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Abstract: Few studies have evaluated the effect of a secondary motor task on the standing posture
based on nonlinear analysis. However, it is helpful to extract information related to the complexity,
stability, and adaptability to the environment of the human postural system. This study aimed to
analyze the effect of two motor tasks with different difficulty levels in motor performance com-
plexity on the static standing posture in healthy young adults. Thirty-five healthy participants
(23.08 ± 3.92 years) performed a postural single task (ST: keep a quiet standing posture) and two
motor dual tasks (DT). i.e., mot-DT(A)—perform the ST while performing simultaneously an easy
motor task (taking a smartphone out of a bag, bringing it to the ear, and putting it back in the
bag)—and mot-DT(T)—perform the ST while performing a concurrent difficult motor task (typing on
the smartphone keyboard). The approximate entropy (ApEn), Lyapunov exponent (LyE), correlation
dimension (CoDim), and fractal dimension (detrending fluctuation analysis, DFA) for the mediolat-
eral (ML) and anterior-posterior (AP) center-of-pressure (CoP) displacement were measured with a
force plate while performing the tasks. A significant difference was found between the two motor
dual tasks in ApEn, DFA, and CoDim-AP (p < 0.05). For the ML CoP direction, all nonlinear variables
in the study were significantly different (p < 0.05) between ST and mot-DT(T), showing impairment in
postural control during mot-DT(T) compared to ST. Differences were found across ST and mot-DT(A)
in ApEn-AP and DFA (p < 0.05). The mot-DT(T) was associated with less effectiveness in postural
control, a lower number of degrees of freedom, less complexity and adaptability of the dynamic
system than the postural single task and the mot-DT(A).

Keywords: motor dual task; center of pressure; approximate entropy; DFA; correlation dimension;
Lyapunov exponent

1. Introduction

Many studies use linear measures to assess the center of pressure (CoP) behavior and
to characterize postural sway during quiet standing with the aim to analyze changes in
postural control during aging or in dual-task conditions [1,2], to evaluate the risk of fall [3],
or to study postural control impairments in pathological conditions [4,5], for example.
However, the traditional linear characteristics of the center of pressure trajectories can not be
sensitive to changes in postural control associated with age or diseases [6]. Thus, a need has
emerged for consistent approaches to obtain physiological information from stabilograms
using nonlinear approaches to assess CoP temporal time series [7]. Furthermore, nonlinear
measures can be more sensitive in detecting postural control impairments than linear
measures [8].
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Nonlinear measures quantify the regularity, stability, adaptability to the environment,
dimensionality, and complexity of the human postural system [9–11]. We chose to analyze
four nonlinear measures: the approximate entropy (ApEn), the Lyapunov exponent (LyE),
the correlation dimension (CoDim), and the detrended fluctuation (DFA, detrended fluctu-
ation analysis) by the scaling exponent (α), because these measures reflect the deterministic
and stochastic components of motor control (regularity, local stability, number of degrees
of freedom, and the presence or absence of correlations in the CoP trajectories).

Approximate entropy is a measure to assess a system’s complexity and the regularity
in time-series data. The algorithm of ApEn was introduced by Pincus [12–14] to quantify
the regularity of biological signals and clinical time series data. Furthermore, some studies
used the approximate entropy method for the center of pressure time-series analysis [15,16].
The ApEn values range from 0 to 2; a high ApEn value corresponds to random time series
and an increased system complexity with less regular patterns in the time series of the
CoP [12,14].

The Lyapunov exponent measures the rate at which nearby orbits converge or diverge
in the state space. It has been used to assess the presence of chaos in dynamic systems
and analyze various biological systems (e.g., gait, postural sway) [9,17–19]. A high LyE
value can indicate a faster response capacity of postural control in the face of different
perturbations to body movement [7].

The correlation dimension was introduced by Grassberger and Procaccia [20] for
calculating the dimensionality of an attractor. It allows evaluating how the data point
in a time series of a dynamic system is organized within a state space, in which a small
correlation dimension value (between 1.5 and 2.5) can be associated with a small number of
degrees of freedom involved and, generally, characterize data of a deterministic nature [17].

Detrended fluctuation analysis is a fractal dimension analysis method for biological
time series indicating the presence or absence of correlations in the CoP trajectories by the
scaling exponent (α). A scaling exponent equal to 0.5 corresponds to white noise (uncorre-
lated data), α equal to 1.0 indicates pink noise, and α equal 1.5 indicates Brown noise [21].
The pink noise may be representative of a complex movement (more flexible), the brown
noise of a constrained movement, and the white noise of an incoherent movement [17].
Although the DFA can be used to analyze the time series of the CoP trajectories [22], it also
has other practical applications, such as in the prediction of type 2 diabetes mellitus [23]
and in the analysis of heart rate times series [21].

Although these measures represent different aspects of system dynamics, they are
related concepts. Combining them can give researchers different insights into system
dynamics and postural stability patterns (see [7] for a recent review).

Maintaining a controlled upright posture is essential to performing various activities
of daily living; beyond that, most people stand or walk while performing another task
(cognitive or motor secondary task); this is called dual task. When people perform a dual
task, there is usually a deterioration in one or both tasks’ performance [24]. For example,
some studies showed that walking while simultaneously carrying a cup [25] or transferring
coins from one pocket to the other [26] reduces the gait performance compared to only
walking. Others studies reported that maintaining an upright position while performing a
cognitive task decreases the postural stability compared to performing a single task [27,28].

Currently, a prevalent dual task is the use of smartphone functions while walking
or standing. However, smartphone use is associated with sedentary behaviors [29], in-
juries [30] and sleep disorders [31] and affects the balance ability negatively [32–34]. In
addition, studies showed that smartphone use while maintaining a standing posture in-
creased postural sway [35,36] and might cause changes in the complexity of the center of
pressure during some dual-task conditions [36].

Study Purpose

To our knowledge, there are few studies evaluating the effect of secondary motor tasks
on standing posture (primary motor task) [35,37,38]. Besides, few studies used nonlinear
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measures to assess postural control during dual-task conditions [39–41]. Concerning the
effect of smartphone use on postural stability, the dual-task studies’ results are contradictory,
and few were based on a nonlinear analysis [42]. Thus, this study aimed to evaluate the
effects of two motor secondary tasks with different levels of difficulty on static standing
posture, based on CoP nonlinear analysis. We hypothesized that young adults present
less effectiveness, complexity, and adaptability of the postural control when performing a
difficult motor dual task than a postural single task and easy motor dual task. We conjecture
that these nonlinear time series analyses will provide helpful information about secondary
motor tasks’ effects on the motor complexity of standing posture performance.

2. Materials and Methods

The number of participants in the study was determined using G*power software
(Franz Faul, Edgar Erdfelder, Axel Buchner, Universität Kiel, Germany, version 3.1.9.6)
based on the study design, with a significance level of α = 0.05, a power of 0.95, and a large
effect size (Cohen’s f = 0.40). A sample minimum number of 18 individuals was found to
be necessary.

The study was publicized on social networks and in groups of friends to recruit young
adults between 18 and 35 years interested in participating and fulfilling the eligibility
criteria. Thirty-five healthy young adults (22 males and 13 females) were recruited, without
cognitive, vestibular, neurological, or musculoskeletal disorders (the sample characteristics
are reported in Table 1).

Table 1. Anthropometric characteristics of the sample (mean ± SD).

Variables Sample n = 35

Age (years) 22.94 ± 3.88
Height (m) 1.71 ± 0.10

Body mass (kg) 73.63 ± 16.06
Body mass index (kg/m2) 24.98 ± 4.32

All participants gave prior consent to the experimental procedures in agreement
with the Declaration of Helsinki. The data were collected in the Robocorp Laboratory,
Polytechnic Institute of Coimbra, and the study was approved by the Ethics Committee of
the Polytechnic Institute of Coimbra (approval number: 27_CEPC2/2019).

2.1. Task Protocol

Each participant performed each task twice for 60 s, with 45 s of rest between each
task, i.e., the static standing posture (postural single task) and two motor dual tasks with
different challenges while using their smartphone (easy and difficult motor dual tasks)
(Figure 1). No priority was given to the secondary motor and standing postural tasks.
Instead, the participants were instructed to use their smartphone and hold it as usual while
performing the easy and difficult dual tasks.

2.2. Postural Single Task (ST)

The participants were instructed to stand comfortably on a force plate with feet
shoulder-width apart, eyes open, looking in the forward direction, and with their arms
naturally at their sides during 60 s [35,43]. This task is usually used as the baseline in
dual-task studies on static postural standing [35,36].

2.3. Dual-Task Conditions

Easy motor dual-task (mot-DT(A)). The participants were instructed to perform the
postural single task while simultaneously taking their smartphone out of a bag, bringing
it to the ear, and putting it back in the bag. All participants had a bag with the same
dimensions placed in the middle of the pelvis.
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Difficult motor dual task (mot-DT(T)). The participants were instructed to perform
the postural single task while simultaneously typing on a smartphone. The participants
were informed to type randomly on the smartphone keyboard at a self-selected pace to
neutralize or minimize the cognitive component.
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Figure 1. Center-of-pressure time series in the anterior-posterior and mediolateral displacement
collected from a force plate during the postural single task and the easy and difficult motor dual
tasks, respectively, from left to right.

2.4. Standing Postural Sway Dynamics Analysis

The center-of-pressure time series in the anterior-posterior and mediolateral displace-
ment were collected from a Bertec® force plate computation (model FP4060-07-1000; Bertec
Corporation, Columbus, OH, USA).

Four nonlinear measures were considered to evaluate the behavioral features of the
postural motor task: approximate entropy, largest Lyapunov exponent, detrending fluctua-
tion analysis, and correlation dimension. The nonlinear measures were calculated for each
task using values of embedding dimensions through a Matlab routine (version R2020b,
The Mathworks, Inc. US, Natick, MA, USA). The nonlinear measures were calculated for
each task using a code through Matlab (version R2020b, The Mathworks, Inc., US). The
data time series were calculated as follows. To analyze the ApEn of physiological signals,
values of m of 2 or 3 and of r ranging from 0.1 to 0.3 have been recommended. For the
calculation of the approximate entropy of the CoP data, the parameters m = 2 and r = 0.15
were commonly selected. Given time series data of length (N), the approximate entropy
was calculated using a lag value of 20, a pattern length (m) of 2, and an error tolerance (r)
of 0.2 times the standard deviation of the data file [14,20,44].

The phase space was reconstructed to determine time lag and embedding dimension
according to the method of Broomhead [45–47]. The state space reconstruction was made
for calculating the nonlinear parameters by embedding time lag (τ) copies of the time
series. The average mutual information (AMI) was used to calculate τ, and we selected the
first minimum of the AMI [17,48]. The embedding dimension or the minimum number
of variables required to form a valid state space from a given time series was calculated
using the false nearest neighbor (FNN) method, with code from the UNO Biomechanics
Laboratory. After finding these two parameters, we used the Wolf algorithm created by the
University of Nebraska Omaha (UNO) based on the Wolf’s method [49], to calculate the
large Lyapunov exponent. We used the Lyapunov exponent to quantify the chaotic behavior
of postural sway, i.e., how the movement trajectories under study were related to each
other in time. Positive values greater than zero indicate that the postural control system
derives from a process exhibiting chaotic dynamics. The largest Lyapunov exponent and
the correlation dimension were calculated using a time lag value of 20 and an embedding
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dimension of 5. The correlation dimension quantifies the dimensionality of the attractor
using the Grassberger and Procaccia method [20], well explained in the Appendix by
Gurses and Celik [50].

The detrended fluctuation analysis analyzes the self-similarities between fluctuation
patterns across progressively long time series. The DFA assesses the growth rate of de-
trended root-mean-square (RMS) values over many different measurement time scales.
To determine the alfa value (scaling exponent, α1), the code from UNO was used to first
integrate the time series and then create a new time series. Second, we calculated the root
mean of the new time series. This time series was divided into boxes of equal length, and
the best-fitting line segment determined the trend within each box. Finally, the average
distance fluctuation F(s) of each point in a time series from a local trend line was estimated
at a given scale. This method was introduced by Peng et al. [21] and permits the detection
of long-range correlations embedded in a nonstationary time series. The scaling exponent
α1, obtained from the slope of the linear regression of F(s) over on a log–log scale, quantifies
the long-range correlations in the time series. We used the code from UNO to calculate
the values of a scaling component based on some studies (see references [17,21,51,52]
for more details).

2.5. Statistical Analysis

The analyses were performed using IBM-SPSS 25.0 software. The statistical signifi-
cance level was set at p < 0.05. Descriptive statistics were used to summarize the sample
characteristics using mean ± SD (standard deviation).

Homogeneity of variances and normality of the distribution of the parameters was
tested with the Levene’s and Shapiro–Wilk tests, respectively. Some outcomes were not
normally distributed; thus, the median and interquartile range (IQR) represented the data.
The Friedman test was used to compare the differences between the postural single task,
mot-DT (A), and motor-DT (T) for each nonlinear parameter with post hoc Bonferroni
correction to evaluate pairwise comparisons.

3. Results

Most of the examined young adults (97.1%) performed mot-DT (T) (keep a quiet
standing position while typing on a smartphone keyboard) with both hands. During mot-
DT (A), 85.7% of the participants held their smartphone with the right hand. There were no
differences in the nonlinear measures between the participants who held the smartphone
with one or both hands (p > 0.05).

The results of approximate entropy, Lyapunov exponent, detrending fluctuation anal-
ysis (short-term: α1), and correlation dimension for the postural single task and the dual
tasks with different levels of difficulty in anterior-posterior and mediolateral directions are
presented in Table 2, and the post hoc analyses in Figure 2.

Table 2. Comparisons of CoP time series displacements among postural single task and easy and
difficult motor dual tasks, median (IQR).

Nonlinear
Measures Single Task Mot-DT (A) Mot-DT (T) p-Value 1

ApEn-AP 0.73 (0.62–0.91) 0.91 (0.77–1.03) 0.69 (0.57–0.91) <0.001 *
ApEn-ML 0.95 (0.72–1.20) 0.94 (0.88–1.06) 0.72 (0.49–0.96) <0.001 *
LyE-AP 1.60 (0.42–6.47) 2.64 (1.00–4.82) 0.97 (0.17–5.61) 0.091
LyE-ML 3.89 (0.93–17.81) 3.10 (1.23–5.77) 0.93 (0.18–8.27) 0.016 *
α1-AP 1.42 (1.30–1.51) 1.24 (1.16–1.34) 1.41 (1.30–1.47) <0.001 *
α1-ML 1.22 (1.09–1.32) 1.12 (1.03–1.27) 1.32 (1.24–1.51) <0.001 *
CoDim-AP 4.54 (4.49–4.59) 4.60 (4.51–4.65) 4.50 (4.38–4.60) 0.022 *
CoDim-ML 4.56 (4.49–4.67) 4.56 (4.39–4.66) 4.49 (4.38–4.55) 0.019 *

ST, single task; Mot-DT (A), easy motor dual task—performing the postural single task while simultaneously taking
the smartphone out of a bag, bringing it to the ear, and putting it back in the bag; Mot-DT (T), difficult motor dual-
task—performing the postural single task while simultaneously typing on the smartphone; ApEn, approximate
entropy; LyE, Lyapunov exponent; α1, detrending fluctuation analysis (short-term); CoDim, correlation dimension,
AP, anterior-posterior; ML, mediolateral. 1 Friedman test (differences between the three tasks); * p < 0.05.
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Figure 2. Comparisons between postural single task (ST) and easy and difficult motor dual tasks:
CoP nonlinear analysis. ST, single task; Mot-DT (A), easy motor dual task; Mot-DT (T), difficult
motor dual task; ApEn, approximate entropy; LyE, Lyapunov exponent; α1, detrending fluctuation
analysis (short-term); CoDim, correlation dimension, AP, anterior-posterior; ML, mediolateral. The
y−axis displays the median values of the nonlinear measures, and the error bars, the standard error.
* p < 0.05: Friedman test with Bonferroni correction for multiple comparisons.

3.1. Approximate Entropy

The results showed a significant difference for ApEn-AP and ApEn-ML between
thepostural single task and the dual tasks with two different challenging levels (p < 0.001 for
anterior-posterior and mediolateral directions). The post hoc analyses showed a significant
increase in ApEn-AP during the performance of the easy motor dual task compared to the
postural single task (p < 0.001) and the difficult motor dual task (p < 0.001). However, no
differences between postural the single task and the difficult motor dual task were found.
The ApEn-ML decreased from the postural single-task to both dual-task conditions; there
was a significant difference between the performance of the postural single task and that
of the difficult motor dual task (p = 0.002) and the performances of the easy and difficult
motor dual tasks (p = 0.001). However, no performance differences between the postural
single task and the easy motor dual task were found.

3.2. Lyapunov Exponent

The analysis showed a significant difference in the Lyapunov exponent in the medi-
olateral direction between the postural single task and the dual tasks with two different
challenging levels (p = 0.016). However, no differences were found between the three tasks
for the anterior-posterior direction.
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In LyE-ML, post hoc analyses showed a significant decrease between the postural
single task and the difficult motor dual task (p = 0.012). However, no differences were
found between the easy and the difficult motor dual tasks and between the postural single
the task and easy motor dual task.

3.3. Detrending Fluctuation Analysis (Short-Term: α1)

The results showed a significant difference for α1-AP (p < 0.001) and α1-ML (p < 0.001)
between postural single task and dual tasks with two different challenging levels.

The post hoc analyses showed a significant increase in α1-AP during the difficult
motor dual task compared to the easy motor dual task (p < 0.001). There was a significant
decrease in α1-AP from the postural single task to the easy motor dual task (p < 0.001).
However, no differences between postural single task and difficult motor dual task were
found. The α1-ML was higher during the difficult motor dual task than the easy motor
dual task and the postural single task; these differences were significant (p < 0.001 and
p = 0.004, respectively). There was a significant decrease in α1-ML from the postural single
task to the easy motor dual task (p = 0.036).

3.4. Correlation Dimension

The analysis showed a statistical significance for CoDim-AP (p = 0.022) and CoDim-
ML (p = 0.019) between the postural single task and the dual tasks with two different
challenging levels. The post hoc analyses showed a significant decrease in CoDim-AP from
the easy motor dual task to the difficult motor dual task (p = 0.018) and in CoDim-ML
from the postural single task to the difficult motor dual task (p = 0.018). However, no
differences were found between the postural single task and the easy motor dual task in
CoDim anterior-posterior and mediolateral directions. No significant differences were
found between the postural single task and the difficult motor dual task in CoDim anterior-
posterior direction. Furthermore, no differences were found between the easy and the
difficult motor dual tasks in CoDim-ML.

4. Discussion

In this study, we used a nonlinear analysis to infer about the complexity of the postural
task (standing posture performance) during the performance of dual tasks with different
difficulty levels. Based on the CoP nonlinear analysis, our results showed changes in
postural control complexity when comparing single-task to dual-task conditions with
different challenge levels. The results suggested that performing a difficult motor dual task
was associated with less effectiveness in postural control as well as less complexity and
adaptability of the dynamic system than performing a postural single task and an easy
motor dual task.

Across the postural single task to the difficult motor dual-task, the examined young
adults showed a significant decrease in the LyE-ML and ApEn-ML values and an increase
in the α1-ML (close to brown noise), suggesting a lower postural control adaptability to
external and internal perturbations. The ApEn-ML and α1-ML values followed the same
trend for the task performance from the easy to the difficult dual task. These results indicate
less postural control in the mediolateral center-of-pressure direction during the difficult
dual task than during the postural single task and the easy motor dual task.

Previous studies reported that performing a dual task (standing while performing a
cognitive task) was associated with a diminished complexity of postural control compared
to performing a single task (quietly standing) in older adults using multiscale entropy anal-
ysis [53,54]. A study found higher sample entropy values in the mediolateral direction for
each dual-task condition (with different challenging cognitive task levels) than for the single
task (quietly standing) in young adults, showing an increase in the efficiency of postural
control during the dual tasks [55]. Another study found no differences between standing
upright with eyes open while performing a cognitive task (dual task) and perfoming a
single task (standing upright with the eyes open) using sample entropy analysis in young
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adults. However, the authors found an increase in LyE and CoDim during the dual task
compared to the single task [56], contradicting our LyE and CoDim results. Furthermore,
the use of secondary cognitive tasks while performing a postural task appears to improve
the postural control (increased stability) due to automatized postural control [39,57]. The
results of these studies may not be the most adequate to explain our results since they use
cognitive tasks instead of secondary motor tasks. However, our study also showed that the
nonlinear analysis performed allowed us to detect a short-term change in postural control
complexity in response to adding a secondary motor task while simultaneously keeping a
standing posture.

Contrary to our difficult motor dual-task results, a study that assessed the effect of
texting using a mobile phone on the postural stability of young adults using multivariate
multiscale entropy analysis found no difference between normal stance (single task) and
normal stance with texting (dual task). However, it found differences between conditions
with and without texting in tandem stance, showing more complexity in the case of a dual
task in tandem stance [36]. An explanation for this could be that the task of texting has a
cognitive component (involves reading and typing), and in our study, the young adults
only randomly typed on the smartphone keyboard during a normal stance; in addition, the
entropy analysis method used was different.

During the difficult motor dual task, the young adults kept their gaze directed towards
the smartphone screen, reducing their field of vision (reduced visual input) compared to when
performing the postural single task and the easy motor dual task; maybe for that reason, we
observed an increase in α1, since a higher α short-term value is associated with decreased
center-of-pressure complexity during quiet standing with eyes closed in young adults [58].

Both tasks’ correlation dimension values were high, characterizing completely random
data [17]. However, the young adults demonstrated a significant reduction in the correlation
dimension in their center-of-pressure data in the mediolateral direction from the postural
single task to the difficult motor dual-task. Furthermore, this reduction was also verified
from the easy to the difficult motor dual task, but in the anterior-posterior direction. These
results can indicate that during the performance of the difficult motor dual task, there was
an increased postural control in the mediolateral and anterior-posterior center-of-pressure
components compared to the performances of the postural single task and the easy motor
dual task, respectively, due to the reduced degrees of freedom involved.

In the anterior-posterior displacement of the center of pressure, a significant decrease in
ApEn and an increase in α1 (close to brown noise) were found in young adults performing
the difficult dual task compared to when performing the easy motor dual task. These
data demonstrated that the young adults presented less complexity and adaptability of the
postural control in the anterior-posterior CoP direction during the difficult motor dual task
than during the easy motor dual task.

When comparing the performance of the postural single task to that of the easy motor
dual task, the results showed a significant decrease in α1 (anterior-posterior and mediolateral
directions, close to pink noise) and an increase in ApEn-AP, showing less regularity and more
complexity and adaptability of the postural control during the easy motor dual task than
the postural single task. During arm raising, anticipatory postural adjustments occur in the
direction opposite to the reaction forces caused by the arm movement [59], thus preserving
postural control during the perturbation caused by upper limb elevation. Furthermore, the
automatic postural responses can be modified by maturation and motor experience [60],
and in young adults spending more time using their phones in their daily lives [61,62], the
anticipatory postural adjustments during an easy motor dual-task condition are possibly
more efficient than those required when performing a postural single task, which may be
an explanation for these results. Based on the ApEn analysis, a study also found a higher
ApEn value (more random) in the CoP-AP time series during a dual task (performing the
sensory organization test while performing a cognitive task) than a single task [16].

A strength of this study is the nonlinear analysis of motor dual-task conditions with
different challenge levels, reflecting the characteristics and changes of the complexity and
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variability of the center-of-pressure displacement during natural daily life tasks. Further-
more, using a dual-task paradigm to evaluate if the nonlinear analysis could detect a
short-term change in postural control in response to the addition of a secondary motor task
while keeping a standing posture is an innovation.

Our results showed that typing on the smartphone keyboard could be more difficult
due to less complexity and adaptability of the postural system during difficult motor dual
tasks. Furthermore, the difficult motor dual task implied a closed posture and fine motor
movements to manipulate the smartphone and involved more visual monitoring and a
reduced field of view than the easy motor dual task. Based on some definitions of and
research about task difficulty (for more details, see [63–65]), we defined that typing on the
smartphone keyboard would be a difficult motor task, whereas taking the smartphone
out of a bag, bringing it to the ear, and putting it back in the bag would be an easy task.
Although there is not a clear and explicit definition of task difficulty, it also involves the
interactions between task, task performer, and task context, referring to the perception
of task performers’ difficulty in performing a task [66]. However, we did not ask the
participants about their perceived difficulty regarding the tasks. Thus, we consider this a
limitation of this study and recommend that future studies assess the perception of difficulty
by the task performer pre- and post-task to help define a motor task difficulty level.

Future research should include electromyographic and nonlinear analysis to under-
stand better the maintenance of balance by muscle activation around the ankle joint and
the complexity of the center of pressure while performing dual-task. Besides, it would be
interesting to analyze other methods of nonlinear analysis in dual-task conditions. For
example, the extended detrended fluctuation analysis can be helpful in posturography to
identify differences in postural control strategies between healthy and pathological groups
while performing everyday tasks [67]. The ApEn algorithm can produce a bias towards
regularity when counting self-matches from each subseries [15]; therefore, comparing the
results obtained through ApEn with other entropy analysis methods would be relevant.

In addition, we recommended applying this study’s methodology to other age groups,
pathological conditions, and postural tasks with different levels of demand to assess the
dual-task effect on the dynamic postural system. Finally, future research should also include
the study of other behaviors, as well as multitasking.

The present study’s nonlinear results can provide helpful information about the
secondary motor tasks’ effects on the motor complexity and adaptability of the dynamic
system of CoP during dual-task conditions. Furthermore, the differences in postural control
complexity from the single task to the easy and difficult motor dual tasks suggest that
motor demands vary in their impact on the postural sway complexity.

The increased motor task demand during dual tasks causes a loss of motor system
complexity, showing an increasingly ineffective and inadequate postural control strategy.
Therefore, it is essential in clinical practice to implement strategies to improve postural
control performance, such as dual-task training using different tasks to enhance the dynamic
organization of the center-of-pressure displacements.

5. Conclusions

We found changes in postural control complexity from postural single-task to motor
dual-task conditions with different difficulty levels using a nonlinear analysis of the center
of pressure. Furthermore, our results suggested that performing a difficult motor dual task
is associated with less effectiveness in postural control and less complexity and adaptability
of the dynamic system of the center-of-pressure displacement than performing apostural
single task and an easy motor dual task. For this reason, it is important to implement
appropriate clinical practices, such as dual-task training, to improve the postural control
complexity under dual-task conditions. We suggest that the nonlinear analysis of the center
of pressure be performed in other age groups, pathological conditions, and with postural
tasks with different levels of demand to evaluate the effect of dual tasks on the postural
system complexity.
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