly increasing the adjusted R-squared value and residual standard errors from
those of the other models.

3.2. Convolution Neural Networks

The performances of the CNN models fed with the input data were compared in terms
of their recall, precision, and F1-scores extracted from the corresponding confusion matrix.

3.2.1. IMU Input Model

When only the IMU sensor data were inputted into the CNN, the data size was
10 × 60 × 1 (10 datasets composed of 4 quaternion data, 3 gyro data, and 3 acceleration
data, each with a temporal length of 2 s). Table 5 gives the layer structure of the model
receiving the IMU data as input.

Table 5. Layers and number of parameters in the IMU input model.

Layer Output Shape Parameter

Conv 2D _1 (None, 10, 60, 32) 832
Max_pooling2D_1 (None, 5, 30, 32) 0

Conv 2D _2 (None, 5, 30, 64) 8256
Max_pooling2D_2 (None, 2, 15, 64) 0

Dropout_1 (None, 2, 15, 64) 0
Flatten (None, 1920) 0

Dense_1 (None, 1000) 1,921,000
Dropout_2 (None, 1000) 0

Dense_2 (None, 6) 6006

As shown in Table 6, the precision, recall, and F1 scores of all the exercise classifications
were 0.9 or higher.

Figure A6 shows the confusion matrix for this model. When the model received only
the IMU data, it tended to misclassify “Biceps curl” as “Seated Row” and “Non-exercise”
as “Chest Press”.
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Table 6. Precision, recall, and F1-scores of the IMU input model.

Input Data Type (Size) Exercise Precision Recall F1-Score

IMU: quaternion, gyro,
acceleration
(10× 60× 1)

Chest press 0.97385784 0.99923362 0.98638255

Shoulder press 0.99199688 0.99257812 0.99228742

Seated row 0.94417599 0.99946157 0.9710325

Biceps curl 0.99695321 0.92098914 0.95746682

Overhead triceps extension 0.99134948 0.98841794 0.98988154

Non-exercise 0.99252037 0.96032567 0.97615764

3.2.2. Joint Position Input Model

When only the estimated joint position data were inputted into the model, the inputted
data were sized 50 × 60 × 1 (50 data consisting of the x and y coordinates of the 25 joints,
each with a temporal length of 2 s). Table 7 gives the layer structure of the model receiving
the joint position data as input.

Table 7. Layers and number of parameters in the joint position input model.

Layer Output Shape Parameter

Conv 2D _1 (None, 50, 60, 32) 832
Max_pooling2D_1 (None, 25, 30, 32) 0

Conv 2D _2 (None, 25, 30, 64) 8256
Max_pooling2D_2 (None, 12, 15, 64) 0

Dropout_1 (None, 12, 15, 64) 0
Flatten (None, 11,520) 0

Dense_1 (None, 1000) 11,521,000
Dropout_2 (None, 1000) 0

Dense_2 (None, 6) 6006

As shown in Table 8, the precision, recall, and F1 scores of classifying all exercises in
this model were 0.95 or higher.

Table 8. Precision, recall, and F1-scores of the joint position input model.

Input Data Type (Size) Exercise Precision Recall F1-Score

Joint position
(50× 60× 1)

Chest press 0.99246873 0.99310257 0.99278555

Shoulder press 0.9978308 0.98828125 0.99303307

Seated row 0.98130469 0.99623099 0.98871151

Biceps curl 0.99528495 0.97607559 0.98558668

Overhead triceps extension 0.99270807 0.97289305 0.98270068

Non-exercise 0.9725975 0.98617214 0.97933778

Figure A7 shows the confusion matrix for this model. All exercise classes were properly
classified when the model received the joint positions as input data.

3.2.3. Upper Joint Position Input Model

When only the positions of the upper body joints were fed to the model, the input
data were sized 16 × 60 × 1 (16 data consisting of the x and y coordinates of the neck, left
(L) and right (R) shoulders, L and R elbows, L and R hands, and hip (center), each with a
temporal length of 2 s. Table 9 gives the layer structure of the model receiving the upper
joint position data as input.
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Table 9. Layers and numbers of parameters in the upper joint position input model.

Layer Output Shape Parameter

Conv 2D _1 (None, 16, 60, 32) 832
Max_pooling2D_1 (None, 8, 30, 32) 0

Conv 2D _2 (None, 8, 30, 64) 8256
Max_pooling2D_2 (None, 4, 15, 64) 0

Dropout_1 (None, 4, 15, 64) 0
Flatten (None, 3840) 0

Dense_1 (None, 1000) 3,841,000
Dropout_2 (None, 1000) 0

Dense_2 (None, 6) 6006

As shown in Table 10, the precision, recall, and F1 scores of all the exercise classifica-
tions were 0.95 or higher.

Table 10. Precision, recall, and F1-scores of the upper joint position input model.

Input Data Type (Size) Exercise Precision Recall F1-Score

Upper joint position
(16× 60× 1)

Chest press 0.98885512 0.99731767 0.99306836

Shoulder press 0.97651588 0.99082031 0.98361609

Seated row 0.97405847 0.99569256 0.98475671

Biceps curl 0.99483258 0.96763168 0.98104362

Overhead triceps extension 0.99612503 0.95022178 0.97263211

Non-exercise 0.97730204 0.97932282 0.97831139

Figure A8 is the confusion matrix for this model. Most of the misclassifications were
incorrect evaluations of “Biceps curl” as “Seated Row” and “Non-exercise” as “Chest Press”.

3.2.4. IMU and Joint Position Input Model

When all IMU and joint positions were inputted into the model, the input data were
sized 60 × 60 × 1 (60 data including the quaternion, gyro, and acceleration values of the
left wrist and the x and y coordinates of the 25 joint positions, each with a temporal length
of 2 s). Table 11 gives the layer structure of this model.

Table 11. Layers and numbers of parameters in the IMU and joint position input models.

Layer Output Shape Parameter

Conv 2D _1 (None, 60, 60, 32) 832
Max_pooling2D_1 (None, 30, 30, 32) 0

Conv 2D _2 (None, 30, 30, 64) 8256
Max_pooling2D_2 (None, 15, 15, 64) 0

Dropout_1 (None, 15, 15, 64) 0
Flatten (None, 14,400) 0

Dense_1 (None, 1000) 14,401,000
Dropout_2 (None, 1000) 0

Dense_2 (None, 6) 6006

Table 12 lists the precision, recall, and F1 scores of the IMU and joint position models.
All exercises were classified with scores of 0.9 or higher.
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Table 12. Precision, recall, and F1-scores of the IMU and joint position input models.

Input Data Type (Size) Exercise Precision Recall F1-Score

IMU and joint position
(60× 60× 1)

Chest press 0.99262368 0.99693447 0.99477441

Shoulder press 0.99529227 0.99101562 0.99314934

Seated row 0.9822681 0.99919235 0.99065795

Biceps curl 0.99467976 0.97728187 0.98590407

Overhead triceps extension 0.97402282 0.98866437 0.98128898

Non-exercise 0.98898216 0.97441199 0.98164302

Figure A9 is the confusion matrix for this model. In the model receiving both the
IMU data and joint positions as input, “Non-exercise” was sometimes misclassified as
“Overhead Triceps Extension”.

3.3. Repetition-Counting Algorithm

To evaluate the accuracy performance of the repetition-counting algorithm for each
exercise, we calculated the mean absolute error (MAE), mean relative error (MRE), and
absolute value (|e|) of the error. The mean absolute and relative errors are the averages
of the absolute and relative errors, respectively, in the counts of each dataset. In terms of
the absolute error, the accuracy was assessed as the proportions of counts within |e| = 0,
|e| = 1 and |e| = 2.

Table 13 shows the performance evaluation results for the repetition-counting algo-
rithm. Clearly, the accuracy depends on the type of exercise. The “Chest Press”, “Shoulder
Press”, and “Seated Row” categories were accurately counted with small values of the
average absolute errors, whereas “Biceps curl” and “Overhead Triceps Extension” were
counted with larger errors.

Table 13. Accuracy scores of the repetition counting algorithm.

Exercise MAE MRE |e|=0 |e|≤1 |e|≤2

Chest press 1.5841 17.21% 46.02% 76.11% 82.30%
Shoulder press 1.0089 26.58% 41.07% 84.82% 92.86%

Seated row 0.8803 6.09% 59.83% 85.47% 91.45%
Biceps curl 2.9806 37.85% 12.62% 42.72% 60.19%

Overhead triceps
extension 3.2099 34.68% 12.35% 44.44% 61.73%

4. Discussion
4.1. Analysis of Regression Expression for Each Exercise

Table 14 lists the individual 1−RM estimation equations for the five exercise types
derived through the regression analysis.

Table 14. 1−RM estimation equations for the five types of exercises.

Exercise Regression Equation

Chest press 1− RM = 3.516284− 0.924192r1 + 0.053651r1w1

Shoulder press 1− RM = −0.629601 + 0.992013w1 + 0.020787r2
2 − 0.029686r2w2

Seated row 1− RM = 11.29618− 1.10259w1 − 0.05265r2
1 + 0.84785w2 + 0.07982r2w2

Biceps curl 1− RM = 4.432227 + 0.005706w2
1 + 0.031340w2

2 + 0.004674r1w1

Overhead triceps extension 1− RM = 0.642109 + 0.063498w2 + 0.006473r1w1
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The estimation equations for each exercise type include an interaction term (r1w1 or
r2w2), which is a product of BF and repetition. As the BF and number of movements are
negatively correlated, it is judged that an interaction between these two values gives a
numerically meaningful value. The interaction terms r1w1 and r2w2 are light and heavy
terms, respectively, and appear in different equations. They likely depend on the ratio of
slow-twitch muscle fibers to fast-twitch muscle fibers.

The dependent variable 1−RM of the regression equation relies on the instantaneous
force size, and slow-twitch muscle fibers can be regarded as high-value strength indicators.
Among the interaction terms, the heavy-data interaction term 2 (r2w2) appears in “Shoulder
Press” and “Seated Row”, which involve the shoulder muscles, front, side, and rear muscles
of the shoulder, and the dorsi muscle. All of these muscles are composed of a high
proportion of slow-twitch muscle fibers. Therefore, the interaction of data related to heavy
weights (w2) and small numbers of repetitions (r2) might minimize the participation of
slow-twitch muscle fibers.

In contrast, the movements for which the interaction term of data 1 (r1w1) appears in
the estimation formulas are “Chest Press”, “Biceps curl”, and “Overhead Triceps Extension”.
The target muscles of these exercises are composed of a high proportion of fast-twitch
muscle fibers. Therefore, relatively large numbers of repetitions (r1) might be used to
increase the precision of results.

4.2. CNN Model F1-Score Analysis

Compared with other exercise recognition models, the accuracies of the models in this
study have differences of less than 1 with other studies. The research by Soro et al. used
the IMU sensors of smart watches to classify 10 types of exercise and recorded an accuracy
of 99.96% [32]. Skawinski et al. used a 3D accelerometer to classify 4 types of exercise and
recorded a relatively low accuracy of 90.6% [33]. Alatiah et al. classified 3 types of exercise
and recorded an accuracy of 98.4% with a 3D pose tracker [40]. The accuracy performances
of the CNN models processing the four types of input data are listed in Table 15.

Table 15. Accuracies of the CNN models for the four exercise datasets and comparison with other
studies [32,33,40].

Classification Models Accuracy

CNN models in this study

IMU (N = 10) 97.86%

Joint position (N = 50) 98.71%

Upper body joint position (N = 16) 98.32%

IMU + joint position (N = 60) 98.83%

Soro et al. (2019) [32]

All (hand and foot) 99.96%

Hand 95.90%

Foot 86.30%

Skawinski et al. (2019) [33] 90.60%

Alatiah et al. (2020) [40] 98.40%

The CNN model yielded the highest accuracy (approximately 98.8%) when both the
IMU and joint positions were used as input data. When provided with only the upper
body joint positions and only the IMU data, the accuracy decreased to 98.7% and 97.9%,
respectively. Increasing the input data size improved the accuracy but increased the
calculation burden and lowered the processing speed. A portion of the data (such as IMU
data or the data from the upper body only) is deemed more efficient for deep learning than
all the data.

The current CNN architecture inputs the data collected over two seconds and exports
a single result per dataset. As multiple results are produced in one image, the accuracy of
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classifying a single exercise image during post-processing is expected to be improved by
major voting, which selects the most frequent class among the data classification results.

4.3. Counting Algorithm

The 3 models used in this study are relatively similar to other studies with small MAE
differences of less than 0.6. However, for two models in this study, the models recorded two
or more MAE differences with other studies’ models. The research by Soro et al. recorded
an average MAE of 0.7, with the highest MAE being 1.82 and the lowest MAE being 0.02,
for 10 types of CrossFit exercises [32]. Skawinski et al. recorded an accuracy of 97.4% or
above for 4 types of exercises [33]. Alatiah et al. counted 3 types of exercise and recorded
an average MAE of 1.0 [40] (Table 16).

The adopted counting algorithm is intended as a universally available algorithm that
captures and filters the periodicity of motion based on the positional coordinates of the
hand. The high-frequency noise introduced by occlusion is removed using a filter that
passes the intermediate values, and the effect of human size on the image data is minimized
via position normalization, scale normalization, MMF, and DC offset elimination. Therefore,
the counting algorithm can be applied to various other upper limb exercises.

Table 16. MAE values of repetition-counting algorithm in this study and comparison with other
studies [32,40].

Repetition Counting MAE

Repetition-counting algorithm in this study

Chest press 1.58

Shoulder press 1.01

Seated row 0.88

Biceps curl 2.98

Overhead triceps extension 3.21

Soro et al. (2019) [32] 0.70

Alatiah et al. (2020) [40] 1.00
In this study, the counting algorithm recorded an MAE of less than 1.59 for 3 exercises.

However, some limitations of the algorithm were clarified in the experiments. After
the subjects had performed a large number of exercises, the periodicity of the exercises was
constant, so the number of repetitions was properly identified. However, in datasets with a
small number of exercises, the number of repetitions varied, and flexion did not always
occur at the same time in each repetition. In such cases, the number of exercises was not
properly identified and tended to be overestimated.

In addition, when capturing the movements of overhead triceps extensions, the camera’s
hand was usually located at the back of the head, causing severe obstruction that could not be
fully resolved with the median filter. Therefore, the accuracy of these measurements was low.

4.4. Limitations and Future Work

One of the major limitations of this study is the constraints of the experiment. In this
study, only five types of upper limb exercise were used for the experiment. Therefore, it is
hard to apply the results of this study to other exercises. To use the results of this study
generally, more various exercise experimentation will be needed. The other limitation is
that the deep learning model used in this paper is a relatively uncomplicated CNN. The
CNN model is an easy and powerful model, but it is difficult to accurately reflect time-
variant features. In this study, the overlapping window was used to supplement this part,
but to extract more accurate time-based features, it is necessary to utilize a recurrent neural
network (RNN) or long short-term Models (LSTM). In future work, we will derive the
1−RM estimation equations for other types of exercises and accumulate more sensor-based
data for developing exercise-type classification and counting algorithms.
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This research studied the association between BF and the gold-standard 1−RM to
increase the utilization of band exercises and the acquisition of sensor-based exercise
information. The developed algorithm counts the type and number of exercises, although
the types of exercises are limited and should be extended. The results of this study are
expected to be used for creating sensor-based monitoring systems that input the BF along
with exercise information (type and number of repetitions of an exercise) and calculate the
user’s 1−RM as a predictor of muscle strength.

As a follow-up study, we intend to determine the quality of exercise from the subjects’
exercise data. The intensity of the current exercise can be indirectly estimated from the
weight and number of repetitions of the exercise. However, the actual strength of an
exercise depends not only on the weight and repetition number, but also on the time and
posture of the exercise. It is thought that the strength and quality of an exercise can be
determined from the joint position estimation data accumulated over time. Based on the
present data utilization method and algorithm, we will develop an algorithm for assessing
the intensity and quality of exercise.

5. Conclusions

In this study, 1−RM estimation equations for five types of band exercises, type of
exercise classification from the IMU and joint position estimation data, and the repetition-
counting algorithm were derived. The 1−RM estimation equation for each exercise using
a dumbbell was derived from two sets of BF data and the number of repetitions of the
exercise using the heaviest weight among multiple trials. Each of these equations used
different parameters and different interaction terms depending on the ratio of the exercise
root to the exercise root.

The accuracies of the models were compared for different types of input data. The
accuracies of the model fed with 10-channel IMU data and the IMU and joint position data
(60 data in total) differed by 0.9745%.

Based on the periodicity of exercise, an algorithm that predicts the number of exercises
using various filters was proposed. The number of exercises was identified after filtering the
position information of the hand through position normalization, scale normalization, an
intermediate-pass filter, and offset removal. The number of repetitions was then estimated
based on zero-crossing. However, the accuracy of this number-of-times identification
algorithm was lowered for some exercises and sets. This algorithm rapidly generates high-
frequency noise during hand occlusion and is vulnerable to non-repeating and nonlinear
movements during exercises with heavy weights.

In follow-up research, collecting data on other exercises and developing an algorithm
that identifies the strength and quality of exercises will be studied.
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Appendix A. Regression Analysis Model Reduction

Table A1. Chest press 1−RM equations and model reduction.

Exercise Model Parameter Order Coefficient p-Value Residual
Standard Error

Adjusted
R-Squared

Chest press

1

Intercept 1 3.516284 0.30212

1.996 0.8939

Repetition1, r1
(reps) 1 −0.621192 0.00141 **

Band Force2, w2
(kgf) 1 0.586614 0.00221 **

Repetition2, r2
(reps) 1 0.293881 0.03966 *

Repetition1*Band Force1,
r1 : w1

1 0.025779 0.00689 **

2

Intercept 1 5.061241 0.1627

2.154 0.8764

Repetition1, r1
(reps) 1 −0.545342 0.0059 **

Band Force2, w2
(kgf) 1 0.493515 0.0104 *

Repetition1*Band Force1,
r1 : w1

1 0.031559 0.0017 **

3

Intercept 1 13.905680 0.0000 ***

2.44 0.8415
Repetition1, r1

(reps) 1 −0.924192 0.0000 ***

Repetition1*Band Force1,
r1 : w1

1 0.053651 0.0000 ***

Based on the estimated marginal means. * The mean difference is significant at the 0.05 level. ** The mean
difference is significant at the 0.01 level. *** The mean difference is significant at the 0.001 level.

Table A2. Shoulder press 1−RM equations and model reduction.

Exercise Model Parameter Order Coefficient p-Value Residual
Standard Error

Adjusted
R-Squared

Shoulder
press

1

Intercept 1 −1.986427 0.06882

1.076 0.9245

Band Force1, w1
(kgf)

1 1.030632 0.0000 ***
2 0.021399 0.00816 **

Repetition2,
(reps)

1 0.665331 0.07708
2 0.056737 0.10476

Repetition2*Band Force2,
r2 : w2

1 0.040959 0.02954 *

2

Intercept 1 −1.049199 0.2621

1.117 0.9187

Band Force1, w1
(kgf)

1 1.028001 0.0000 ***
2 0.020626 0.0127 *

Repetition2, r2
(reps) 1 0.133151 0.4655

Repetition2*Band Force2,
r2 : w2

1 −0.040203 0.0381 *

3

Intercept 1 −0.629601 0.3842

1.107 0.9202
Band Force1, w1

(kgf)
1 0.992013 0.0000 ***
2 0.020787 0.0111 *

Repetition2*Band Force2,
r2 : w2

1 −0.029686 0.0160 *

Based on the estimated marginal means. * The mean difference is significant at the 0.05 level. ** The mean
difference is significant at the 0.01 level. *** The mean difference is significant at the 0.001 level.
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Table A3. Seated row 1−RM equations and model reduction.

Exercise Model Parameter Order Coefficient p-Value Residual
Standard Error

Adjusted
R-Squared

Seated row

1

Intercept 1 19.57982 0.00810 **

2.158 0.8688

Band Force1, w1
(kgf)

1 −1.87319 0.00880 **
2 0.03177 0.08346
2 −0.04833 0.00720 **

Band Force2, w2
(kgf) 1 0.55397 0.04243 *

Repetition1*Band Force1,
r1 : w1

1 0.07482 0.00761 **

2

Intercept 1 11.29618 0.03383 *

2.361 0.8429

Band Force1, w1
(kgf)

1 −1.10259 0.03913 *
2 −0.05265 0.00625 **

Band Force2, w2
(kgf) 1 0.84785 0.00120 **

Repetition1*Band Force1,
r1 : w1

1 0.07982 0.00779 **

3

Intercept 1 2.15774 0.48092

2.697 0.7951

2 −0.01846 0.02173 *
Band Force2,

(kgf) 1 0.59555 0.00952 **

Repetition1*Band Force1,
r1 : w1

1 0.02565 0.03092 *

Based on the estimated marginal means. * The mean difference is significant at the 0.05 level. ** The mean
difference is significant at the 0.01 level.

Table A4. Biceps curl 1−RM equations and model reduction.

Exercise Model Parameter Order Coefficient p-Value Residual
Standard Error

Adjusted
R-Squared

Biceps curl

1

Intercept 1 3.896989 0.0000 ***

0.9036 0.8843

2 0.011323 0.0136 *

Repetition1, r1
(reps)

1 0.183714 0.0973
2 0.031916 0.0000 ***
2 −0.003096 0.2522

Repetition1*Band Force1,
r1 : w1

1 −0.028959 0.0312 *

2

Intercept 1 3.710290 0.0000 ***

1.107 0.8827

2 0.010340 0.0211 *
Repetition1, r1

(reps)
1 0.150178 0.1586
2 0.032720 0.0000 ***

Repetition1*Band Force1,
r1 : w1

1 −0.025419 0.0507

3

Intercept 1 4.432227 0.0000 ***

1.129 0.8778
2 0.005706 0.0515
2 0.031340 0.0000 ***

Repetition1*Band Force1,
r1 : w1

1 3.710290 0.0000 ***

Based on the estimated marginal means. * The mean difference is significant at the 0.05 level. *** The mean
difference is significant at the 0.001 level.
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Table A5. Overhead triceps extension 1−RM equations and model reduction.

Exercise Model Parameter Order Coefficient p-Value Residual
Standard Error

Adjusted
R-Squared

Overhead
triceps

extension

1

Intercept 1 0.47045 0.617542

0.8043 0.9305

Repetition1, r1
(reps) 1 −0.13721 0.090012

Band Force2,
(kgf)

1 0.94210 0.002390 **
2 −0.03053 0.093832

Repetition1*Band Force1,
r1 : w1

1 0.05062 0.000577 ***

2

Intercept 1 1.48852 0.05922

0.8365 0.9249

Repetition1, r1
(reps) 1 −0.09673 0.22120

Band Force2, w2
(kgf) 1 0.49041 0.0000 ***

Repetition1*Band Force1,
r1 : w1

1 0.04835 0.00118 **

3

Intercept 1 0.642109 0.0689

0.8457 0.9232
Band Force2, w2

(kgf) 1 0.063498 0.0000 ***

Repetition1*Band Force1,
r1 : w1

1 0.006473 0.0000 ***

Based on the estimated marginal means. ** The mean difference is significant at the 0.01 level. *** The mean
difference is significant at the 0.001 level.
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