Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the UV-Curable Triboelectric Coating
2.3. Preparation of Nylon-11 Friction Layer
2.4. Preparation of the Coating TENG
2.5. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Omar, R.; Zhang, R.; Tang, N.; Khatib, M.; Xu, Q.; Milyutin, Y.; Saliba, W.; Broza, Y.Y.; Wu, W.; et al. A Wearable Microneedle-Based Extended Gate Transistor for Real-Time Detection of Sodium in Interstitial Fluids. Adv. Mater. 2022, 34, 2108607. [Google Scholar] [CrossRef] [PubMed]
- Haick, H.; Tang, N. Artificial Intelligence in Medical Sensors for Clinical Decisions. ACS Nano 2021, 15, 3557–3567. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Omar, R.; Hu, Z.; Duong, T.; Wang, J.; Haick, H. Bioinspired Triboelectric Nanosensors for Self-Powered Wearable Applications. ACS Biomater. Sci. Eng. 2021. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.B.; Tang, N.; Omar, R.; Hu, Z.P.; Duong, T.; Wang, J.; Wu, W.W.; Haick, H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Adv. Funct. Mater. 2021, 31, 2105482. [Google Scholar] [CrossRef]
- Ouyang, H.; Liu, Z.; Li, N.; Shi, B.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q.; et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Shi, B.; Li, Z.; Wang, Z.L. Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Adv. Sci. 2017, 4, 1700029. [Google Scholar] [CrossRef]
- Yan, C.; Gao, Y.Y.; Zhao, S.L.; Zhang, S.L.; Zhou, Y.H.; Deng, W.L.; Li, Z.W.; Jiang, G.; Jin, L.; Tian, G.; et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 2020, 67, 104235. [Google Scholar] [CrossRef]
- Xu, G.P.; Zheng, Y.B.; Feng, Y.G.; Ma, S.C.; Luo, N.; Feng, M.; Chen, S.G.; Wang, D. A triboelectric/electromagnetic hybrid generator for efficient wind energy collection and power supply for electronic devices. Sci. China Technol. Sci. 2021, 64, 2003–2011. [Google Scholar] [CrossRef]
- Vidal, J.V.; Slabov, V.; Kholkin, A.L.; Dos Santos, M.P.S. Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review. Nanomicro. Lett. 2021, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Cui, N.; Cheng, L.; Xu, Q.; Bai, S.; Yuan, M.; Wu, W.; Liu, J.; Zhao, Y.; Ma, F.; et al. Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. Nano. Lett. 2013, 13, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Cheng, L.; Wang, Z.; Zheng, Y.; Bai, S.; Qin, Y. A Transparent Antipeep Piezoelectric Nanogenerator to Harvest Tapping Energy on Screen. Small 2016, 12, 1315. [Google Scholar] [CrossRef]
- Yuan, M.; Li, X.; Liu, J.; Zheng, Y.; Cheng, L.; Tang, N.; Zhang, R.; Xu, S.; Fu, X.; Haick, H.; et al. Fully Integrated Self-Powered Electrical Stimulation Cell Culture Dish for Noncontact High-Efficiency Plasmid Transfection. ACS Appl. Mater. Interfaces 2021, 13, 54762–54769. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, S.; Benassi, E.; Feng, Y.; Xu, S.; Luo, N.; Liu, Y.; Cheng, L.; Qin, Y.; Yuan, M.; et al. Surface engineering and on-site charge neutralization for the regulation of contact electrification. Nano Energy 2022, 91, 106687. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zheng, Y.B.; Xu, L.; Wang, D.A. Oleic-acid enhanced triboelectric nanogenerator with high output performance and wear resistance. Nano Energy 2020, 69, 104435. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Shi, B.J.; Fan, Y.B.; Wang, Z.L.; Li, Z. Wearable and Implantable Triboelectric Nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Xu, X.; Qin, H.; Wang, D. A new strategy for tube leakage and blockage detection using bubble motion-based solid-liquid triboelectric sensor. Sci. China Technol. Sci. 2022, 65, 282–292. [Google Scholar] [CrossRef]
- Haroun, A.; Tarek, M.; Mosleh, M.; Ismail, F. Recent Progress on Triboelectric Nanogenerators for Vibration Energy Harvesting and Vibration Sensing. Nanomaterials 2022, 12, 2960. [Google Scholar] [CrossRef]
- Wu, C.; Huang, H.; Li, R.; Fan, C. Research on the Potential of Spherical Triboelectric Nanogenerator for Collecting Vibration Energy and Measuring Vibration. Sensors 2020, 20, 1063. [Google Scholar] [CrossRef]
- Cui, S.W.; Zheng, Y.B.; Zhang, T.T.; Wang, D.A.; Zhou, F.; Liu, W.M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39. [Google Scholar] [CrossRef]
- Li, J.Q.; Chen, J.; Guo, H.Y. Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives. Energies 2021, 14, 6949. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zheng, Y.B.; Wu, Z.S.; Zhang, L.Q.; Sun, W.X.; Li, T.H.; Wang, D.A.; Zhou, F. Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing. Nano Energy 2021, 79, 105422. [Google Scholar] [CrossRef]
- Chen, H.; Lu, Q.; Cao, X.; Wang, N.; Wang, Z.L. Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Res. 2021, 15, 2505–2511. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, T.; Lin, P.; Shao, J.J.; He, C.; Zhong, W.; Chen, X.Y.; Wang, Z.L. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano 2018, 12, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. New wave power. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Jia, T.; Wu, Q.; Dong, Y.; Wang, D. Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy. Nano Energy 2022, 102, 107622. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, T.; Sun, X.; Wei, Y.; Zhang, S.; Wang, X.; Luo, L. Effects of Fluorine-Based Modification on Triboelectric Properties of Cellulose. Polymers 2022, 14, 3536. [Google Scholar] [CrossRef]
- Lin, C.M.; Huang, H.; Zhao, H.H.; Cao, S.L.; Ma, X.J. Acid- and Alkali-Resistant and High-Performance Cellulose Paper-Based Triboelectric Nanogenerator by Controlling the Surface Hydrophobicity. ACS Sustain. Chem. Eng. 2022, 10, 13669–13679. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, L.; Yuan, M.; Wang, Z.; Zhang, L.; Qin, Y.; Jing, T. An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale 2014, 6, 7842. [Google Scholar] [CrossRef]
- Paosangthong, W.; Wagih, M.; Torah, R.; Beeby, S. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy 2022, 92, 106739. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, L.L.; Zhang, C.G.; Zhao, Z.H.; Li, S.X.; Li, X.Y.; Yin, X.; Wang, J.; Wang, Z.L. A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering. J. Mater. Chem. A 2021, 9, 21357–21365. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Liu, C.; Zhou, Y.S.; Wang, Z.L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720. [Google Scholar] [CrossRef]
- Tang, N.; Zheng, Y.; Yuan, M.; Jin, K.; Haick, H. High-Performance Polyimide-Based Water-Solid Triboelectric Nanogenerator for Hydropower Harvesting. ACS Appl. Mater. Interfaces 2021, 13, 32106–32114. [Google Scholar] [CrossRef]
- Wu, C.; Kim, T.W.; Choi, H.Y. Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 2017, 32, 542–550. [Google Scholar] [CrossRef]
- Huang, J.; Hao, Y.; Zhao, M.; Li, W.; Huang, F.; Wei, Q. All-Fiber-Structured Triboelectric Nanogenerator via One-Pot Electrospinning for Self-Powered Wearable Sensors. ACS Appl. Mater. Interfaces 2021, 13, 24774–24784. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wei, X.; Xu, J.; Chen, J.; Li, B.; Wu, Z.; Wang, Z.L. Smart Wearable Sensors Based on Triboelectric Nanogenerator for Personal Healthcare Monitoring. Micromachines 2021, 12, 352. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.; Kim, Y.T. Soft and transparent triboelectric nanogenerator based E-skin for wearable energy harvesting and pressure sensing. Nanotechnology 2021, 32, 385403. [Google Scholar] [CrossRef]
- Chung, J.; Heo, D.; Kim, B.; Lee, S. Superhydrophobic Water-Solid Contact Triboelectric Generator by Simple Spray-On Fabrication Method. Micromachines 2018, 9, 593. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.; Kim, I.; Ryoo, M.; Kim, Y.; Jo, S.; Kim, D. Paint based triboelectric nanogenerator using facile spray deposition towards smart traffic system and security application. Nano Energy 2021, 88, 106236. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Che, L.; Chen, S.; Wang, Z.; Zhou, X. Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. Nano Energy 2017, 41, 359–366. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Chougale, M.Y.; Khan, M.U.; Shaukat, R.A.; Kim, J.; Bae, J.; Lee, H.W.; Park, J.-I.; Kim, M.S.; Lee, B.G. Natural seagrass tribopositive material based spray coatable triboelectric nanogenerator. Nano Energy 2021, 89, 106458. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Y.; Liu, Y.; Zheng, Y.; Liu, Y.; Xu, C.; Kong, X.; Feng, Y.; Zhang, X.; Wang, D. New Hydrophobic Organic Coating Based Triboelectric Nanogenerator for Efficient and Stable Hydropower Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 31351–31359. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Liu, Y.; Liu, Y.; Zheng, Y.; Wang, D.; Wang, B.; Xu, C.; Wang, D. New Coating TENG with Antiwear and Healing Functions for Energy Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 9387–9394. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, G.; Liu, Y.; Sun, W.; Wang, D. Hydrophobic organic coating based water-solid TENG for water-flow energy collection and self-powered cathodic protection. Front. Mater. Sci. 2021, 15, 601–610. [Google Scholar] [CrossRef]
Materials | TENG Type | Output Voltage (V) | Output Current (μA) | Power/Power Density | Reference |
---|---|---|---|---|---|
Natural seagrass | Solid–solid | 288 | 40 | 1690 μW/70.42 μW/cm2 | [42] |
Silk-fibroin | Solid–solid | 213.9 | N/A | 68.0 mW/m2 | [41] |
Commercial spray paint | Solid–solid | 80 | 7.2 | 17.60 mW/m2 | [40] |
Mesoporous silica and perfluorooctylethanol loaded acrylate coating | Solid–solid | 220 | 10 | 820 μW | [44] |
Commercial aerosol hydrophobic spray | Water-Solid | 13.4 | 2.1 | N/A | [39] |
Fluorine-modified acrylic resin coating | Water-Solid | 4 | 4 | 2.88 μW/2.83 mW/m2 | [43] |
Fluorinated polyacrylate resin modified polyacrylic acid coating | Water-Solid | 32 | 20 | N/A | [45] |
Acrylic resin-based hybrid coating | Solid–solid | 1228.9 | 54.5 | 3.51 mW | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Tang, N.; Cheng, L.; Zheng, Y. Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator. Sensors 2023, 23, 579. https://doi.org/10.3390/s23020579
Chen J, Tang N, Cheng L, Zheng Y. Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator. Sensors. 2023; 23(2):579. https://doi.org/10.3390/s23020579
Chicago/Turabian StyleChen, Jian, Ning Tang, Li Cheng, and Youbin Zheng. 2023. "Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator" Sensors 23, no. 2: 579. https://doi.org/10.3390/s23020579
APA StyleChen, J., Tang, N., Cheng, L., & Zheng, Y. (2023). Toward Large-Scale Energy Harvesting by a UV-Curable Organic-Coating-Based Triboelectric Nanogenerator. Sensors, 23(2), 579. https://doi.org/10.3390/s23020579