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Abstract: k nearest neighbours (kNN) queries are fundamental in many applications, ranging from
data mining, recommendation system and Internet of Things, to Industry 4.0 framework applications.
In mining, specifically, it can be used for the classification of human activities, iterative closest point
registration and pattern recognition and has also been helpful for intrusion detection systems and
fault detection. Due to the importance of kNN queries, many algorithms have been proposed in the
literature, for both static and dynamic data. In this paper, we focus on exact kNN queries and present
a comprehensive survey of exact kNN queries. In particular, we study two fundamental types of
exact kNN queries: the kNN Search queries and the kNN Join queries. Our survey focuses on exact
approaches over high-dimensional data space, which covers 20 kNN Search methods and 9 kNN Join
methods. To the best of our knowledge, this is the first work of a comprehensive survey of exact kNN
queries over high-dimensional datasets. We specifically categorise the algorithms based on indexing
strategies, data and space partitioning strategies, clustering techniques and the computing paradigm.
We provide useful insights for the evolution of approaches based on the various categorisation factors,
as well as the possibility of further expansion. Lastly, we discuss some open challenges and future
research directions.

Keywords: kNN queries; kNN Join; kNN Search; high-dimensional data

1. Introduction

k nearest neighbours (kNN) queries are important in many domains, such as data min-
ing, recommendation systems, the Internet of Things (IoT) and the Industry 4.0 framework.
We summarise the kNN applications of each domain in Table 1.

We also discuss these applications in Section 6 in detail. In this paper, we focus on two
fundamental types of kNN queries, which are kNN Search and kNN Join. In kNN Search,
for a given query point, we find its k closest neighbours. On the other hand, in kNN Join,
we find the k nearest neighbour for all query points.

We have observed that most of the research has prominently focused on approximation
techniques over high-dimensional data. The purpose of the approximate nearest neighbour
(ANN) algorithms [1–5] is to improve search efficiency at the cost of accuracy, i.e., a trade-
off between search efficiency and accuracy. It means that the resultant nearest neighbours
may not really be the true k nearest neighbour outcome. On the other hand, the exact kNN
approach aims to provide true solutions without compromising accuracy. Since getting the
accurate kNN is crucial in many cases of kNN applications, we focus on exact kNN query
methods in this paper.
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Table 1. Applications of kNN queries.

Domains Applications

Sensor Networks intrusion detection systems [6,7], fault detection [8], fault identification [9], fault classification [10],
fall prediction [11], indoor localisation [12,13], etc.

Robotics arm movement recognition [14], human emotion classification [15,16], scan matching [17], object
recognition [18], fast point cloud registration [19], etc.

Mining Industry predict blast-induced ground vibration in open-pit coal mines [20], safety risk assessment and risk
prediction in underground coal mines [21], classification of human activities [22], etc.

Recommendation Systems recommending products, recommending media to users and showing targeted relevant
advertisements to customers and many more [23–25]

Data Mining pattern recognition [26–29], regression [30–32], outlier detection [33–36]

Machine Learning
text categorisation [37,38], question answering [39], text mining [40], face recognition [41,42], emotion
recognition [43,44], image recognition [45,46], handwriting recognition [47,48] and credit card fraud

detection [49]

Others time series [50], economic forecasting and many more applications [51]

kNN in Low-dimensional Space. Due to the large number of applications that we dis-
cussed in Section 6, kNN queries have been extensively studied in the literature, starting
from low-dimensional space. In the early seventies, Donald E. Knuth, referred to this
problem as the post-office problem [52], i.e., the location of a house with respect to the
closest post office. To find the k closest neighbour for any given query point, we can utilise
the fundamental kNN Search approach, which is often called the brute force (BF) method
or the exhaustive search approach. For the given query points, it scans the entire dataset to
find the k closest points based on the distances between the query point and all other data
points, which is computationally intensive. The cost of the Euclidean distance of a single
kNN query is O(nd), where n is the number of samples and d is the dimensionality of the
datasets. When the object dataset is large or when many queries need to be addressed,
the query run time increases to a very high level.

The kNN Join was first introduced by Böhm and Krebs [53,54]. The study on kNN
Join was inspired by the fact that computing the nearest neighbour for all query points
at once speeds up the performance significantly compared to computing individually. It
helps to improve the performance of many applications, such as k means clustering [55,56],
outlier detection [57,58], kNN classification [59,60], k distance diagrams, missing value
computation, etc. [54].

Several studies address kNN queries in low-dimensional space [61–68]. In order to
efficiently process the low-dimensional datasets, a variety of R-tree versions with different
heuristic improvements have been proposed. R-tree [61] divides the minimum bounding
rectangle (MBR) and when dividing an MBR, R*-tree [62] takes overlap into account. This
helps to enhance search efficiency. In the Hilbert R-tree [63], related MBRs are grouped
together based on Hilbert ordering. In PR-trees [64], priority rectangles are used to handle
large volumes of data. These variations of the R-tree are primarily used to index low-
dimensional data. In addition, K-Dimensional tree (KD-tree) [65] is a popular approach for
avoiding exhaustively comparing the query point with every data item point. It divides the
feature space into a binary search tree, which is used to quickly find the closest neighbours
of any point. The branch and bound approach (Ball-tree) [66] was employed to provide the
speedy computation of the kNN by removing the requirement to calculate several distances.
As a more effective approach to these challenging search issues, the vantage point tree
(VP tree) [67] is offered in different variations. Both KD trees and VP trees can be seen as
very exceptional examples belonging to the divide-and-conquer algorithmic paradigm and
deriving from certain uniformly continuous functionals. In [68], the researchers provide
the multi-vantage point (MVP) tree, a distance-based index structure for similarity searches.
The MVP tree divides the space into spherical slices at each level using multiple vantage
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points. It also makes use of the pre-calculated distances between the data points and the
vantage points.

However, these effective low-dimensional algorithms are unable to scale well when
dealing with high-dimensional (HD) datasets.
kNN in High-dimensional Space. Several application fields, such as e-commerce, network
security, molecular biology, industrial applications and many more, have become more
important in recent years and represent their data as high-dimensional feature vectors.
For example, the massive enhancement of products and users in recent years has encoun-
tered several significant issues. The recommendation system [23–25] has been used in many
different fields and it helps to find product suggestions on e-commerce sites while users are
actively using the site. Moreover, network security and network protection are becoming
more important than ever before because of the exponential rise of network-based services
and the sharing of information on networks, which also raises the threat of network attacks
and breaches [69,70]. The key research problem in these fields is the object-based searching
of relevant multimedia objects such as images, videos, audio, etc.

Certain traditional indexing algorithms, such as the B-tree and R-tree families, are
optimised for a small number of dimensions. However, as the number of dimensions
grows, the performance of these algorithms degrades faster. As a result, a sequential
linear scan emerges as the quickest retrieval technique. This problem is often called
the “curse of dimensionality” [71–73]. The typical strategy to deal with this problem
is to either extend these low-dimensional kNN query techniques or propose new ap-
proaches. Therefore, during the last several years, there have been a lot of studies done
on kNN query processing in high-dimensional spaces and many novel high-dimensional
approaches [74–76] have been presented. Processing HD datasets is challenging. Even if
we consider moderate-sized datasets, high dimensionality can act as an additional potential
problem for them. Moreover, the combination of HD datasets and large-sized datasets
in the real world can pose additional difficulty. So, in order to use the HD dataset, it
needs to be processed with the help of efficient HD techniques because, as we discussed
earlier, it is difficult for traditional low-dimensional approaches to be effective in high-
dimensional space.

The kNN approach encounters two common challenges in high-dimensional space:
finding the kNN and computing distance. To speed up the kNN queries, many solutions
are available with datasets of different sizes, dimensionalities and distributions. Below, we
mentioned some commonly used strategies.
Parallelisation. One solution to improve the performance is to parallelise the computation,

which can be done using a cluster, GPU or multiple cores on a single machine. Rather than
reducing the number of computations, this method divides the task into many parts, which
are processed concurrently on separate processing units. For instance, the researchers
in [77] show a significant speedup by parallelising the brute-force search using GPUs.
Dimensionality reduction. Dimensionality reduction (DR) techniques map the data points
from an HD space to a 1D or low-dimensional space because searching in a lower-
dimensional space is faster and more cost-effective. Various approaches have been pro-
posed to reduce dimensionality. For example, Principal component analysis (PCA) [78–81]
is one of the most famous and widely used Dimensionality Reduction Approaches because
of its efficiency and scalability.
Partitioning methods. The goal of the approaches that follow the partitioning strategies

is to minimise the distance computation and speed up the search. We classified all the
approaches into two broad categories, i.e., space-based and data-based. Details can be found
in Section 3. The data points are used to create a tree structure that divides the data space.
The resultant tree effectively prunes the unnecessary distance calculation. There are several
existing techniques that use various tree structures, such as R-tree, R*-tree, Ball tree, KD-
tree, etc. These approaches perform well for low-dimensional data but usually do not work
well for high-dimensional datasets, as mentioned before. Therefore, different new tree
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structures have been proposed to deal with high-dimensional datasets such as M-tree [82],
∆-tree [74], HDR-tree [83], etc.
Survey Scope. Our survey in this paper focuses on exact kNN querying techniques (i.e.,
kNN Search and kNN Join) over high-dimensional space. Given that an increasing number
of works have addressed exact kNN queries over high-dimensional data in recent years,
the existing survey only studies kNN in low-dimensional space [84–86] or approximate
approaches over high-dimensional data [87,88]. In addition, MapReduce-based (distributed
and parallel) survey work is presented in [89,90] but there is no work available that focuses
on all the exact kNN Join techniques. We aim to provide a comprehensive overview of
existing techniques along with their classification and a comparative analysis, which is
proposed for HD datasets. We summarise the motivation of our work in the following.

1. kNN queries in high-dimensional space are widely used and are becoming increasingly
popular in various applications in recent years.

2. In kNN Search, though many works have been proposed in the literature, there is no
survey on exact kNN over high-dimensional data.

3. In kNN Join, the comparative work of various exact and approximate MapReduce-
based approaches is studied [89,90], but there is no survey available that prominently
focuses on all the exact kNN Join techniques over high-dimensional space.

Contribution. This paper outlines a detailed analysis of the state-of-the-art solutions for
kNN Search as well as kNN Join over high-dimensional data. Following are our contribu-
tions:

1. We present a comprehensive overview of the kNN queries over high-dimensional data,
which covers 20 kNN Search methods and 9 kNN Join methods. As per our knowledge,
this is the first detailed study of the exact kNN approaches in high-dimensional data
space.

2. We systematically classify and compare existing strategies. For each approach, we
explain in detail its method, basic features, as well as its strengths and weaknesses
over other methods. As a result, we summed up the existing techniques.

3. We discuss a number of open challenges as well as future research directions for
resolving kNN query problems.

Outline of the Paper. Further sections of the paper are structured as follows. We define
the basic terminology along with the problem definition in Section 2. In Section 3, we
classify various kNN queries considering different classification factors. In Sections 4 and 5,
we give an overview of the kNN queries and discuss all the kNN Search and kNN Join
approaches based on the Computing Paradigm classification strategy. Applications of kNN
are discussed in Section 6. In Section 7, we provide a comparative study of the discussed
approaches and a conclusion in Section 8. Finally, challenges and future directions are
discussed in Section 9.

2. Background

In this section, we give formal definitions of the most common terms used in this
paper and also discuss related work. A summary of frequently used symbols is given in
Table 2.

Table 2. Summary of commonly used symbol and definitions.

Symbols Definitions

R, S Datasets
ri, sj Data points of R and S dataset

k number of nearest neighbours
d(x, y) Euclidean distance function

d, D Dimensionality of original dataset
q Query data point
Rd d-dimensional space
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2.1. Definitions

Here, we provide the definitions for kNN Search, kNN Join, distance range, k Distance
Join and the reverse kNN Join operation.

Definition 1 (kNN Search). Let R = {r1, r2, . . . , ri} be a set of data points in d-dimensional
space Rd, q be a query data point in Rd, the function d(q, ri) to compute the distance between two
data points q, and ri be the distance function and k be a positive natural number. Then, the result of
the kNN Search with respect to q and R is an ordered collection, kNN(R, q, k) ⊆ R, which contains
k(1 ≤ k ≤ |R|) different data points with the k least distances from q, such that kNN(R, q, k) =
{r1, r2, . . . , rk} ⊆ R, d(ri, q) ≤ d(rj, q) if 1 ≤ i < j ≤ k and ∀r ∈ R|kNN(R, q, K); we have
d(ri, q) ≤ d(r, q), 1 ≤ i ≤ k.

Example 1. Figure 1 depicts an example of a kNN Search with k = 4. For the query point of dataset
R = {r1, r2, r3}, the kNN Search process finds the four nearest neighbours from the object dataset
S = {s1, s2, s3, . . . , s7}.

Figure 1. An example of kNN Search with k = 4.

In order to facilitate similarity searches, the similarity join has emerged as a crucial
fundamental database. It combines the two sets of multidimensional/high-dimensional
data so that the result is all the pairs of similar objects. The similarity join can be categorised
mainly into two types: the distance range which is also called distance range join and the
k Distance Join. In a study, Böhm and Krebs [53] introduced the third type of similarity
join, i.e., kNN Join. Sometimes, incremental distance join is also considered a type of
similarity join.

Definition 2 (kNN Join). Let R and S be the two datasets of data points in d-dimensional space
Rd, the function d(ri, sj) to compute the distance between two data points ri and sj be the Euclidean
distance function and k be a positive natural number. Then, the result of kNN Join query is a set
kNNJ(R, S, k) ⊆ R× S, which includes for every point of R(ri ∈ R) its k closest neighbours in
S : kNNJ(R, S, k) = {(ri, sj) : ri ∈ R, sj ∈ kNN(S, ri, k)}.

Example 2. As shown in Figure 2, for a given value k = 2, the kNN Join process finds the two
nearest neighbours from the object dataset S = {s1, s2, s3, . . . , s7} for every item in the query dataset
R = {r1, r2, r3}.

Figure 2. An example of kNN Join with k = 2.
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Definition 3 (Distance Range). A distance range can be defined as for the given two datasets,
i.e., R = {r1, r2, r3, . . . , rn} and S = {s1, s2, s3, . . . , sm}, finding the set of all pairs within a given
distance range that {(r, s) : r ∈ R, s ∈ S, d(r, s) ≤ θ}, where θ is a threshold defined by the users.

The distance range join is the most common and a much-studied similarity join
technique. As a result, "similarity join" and "distance range join" are frequently used syn-
onymously.

Definition 4 (k-Distance Join). The closest point query, also known as the k Distance Join, can
be defined as for the given two datasets, i.e., R = {r1, r2, r3, . . . , rn} and S = {s1, s2, s3, . . . , sm},
finding the set of the k most similar pairs crossing R and S so that KDJ(R, S) ⊆ R× S, KDJ(R,S)
has k elements where 1 ≤ k ≤ min(n, m) and d(ri, sj) ≤ d(rk, sl) if (ri, sj) ∈ KDJ(R, S) and
(rk, sl) ∈ R×S|KDJ(R, S).

Definition 5 (Reverse kNN Join). Let R and S be the two datasets of points in d-dimensional
space Rd, the Euclidean distance function d(ri, sj) compute the distance between two data points ri
and sj and the natural number k ∈ N+. Then, the results of reverse kNN Join with respect to the
query data point sj is a set of data points RkNN(R, sj) ⊆ R that includes sj as one of their kNNs.
RkNN(R, sj, k) = {r1, r2, . . . , rn} ⊆ R, such that ∀r ∈ R ∧ sj ∈ S.

Definition 6 (Dynamic kNN Join). Let R and S be the two datasets of points in d-dimensional
space Rd, the Euclidean distance function d(ri, sj) compute the distance between two data points ri
and sj and the natural number k ∈ N+. Then, the dynamic kNN Join is the ability to dynamically
join similar data points DkNNJ(R, S, k) ⊆ R×S in Rd, which includes for every point of R its
k(1 ≤ k ≤ |S|) closest neighbours in S : DkNNJ(R, S, k) = (ri, sj) : ∀ri ∈ R, sj ∈ kNN(S, ri, k)
and maintains (updates) the complete join result with every update operation, i.e., for insertion or
deletion of any data item si ∈ S, finding the affected user set ra : RkNN(si)|si ∈ S∧ RkNN(si) ⊂
R and updating the affected user set kNN(S, ra, k) ⊆ R×S.

2.2. Related Work

It is a prevalent belief that finding the exact kNN over a high-dimensional dataset
is a very expensive operation. The approximate nearest neighbour search (ANNS) does
not guarantee providing the true nearest neighbours (NNs), but it sufficiently returns the
nearby data points. It can be carried out effectively and is adequate for a wide range of
applications, attracting a great deal of research effort.
Approximate Nearest Neighbour. Let S = {s1, s2, . . . , si} be a set of data points in d-
dimensional space Rd, q be a query data point in Rd and s∗ be the q’s kNN r∗ = d(q, s∗).
The s is the k-th nearest neighbour of q and rp = d(q, p). Given θ > 0 (or c > 1),
then (s, rp) ∈ Rd is a (1 + θ)-approximate (or c-approximate) solution to the kNN query
kNN(q, S) if r∗ ≤ rp ≤ (1 + θ)r∗ (or r∗ ≤ rp ≤ cr∗ for some constant c).

In several works, the issue of ANNS over HD data has been widely studied. Hundreds
of works have been proposed in order to address the issues from various perspectives.
The curse of dimensionality causes researchers to focus on the approximate solution, as it
returns as many true nearest neighbours as possible. In a few surveys, researchers talked
about the latest ANNS techniques and gave a full experimental analysis. The cost of a
brute-force kNN Search is O(d.n). Although we can overcome the linear dependency on
n, the high dimensionality of the dataset remains a challenge. Here, n is the number of
data points and d is the dimensionality of the dataset. In some cases, it is not necessary to
search for the exact closest neighbours. For example, in recommendation systems, the most
similar item is not always needed; in fact, things that are moderately relevant may provide
some possibility for unexpected discovery. In the kNN classification, neighbours that are
near one another but not essentially the closest ones are likely to belong to the same class.

ANN algorithms provide faster results over a high-dimensional dataset. These al-
gorithms are mostly classified into three main categories: hashing-based, partition-based
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and graph-based. In ANN, locality-sensitive hashing (LSH)-based techniques [1] are very
famous. Here, the goal is to apply specific hash functions to effectively map data points
to discrete buckets, ensuring that points with similar characteristics are placed in the
same bucket.
k-Nearest Neighbour Graph. The kNN graph (kNNG) for a set of data points (ver-
tices) V has an edge connecting each v ∈ V to its corresponding kNN in V. The graph-
based techniques constructed a proximity graph in which each data point in the dataset
R = {r1, r2, . . . , ri} is represented as a node and the edges connecting some nodes to their
kNN form a kNNG G(V, E) in d-dimensional space Rd. These approaches are based on the
principle that a neighbour’s neighbour is probably also a neighbour. Its building process is
a significant one that has a lot of applications on the web, such as collaborative filtering [91],
similarity search and many more in data mining and machine learning [92]. Nearest
neighbours are retrieved for the given query point using greedy, implementation-specific
graph traversals [93–95]. The brute-force approach to kNNG construction is only feasible
for small datasets and has an O(n2) cost. The classifications for graph-based approaches
are broad. One can build an exact or approximate kNNG that records the top-k NN for
every node. Approximation kNNG generation techniques have recently received a lot of
attention, especially in high-dimensional space [96–100].

The issue of high dimensionality and large datasets in graph-based ANNS has been
extensively researched in the literature [101]. To solve this problem, many methods
have been proposed using different optimisation techniques [95,102–105]. Existing sur-
veys [88,106–108] carried out comprehensive comparative studies, conducted experimental
analyses of the existing approaches and provided some useful insights.

3. Classification of kNN Queries

Our work categorises exact kNN query algorithms based on five factors, offering a
different perspective on existing work. These factors enable us to group similar approaches
together, which provides a basis for further expansion. It is easy to identify the problems
when they use similar methods. Therefore, we categorise the existing approaches based on
their techniques.

Here, we classified all the k nearest neighbour query approaches based on the follow-
ing factors:

1. Indexing Technique—index-based techniques speed up the kNN Search operation over
HD datasets with an extra space cost of building certain data structures in advance.
We discussed a few commonly used index structures such as R-trees, iDistance and so
on in the below Indexing Technique section.

2. Partitioning strategies—this partitions the whole dataset based on data-based and
space-based partitioning. Using an appropriate partitioning strategy determines how
well an approach will perform, which makes it an important computational parameter.
The space-based approach does not require any knowledge of the actual dataset. It
divides the entire data space into two or more partitions and is recursively applied to
every newly generated region to further partition the space. On the other hand, a data-
based approach adjusts the size and position of divisions based on the distribution of
the data.

3. Dimensionality reduction strategy—this is computationally intensive in terms of pro-
cessing the HD dataset. Thus, various researchers used the DR strategy, which helps
in reducing the dimensions in order to process them efficiently. It basically reduces
the dimensionality by projecting the high-dimensional data to a low-dimensional
space, which captures the majority of important information. Examples include PCA,
iDistance, etc.

4. Distance computation approach—when determining the kNN, the Distance Metric
plays a very important role. So, to search for the k closest neighbour data points, we
need to find the distance between the query point and all the other data points. Many
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computation approaches are available to find the similarity between points, but in our
case, the majority of approaches use the Euclidean distance.

5. Computing Paradigm—we also discuss (in Sections 4 and 5) the various computing
approaches, such as memory-based, I/O-based, parallel and distributed.

For a clear understanding of the methods and their development, we have included
a timeline of the kNN Join and kNN Search techniques in Figure 3. We included all of
the kNN Join techniques in the top region of the figure and the kNN Search techniques
in the lower region. In Figure 4, we also present the block flow diagram of exact kNN
query techniques based on the different classification categories we talked about above.
Almost all the kNN queries that we have discussed in our work utilise Euclidean distance,
except the BP technique, which uses the Bregman distance. Here, we indicate the Bregman
distance-based technique with the β symbol. The * symbol denotes a method that employs
both distributed and parallel Computing Paradigms.

Figure 3. Timeline of kNN Join and kNN Searching techniques.

Figure 4. Block flow diagram of kNN query techniques based on the different classification categories
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In Tables 3 and 4, we have provided a comparative study of existing kNN Search and
kNN Join techniques. We compared the techniques based on different classification strate-
gies such as the Indexing Technique, Partitioning Approach, Dimensionality Reduction
Approach, Computing Paradigm and also Distance Metric. We also provided additional
information such as the approach used, i.e., exact or both (exact+approximate), dataset di-
mensionality and whether the researchers took dynamic datasets into account or not. Here,
we tried to summarise all the existing techniques, and details about them are discussed in
Sections 4 and 5 to get a gist of their approach.

Table 3. Summary of kNN Search Techniques.

Comp.
Para.

Part n

Strat.
Indexing

Technique Techniques Dim. Reduction
Approach App. Synth.

Dim.
Real.
Dim.

Dyn.
Data

Dist.
Mt.

Time.
Comp.

I/O

Space VA+-file VA+-file
[109] KLT Both N/A Mod. No L2 O(log n) *

Data

B+-tree

iDistance
[110,111] iDistance Exact Mod. Mod. Yes L2 O(log n) *

Diagonal
Ordering

[112]
PCA Exact Mod. Mod. No L2 O(log n) *

N/A OTI & EOTI
[113] N/A Exact N/A High+ No L2 O(n)

BB-trees BP [114] PCCP Both High High No Breg.
dist.

O(nlogn)
*

MEM.

Space
R-tree PL-Tree [115] CPF Exact Mod. Mod. Yes L2 O(log n) *

Hash-based HC-O [116] N/A Both N/A High+ No L2 O(n)

Data

∆-tree ∆-tree [74] PCA Exact Moerate Mod. Yes L2 O(n) *

1D array Array-index
[117] array-index Exact Mod. N/A No L2 O(log n) *

∆+-tree ∆+-tree
[74,118] PCA Exact Mod. Mod. Yes L2 O(n) *

ACDB ACDB [119] N/A Exact N/A Mod. No L2 O(nlogn)
*

B+-tree
iDistance-PS

[120] iDistance Exact Mod. High No L2 O(n) *

iDStar [115] iDistance Exact High+ High No L2 O(n) *

PARL.

Space
N/A

CU-kNN
[121] 1D reductn Exact Mod. Mod. No L2 O(n) *

TBiS [122] N/A Exact N/A High No L2 O(log2 n)

Randomised
k dim. tree

kNN-PA
[123] N/A Both High+ High+ No L2 O(nlogn)

*

Data N/A HkNN [124] N/A Exact High+ N/A No L2 O(n) *

No Partn N/A

BF-CUDA
[77] N/A Exact Mod. Mod. No L2 O(n) *

CUBLAS [75] N/A Exact High High No L2 O(log n) *

DISTR. Space Quad-trees QDBI [125] N/A Exact Mod. N/A No L2 O(log n) *

Comp Para, computing paradigm; Part n Strat, partition strategy; Dim Reduct n App, dimensionality reduction
approach; Synth Dim, synthetic datasets dimensionality; Real Dim, real-world datasets dimensionality; Dyn Data,
support dynamic datasets; Dist Mt, distance metric; Time Comp, time complexity; Space, space-based; Data,
data-based; No Part n, no partition; PCA, Principal Component Analysis; KLT, Karhunen Loève Transform; PCCP,
Pearson Correlation Coefficient-based Partition; CPF, cantor pairing function; Both, exact and approximate; Mod,
moderate dimensionality (2D–99D); High, high dimensionality (100D–499D); High+, very high dimensionality
(500D and above); N/A, not applicable(does not use any); No Partition, do not use any partition technique; L2,
Euclidean distance, *, time complexity is not informed by the authors.
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Table 4. Summary of kNN Join Techniques.

Comp. Para. Part n

Strat.
Indexing

Technique Techniques Dim. Reduct
n App. App. Synth.

Dim.
Real.
Dim.

Dyn.
Data

Dist.
Mt.

Time
Comp.

I/O

Space

R-Tree MuX [53,54] N/A Exact Mod. Mod. No L2 O(nlogn)

N/A Gorder [126] PCA Exact Mod. Mod. No L2 O(n2) *

inverted
index

IIB & IIIB
[127] N/A Exact High+ Mod. No L2 O(nlogn)

*

Data iDistance
iJoin [128] PCA Exact Mod. Mod. No L2 O(nlogn)

*

kNNJoin+

[76] iDistance Exact Mod. Mod. Yes L2 O(nlogn)
*

MEM. Data HDR-Tree

HDR-Tree
[83] PCA Both High High Yes L2 O(nlogn)

EkNN [129] PCA Exact N/A High+ Yes L2 O(nlogn)
*

DISTR. & PARL.
Space R-Tree H-BNLJ &

H-BRJ [130] N/A Both Mod. Mod. No L2 O(n2) *

Data N/A PGBJ [58] N/A Both Mod. Mod. No L2 O(nlogn)
*

Comp Para, computing paradigm; Part n Strat, partition strategy; Dim Reduct n App, dimensionality reduction
approach; Synth Dim, synthetic datasets dimensionality; Real Dim, real-world datasets dimensionality; Dyn Data,
support dynamic datasets; Dist Mt, distance metric; Time Comp, time complexity; Space, space-based; Data,
data-based; PCA, Principal Component Analysis; Both, exact and approximate; Mod, moderate dimensionality
(2D–99D); High, high dimensionality (100D–499D); High+, very high dimensionality (500D and above); N/A, not
applicable(does not use any); No Partition, do not use any partition technique; L2, Euclidean distance, *, time
complexity is not informed by the authors.

In Tables 3 and 4, we used several abbreviations. We used “Both” to indicate that
the work provided both solutions, i.e., exact and approximate. Many researchers have
discussed the approximate strategy to improve the effectiveness of an exact technique
in their work. In this paper, we focus only on the exact solutions. So, readers can refer
to their work if they want to dig deep into it. Dimensionality is denoted as "Dim." in
the table. We have indicated the three different ranges here—mod., high and high+—
which are termed moderate high-dimensional datasets, high-dimensional datasets and very
high-dimensional datasets. There is not any standard dimension for high dimensionality.
For example, work with 12D [117], 30D [112], 32D [109] and 500D [129] datasets is regarded
as a high-dimensional dataset. Therefore, considering the scenario in mind, we divide
the dimensionality into three different ranges. Most existing techniques are classified into
the first category. We included all 2D to 99D in the first range. We included works in the
second range that conducted experiments on datasets with dimensionalities ranging from
100D to 499D. In the third range, we consider the dataset to have a dimensionality equal
to or greater than 500D. "Dyn. Data" is referred to as whether the existing approach uses
dynamic datasets or not. Time complexity is denoted as “Time comp.” The majority of the
techniques did not include an algorithm with time complexity in their work. Therefore,
we calculated it based on the related papers’ descriptions and experimental estimates.
We marked them with * (asterisk) symbols. We basically computed the kNN for the n
data points.

In iDistance [110,111] and iDistance-PS [120], the researchers tested both Partitioning
Approaches, namely space-based and data-based approaches. To avoid the complexity of
tables, we mention them as “data-based” in the partitioning strategy taxonomy, as it was
shown in their experimental study that the data-based approach performed better than the
space-based approach. On the other hand, in the kNN-PA [123] work, they also performed
the experiments using both the strategies, i.e., cluster-based (data-based) and hyperplane-
based (space-based). They observed that the space-based approach outperforms the data-
based approach. Therefore, we categorise this approach as the space-based approach.
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As shown in Tables 3 and 4, some of the existing techniques use traditional indexing
strategies (like the R-tree and B-tree families). The majority of the approaches propose
their own indexing strategies or use various different kinds of Indexing Techniques. It
can be seen that some parallel and distributed approaches do not implement any indexing
strategy, such as BF-CUDA [77,131], CUBLAS [75], CU-kNN [121], TBiS [122], etc. Thus,
for those who are not using any Indexing Techniques, we mark them as “N/A” in the
table. We classified the Partitioning Approaches into two major categories, i.e., Data
(data-based) and Space (space-based) Partitioning. Here, we consider the cluster-based
partitioning strategy as a data-based technique. We add all the remaining approaches that
do not use any partition strategy into the “No Partition” category. In the dimensionality-
reduction approach, the majority of the parallel and distributed approaches do not use
dimensionality-reduction techniques. Therefore, we mark them as N/A. The rest use either
the PCA, iDistance or a different reduction strategy. The shortcuts used in the Computing
Paradigm stand for I/O-based (I/O), Memory-based (Memory), Parallel and Distributed.
In the Computing Paradigm, we specified the predominant approach for a given technique.
For example, if any technique is mentioned as an I/O-based technique, that does not mean
it is an I/O-based technique only. It also involves main memory, but since the significance
of I/O was much greater as compared to main memory, we classified it as an I/O technique.
Memory-based approaches are those in which the majority of the operations are carried
out in the main memory. For the Distance Metric, almost all approaches use Euclidean
distance except the BrePartition (BP) Approach. It uses non-metric Bregman divergences
for distance computation.

3.1. Indexing Technique

Index-based techniques seem to be a more promising solution because they have the
ability to perform a faster kNN Search operation over a high-dimensional dataset. Many
researchers worked on the nearest neighbour query problem in high-dimensional space
and came up with novel indexing strategies such as R-trees [61], B+-tree [132], pyramid
technique [133], M-Tree [82], iDistance [110,111], etc., to solve the problems with existing
methods for finding kNN over high-dimensional data.

The index-based kNN queries involve significant I/O overhead due to the high number
of accesses, but they are optimised for CPU cost. Furthermore, the index often fails in
high-dimensional space, where it performs worse than a sequential scan. Many researchers
have come up with novel, efficient solutions to address this issue.

As mentioned in Tables 3 and 4, some existing techniques use traditional indexing
strategies (such as the R-tree and B-tree families). On the other hand, the majority of
the approaches use various different kinds of Indexing Techniques. Like the array-index
approach [117,134], it uses a one-dimensional array-index, which is a simple, compact, but
still efficient index structure. Researchers present a new indexing strategy known as a
∆-tree [74] to accelerate the processing of high-dimensional kNN queries in main-memory.
It is a multi-tiered structure where every level represents a different dimension. These
multi-level structures provide better pruning power and lower distance computation costs.
To make the search power more effective, they also proposed the ∆+-tree approach [74,118].
For high-dimensional indexing, the kNN query process is enhanced by using adaptive
cluster distance bounds in the study of [119]. For effective data management and query
processing in peer-to-peer systems, the researchers came up with a distributed multidi-
mensional data index (QDBI) [125] that is based on quad-trees. Here, every peer uses an
MX-CIF quad-tree to generate index items for their high-dimensional data. Every index
item then obtains a code in accordance with the MX-CIF quad-tree. To enable effective
point queries, range queries and kNN queries, the authors introduce a novel Indexing
Technique, PL-Tree [115]. This method uses algebraic methods to dynamically index items,
which helps to deal with the problem of high dimensionality. The HC-O [116] technique
uses a hash-based index. It is a global approach, which works with both accurate tree-based
indexes and LSH methods. The hash-based index stores point identifiers in its hash buckets.
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To speed up search performance, they created an effective integrated index structure [114]
that includes all of the subspaces and uses Bregman Ball trees (BB-trees) in partitioned low-
dimensional subspaces. This structure is called the BB-forest. BB-trees [135] are effective at
handling low-dimensional data; they are a good fit for the approach where data is divided
into low-dimensional subspaces. It can be seen that some parallel and distributed kNN
query approaches do not implement any indexing strategy such as BF-CUDA [77,131],
CUBLAS [75], CU-kNN [121], TBiS [122], etc. Therefore, we indicated all these techniques
as “N/A” in the tables.
R-tree family. One of the most common index structures is the R-tree family, which includes
several multidimensional and high-dimensional indexing techniques [61–64,136–138]. A dy-
namic, balanced indexing structure called an R-tree uses MBRs to describe data division.
If an R-tree node already has enough MBRs, it splits into two nodes. It can be observed
that the different R-tree versions use a varied Partitioning Approach with various heuristic
improvements. R-trees [61] partition the MBR, and R*-trees [62] take into account overlap
when dividing an MBR, which results in enhanced search efficiency. The Hilbert R-tree [63]
is used to group together related MBRs with the help of an ordering based on the Hilbert
curve. For high volumes of data, PR-trees [64] employ priority rectangles. However, all
these variations of the R-tree are mostly used for indexing low-dimensional data and for
managing high-dimensional data, a handful of R-tree-based structures such as TV-trees and
X-trees are devised. TV-trees [137] minimise dimensionality by storing just the most crucial
information about data items, i.e., by arranging dimensions according to their significance.
X-trees [136] propose the idea of supernodes to reduce the overlapping in high-dimensional
space that keeps the directory as hierarchical as possible and to try to prevent division in
the directory. Yang, C. et al. [83] present a novel index structure called the HDR-Tree to
efficiently find affected users. It performs dimensionality reduction by using clustering and
PCA to improve search effectiveness. A detailed discussion of the HDR-Tree is available in
Section 5.
B+-tree. The objective of a few modern studies was to design Indexing Techniques
that could provide a one-way lossy mapping function from a multi-dimensional/high-
dimensional space to a one-dimensional space, which could be effectively indexed in a
conventional B+-tree. The use of the B+-tree structure is helpful for the method because
it incorporates all of its properties, such as quick search, dynamic updating and height-
balanced structure. Additionally, it is simple to use the B+-tree method on any existing
approaches.
iDistance. The iDistance divides the data space into m parts, assigns m reference points
to each partition and then converts each partition into a one-dimensional space based on
the similarity of other data points to the reference point. These values are then mapped
to the B+-tree so that they can be searched, accessed and updated more quickly. We have
discussed the iDistance indexing strategy in Section 1. You can also refer to the original
work of iDistance [110,111] for more detailed info.
Others. In [109], the authors introduce an approach based on the scalar quantisation of
data called the VA+-file approach. It is mostly useful for searching the kNN in non-uniform
datasets. In kNN-PA [123], researchers introduced the parallel tree-building technique
called randomised k dimensional tree for indexing structures. This method supports
different kinds of trees, such as ball trees, KD-trees, etc., and is used to partition and filter
spatial searches. The inverted index approach [127] uses inverted lists. It helps to avoid
unnecessary traversals to every item in the object dataset. They are more advantageous for
the sparse dataset.

In the kNN Join Indexing Technique category, the iDistance indexing strategy (B+-
tree based index structure) is used in a few techniques. iJoin and kNNJoin+ both use
the iDistance approach; we renamed it iDistance rather than B+ tree to make it easier
for readers to understand. The term “N/A” refers to techniques that do not employ any
indexing strategy.
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3.2. Partitioning Strategies

In this section, we have classified various high-dimensional kNN query techniques
based on the partitioning schemes. As shown in Tables 3 and 4, we basically divided the
approaches into three categories, i.e., space-based (Space) partitioning, data-based (Data)
partitioning and no partitioning (No Partition). The data-based approaches can be further
divided into Voronoi-diagram-based partitioning, cluster-based partitioning and others.
However, we do not discuss them in detail to ease our presentation. Most of the approaches
adopted the k means clustering approach. Some parallel and distributed approaches did
not use any partitioning strategies. So, we added the rest of the approaches to the “Others”
category. Approaches like BF-CUDA and CUBLAS, which do not use any partitioning
strategy, are added to the “No Partition” category.
Data-based Partitioning strategy. A collection of data points is divided into a number of
groups using a partitional data-based Partitioning Approach. It creates k(N ≥ k) divisions
of the data, each of which represents a cluster, where N indicates the number of data
points. In other words, it divides the data into k groups by meeting the criteria listed below:
Each point belongs to precisely one group and every group includes at least one point.
Data Partitioning algorithms work better for creating indexes because of their adaptability
to data distributions. For example, the performance of techniques such as ∆-tree [74],
∆+-tree [74,118], BP [114], kNNJoin+ [76], HDR-tree [83], EkNNJ [129], etc., is greatly
improved with a data-based partitioning strategy. This makes retrieval much faster in real-
world environments. Because many real-world datasets are not homogeneous, data-based
partitioning techniques get an advantage. For example, the researchers carried out several
experiments on the iDistance technique using different partitioning techniques and they
found that the data-based partitioning method of iDistance consistently outperforms the
other methods. The main benefit of iDistance is its data-adaptive indexing and it is also
shown in their work [110,111] how it helps to enhance the overall performance.
Space-based partitioning strategy. Space Partitioning algorithms divide the space into
two or more subsets or regions in a fixed way (i.e., uniformly) or in a way that changes
over time (i.e., adaptively). It is an effective technique to organise data in d-dimensional
space. The space-based sort does not require the information of the original data. Tree-type
data structures are often related to traditional Space Partitioning. Due to the fact that data
distributions for a higher feature space are likely to be non-uniform and sparse, techniques
based on regular space partitions can suffer from significant overhead costs [71].

Several approaches use standard partitioning schemes for high-dimensional data
spaces. For example, R-tree-based approaches represent the space partition via MBRs. One
such technique that iteratively splits the original d-dimensional data space into 2d sub-
spaces is the quad-tree [139]. J. Berchtold et al. presented a pyramid-technique [133] to allow
effective range queries. It is based on a unique Partitioning Approach and is optimised
for high-dimensional datasets. The well known examples of space-based approaches are:
iDistance, the R-tree family, Kd-tree, STR [140] and Quad-tree [139].

3.3. Dimensionality Reduction Strategy

Dimensionality reduction (DR) is a very popular strategy that has been widely used
for high-dimensional dataset processing and it has also turned out to be a successful one.
In real-life applications, the majority of important data are captured in the initial few
dimensions only. Even though dimensionality could be reduced, the underlying data items
might still have huge dimensionality because it is not necessarily possible to achieve this
without losing important information.

A rapidly expanding volume of huge and high-dimensional data is used to create rich
information in today’s data-based applications. Although the storage of this data is very
common, properly indexing and retrieving it remains a practical issue. A kNN Search on
these datasets is a common and expensive querying operation. Thus, to resolve this issue,
researchers utilise the DR strategy prior to actually employing Indexing Techniques.
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Based on Tables 3 and 4, most existing approaches do not employ DR strategies. So,
we indicated such techniques as “N/A”. The rest use the famous principal component
analysis (PCA) technique or the iDistance (In addition to being a dimensionality reduction
technique, iDistance is also an indexing method) technique.
Principal component analysis. PCA [78,80,81,141] is the most popular dimensionality-
reduction technique used for transforming high-dimensional data space into lower-dimensional
space [79,142]. It analyses the datasets to identify the directions that have the maximum
variance and the one with the highest variance is considered the first principal component
(or dimension). Then, the succeeding components capture the rest of the majority variance.
Most of the information from the original space is captured in the initial few dimensions,
where there is the highest variance.

3.4. Distance Computation Approach

Distance Metric plays a very important role in finding the k closest neighbour. So,
for the given dataset in a d-dimensional space, we have to choose the best Distance Metric
for the algorithm to work well. There are several Distance Metrics available, but we will
just discuss those that have been used for the computation process in the kNN queries.
The most widely used of all the Distance Metrics is the Euclidean distance function.
Euclidean distance. The distance between any two given data points can be calculated
using many different approaches. One of the most well known and widely used approaches
is the Euclidean distance (L2). A Euclidean distance (1) is a measurement of the actual
straight-line distance in Euclidean space between any two given points. It is calculated
as the square root of the sum of the squared differences between any given point (x) and
another point (y).

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (1)

Bregman distance. In a d-dimensional space, the Bregman distance between query point
q = (q1, q2, . . . , qd) and random data point p = (p1, p2, . . . , pd) is defined as:

D f (p, q) = f (p)− f (q)− < ∇ f (q), p− q > (2)

As demonstrated in an example [143,144], while matching pictures, the distance is not
a metric measure. The sun and the ball both have a similar structure, yet they distinctly
vary from one another. So, in some real-world situations, the Euclidean distance is not a
good way to measure distance.

In recent years, in a range of systems such as image retrieval [145,146], image clas-
sification [147] and sound processing [148,149], the Bregman distances have been exten-
sively utilised because they have the capability to explore the underlying correlations of
data features.

During analysis, we observed that almost all the approaches use a Euclidean distance
except the BP [114] technique. BP is a non-metric approach that uses Bregman divergences
for distance calculations. The Bregman divergence is also known as the Bregman distance.
This is the first non-metric work for the high-dimensional exact kNN search technique.

3.5. Computing Paradigm

In Sections 4 and 5, we discussed the Computing Paradigm approach in detail to
obtain an understanding of how all the existing techniques work. There, we classified
the kNN Search (i.e., Section 4) and kNN Join (i.e., Section 5) techniques as I/O-based,
Memory-based, Parallel and Distributed. Considering the length of the paper, it is very
difficult to convey all the details of every work. So, you can also refer to their work to
understand it in more detail.
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4. kNN Search

In the majority of database applications, finding a similar object to the requested
query point is an expensive job. The kNN query is ideally required in such circumstances.
A great deal of research has been conducted to provide a solution to the exact kNN problem.
However, most of the studies focused on approximation techniques. In addition, some
researchers also consider the exact kNN strategies. For example, work such as HDR-tree,
iDistance and others is proposed to address the issues of efficiently finding the kNN and
reducing the cost of distance computation. In this paper, we mainly focus on the exact
solutions. A comprehensive study of various high-dimensional kNN Search and kNN Join
techniques is discussed. For ease of understanding, we have categorised the techniques in
many ways. Here and in the next section, we summarise the most well known techniques
and categorise them according to Computing Paradigms.

In this section, we concentrate on the various exact kNN Search approaches based on
the different Computing Paradigms such as I/O-based, main-memory-based and parallel
or distributed. We classified some techniques as memory-based techniques if the majority
of the computation task is carried out by main-memory rather than disk-based I/O.

Several machine learning-based approaches, such as [150–152], are also proposed to
address the problem of finding kNN in high-dimensional space. In [150], researchers pre-
sented a GPU-based kNN technique using CUDA-based radix sort [153]. The results show
that this approach performs 30 times faster than the normal CPU-based approach. Here,
they used a data segmentation approach for distance computation [154]. This approach
involves using fixed-size tiles to create the segments and tile size is determined by the
amount of shared memory per CUDA block, which is actually quite small. As a result,
the approach involves a great deal of data access.

In [151], the authors provide a method to locate the specific kNN picture items that
correspond to a particular query item. Basically, the suggested method first uses a self-
organising map [155] algorithm to cluster the pictures and then it projects the identified
clusters into points in a linear space depending on the distances between each cluster and
a chosen reference point. These projected points are then arranged in an index structure
known as an array-index. This method is very simple and compact in nature.

The new kNN technique named kMkNN (k-Means for k Nearest Neighbours) [152]
was proposed to speed up the closest neighbour search process with the help of the
triangle inequality and k means clustering. There are basically two steps involved in the
kMkNN algorithm. In the building step, kMkNN preprocesses the training dataset using a
conventional k means clustering algorithm. They divide the whole dataset into clusters
using the k means clustering approach, and store the distance between every data item and
its nearest cluster centre. Every cluster’s entire distances are then sorted in decreasing order.
In the searching step, for a given query object, kMkNN employs the triangle inequality
to decrease the distance computations during the searching stage by locating the closest
data items, beginning with the cluster that is closest to the query object. We do not include
learning-based approaches in a later discussion because they are outside the scope of
our survey.

4.1. I/O Based

Earlier, algorithms were created to run in the main memory. Because of technological
advancements and the large volume of data, it was difficult to fit the entire dataset within
the main memory. This demands the development of more efficient I/O-based approaches.
iDistance. The researchers introduced a new index structure termed iDistance [110,111]
to facilitate the exact kNN Search for HD data. It transforms high-dimensional space into
a one-dimensional value. This process consists of three phases. It starts by segmenting
the entire data space into m parts. Then, it assigns a reference point to every partition
and finally transforms each partition into one-dimensional space based on other data
points’ similarity to the reference point. Assume there are m partitions named P1, P2, . . . , Pm.
The reference points for these partitions are named C1, C2, . . . , Cm and are chosen based on
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the Data Partitioning or Space Partitioning strategy. Finally, all points pi = (v1, v2, . . . , vn)
are transformed into a one-dimensional data space. Here, they used two data structures:
the B+-tree and the array. To enable quick retrieval, the transformed 1D points are indexed
using a B+-tree. Additionally, an array is used to store the m reference points together with
their closest and furthest radii. The secondary structure is first scanned in order to find the
reference points whose data space intersects with the query region. The search starts with a
smaller radius and it is then increased gradually. At first, the closest leaf node of query point
q is searched and its sibling leaf nodes are also checked if required. The searching process
stops when it finds the kNN for the query node and further increasing the query sphere has
no effect on the closest list. Therefore, along with the right partition algorithm, iDistance
can be considered one of the most effective kNN Search techniques. It cannot be neglected
that the effectiveness of pruning algorithms decreases with increasing dimensionality and
k value. However, this effect is less prominent for iDistance.
Diagonal Ordering. The researchers in this study developed a diagonal ordering strat-
egy [112]. This strategy primarily relies on data grouping and sorting. High-dimensional
data can be converted into 1D data by slicing the clusters diagonally. For indexing, they em-
ployed a B+-tree structure. The diagonal ordering is similar to the iDistance and Pyramid
Technique. Here, the high-dimensional data space is divided into clusters and the vectors
inside each cluster are arranged using the diagonal sorting order. In general, a cluster’s
feature vectors are sorted first by partitions and then in the diagonal direction of every
partition. The sorting technique provides a way to convert high-dimensional vectors into
one-dimensional values. Then, to index these values, the B+-tree structure is utilised. This
technique has the advantage of calculating a precise lower limit on the distance between
two feature vectors using the diagonal order. It was seen that the kNN Search process
improved when a lower limit was used as the pruning criterion to get rid of unnecessary
feature vectors instead of doing expensive distance calculations. All the points on the
line segment are assumed to be outside the search area if the minimum distance between
a query point q and the line segment is greater than the search radius r. The diagonal
order method also follows the iterative approach to search for the nearest neighbours. It
starts with a small radius and gradually increases it until it finds the kNN. It stops the
process when the distance between the query node and k-th NN is less than or equal to the
search radius. To obtain an excellent order, they used PCA [141], emphasising the first few
characteristics over the rest and used the clustering technique from iDistance (i.e., k means
clustering). The performance of this technique was better than many existing techniques
such as X-tree [136], iDistance [110] and VA file [71].
VA+-file. In ref. [109], researchers provide search methods that work particularly well with
huge, high-dimensional datasets. Basically, they introduced an approach that is based on
the scalar quantisation of data, which is known as the VA+-file. It is very helpful for finding
kNN in non-uniform HD datasets. To further improve the search performance, they use
the approximation technique. Here, they provide a general kNN approximate framework,
talk about several methods for processing similarity queries and introduce a metric for
measuring these methods. Lastly, a novel method based on clustering has been developed
that combines the advantages of multiple methods for progressive similarity searches.
OTI and EOTI. In this study [113], using an optimum triangle-inequality (OTI) tech-
nique, researchers offer a novel fast kNN Searching technique. When searching kNN for
every query point, the proposed OTI approach avoids the greater redundant distance
calculations compared to the main TI technique. They also give an effective optimum
triangle-inequality (EOTI) technique that is based on OTI and takes into account OTI’s
large space and space complexity.

The fundamental concept of KMC-TI-FS (TI) [156] is to split the whole search process
into two phases. In its first phase, every data item is grouped using the k means algorithm,
which is known as the offline clustering phase. The TI approach is used in the online search
process of the second phase to determine whether a particular data item is a probable k
nearest neighbour of the provided query or not. Last but not least, the kNN Search can be
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sped up with very little distance calculation because the distance between all the items pi
and the cluster centre ci was calculated and saved in advance in the offline clustering step,
so no additional distance calculations were required.

The TI approach was able to eliminate the items in the central region of adjacent
clusters but was unable to remove items from the marginal region. In order to use triangle
inequality more effectively and solve the TI problem, they came up with a new quick search
method called OTI, which stands for "optimized triangle inequality" [113]. The goal of a
suggested OTI strategy was to choose an ideal cluster centre copt from all of the cluster
centres cj that help to make up the appropriate triangle. In TI, for any point pi it chooses
its own clustering centre csel f to form the triangle but in the case of OTI it chooses another
optimal clustering centre copt and typically copt 6= cj is true. The space complexity of this
approach for distance storage is O(N × C), where N is the number of items and C is the
number of clusters in the dataset.

The OTI approach resulted in very high space complexity and its search time per-
formance was adversely affected by additional calculation time. So, it was essential to
find a balance between search efficiency and space and time complexity. As a result, they
propose an efficient optimal triangle-inequality (EOTI) [113] technique for locating an
efficient optimum cluster centre ceopt with significantly reduced space and time complexity.
In this approach, they simply record two distances namely d(pi, cj) and d(pi, cmax) for each
given item of pi. Where, cj is the cluster centre closest to pi of all the given cluster centres
and cmax is the cluster centre that is farthest away from pi. EOTI’s distance storage has a
space complexity of O(N + N).
BP. Bregman distances, often referred to as Bregman divergences, are frequently used in
voice recognition, machine learning (ML) and kNN Searches. Multimedia systems often
turn original data such as audio, video and pictures into hundreds of dimensions. However,
previous research on Bregman distance-based kNN techniques [135,144] was designed to
deal with data of moderate dimensions (typically less than 100). Therefore, these index
techniques were unable to perform well in high-dimensional space due to significant cluster
overlap and costly computation operations. High-dimensional kNN Search with Bregman
distances is a critical concern that is addressed in this study [114]. Here, they present a new
partition-filter-refinement structure. This technique comprises precomputation and search
processing. In precomputation, initially, they split an entire HD space into a number of
small dimensional subspaces. Then, range queries are run over each subspace to obtain
items. The kNN findings are then assessed via filtering of the items. However, in order
to implement such a framework, they made the following contributions: On the basis of
the Cauchy inequality, they compute the upper limits between the query point and any
random data item within every subspace and the appropriate upper limits are chosen
as the search limits from these subspaces. Additionally, a method known as Pearson
Correlation Coefficient-based Partition (PCCP) is provided to minimise the item set by
splitting correlated dimensions into several subspaces. To speed up the search procedure,
they lastly used Bregman Ball trees (BB-trees) [135] in the subdivided low-dimensional
subspaces and created an effective integrated, disk-resident BB-forest index structure. Then,
create tuples from the data items to calculate the search limit. While conducting a search,
they convert the query item into a triple [114] and then calculate the limit for the range
query. Later on, they run a range query on the items. The kNN results from these items
are then examined. Additionally, by balancing efficiency and accuracy, they transform
the precise solution into an approximate BrePartition (ABP). The BrePartition is the first
non-metric method that uses the Bregman distance and performs better in HD space when
searching for the kNN.

4.2. Main Memory

The various researchers worked on disk-based approaches, considering that huge
datasets cannot fit into the main memory. Due to the innovation and upgrade in the tech-
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nologies, the remarkable fall in the RAM (Random Access Memory) prices and large storage
sizes can be observed. This encouraged research interest in main memory-based approaches.
∆-tree. To enhance the high-dimensional queries in main memory, researchers proposed a
new index structure called the ∆-tree [74]. It has a multilayer structure where dimensionality
increases monotonically from root to leaf level, i.e., every level provides the data space
at a varied dimensionality with the help of PCA. Every level of the multilayer tree helps
to minimise the search area since the lower dimensions speed up distance calculations
and make better use of the short cache line size. The ∆-tree helps to prune the search
region very efficiently. As per the PCA property, the distance between any two points in
the PCA-transformed lower dimension will always be lower as compared to the higher
dimension. As a result, if the distance between any data item and the query point in low
dimension is greater than the original distance of the existing k-th nearest neighbour, it
can be discarded. In order for a tree to work well, it must have the right number of levels
and dimensions at each level. However, the ∆-tree suffers from a few limitations: 1. Its
effectiveness depends on how well a dataset is globally correlated (i.e., it works well for
correlated data). 2. It needs to process the whole dataset to find the PCA eigenmatrix. 3.
The whole tree needs to be rebuilt on a regular basis to improve its overall performance.
array-index. Researchers proposed an array-index [117] plug-and-search technique in
order to enhance the kNN Search performance of the Data Partitioning Approaches on real
datasets (i.e., very skewed and correlated) while maintaining their features. This method
reads the data partitions generated by the high-dimensional Data Partitioning Approach
and linearises the partitions with the help of ordering. It is sorted by the distance between
the chosen reference point and the representative vector of each partition. The resultant
computed distance helps them to map the partitions to 1D array-index space. As a result,
related partitions are brought close to one another, enabling them to develop a faster method
to discover the kNN answer points. Thus, for any given query q, the proposed algorithm
has to look for a very small region. The results show that plugging the array-index into a
Data Partitioning Approach significantly improves the kNN Search time.
∆+-tree. To address the limitations of the ∆-tree algorithm, they proposed an improved
version, known as the ∆+-tree [74,118]. The core concept of ∆+-tree was first introduced in
their earlier work [74]. They have provided a detailed index approach as well as dynamic
update techniques in this work. To overcome the first constraint of the ∆-tree, they globally
split the data space into many clusters and used PCA for every cluster separately. To deal
with the second limitation, they divided the cluster into smaller segments based on its
distance from the centre, which helps to reduce the number of areas that must be evaluated.
Finally, they construct a ∆-tree for every segment. It helps to minimise the computational
cost and cache misses.
ACDB. For high dimensional indexing, Hong et al. propose an enhanced kNN Search
method based on adaptive cluster distance bounds [119] by lowering the CPU cost using the
triangle inequality. They stated the two key algorithms: the kNN Search algorithm and the
generation of Voronoi clusters. For cluster indexing, initially, the entire dataset was divided
into many Voronoi clusters, which were separated by the hyperplanes. The distances
between each Voronoi cluster and all of its hyperplanes were then determined. These
distances are then put into a file. The Euclidean distance measure is used to index the items
in each cluster. Essentially, each kNN query qi determines the lower distance limits for
each cluster dynamically and then the clusters are sorted in ascending order. Afterwards, it
searches for the kNN from a cluster when it is loaded into memory. Then, with the help
of kNN distance, it checks whether the maximum distance of kNN is less than the next
cluster’s lower distance limit. If it is, then it finishes the search process. If not, then it loads
and checks the following ordered clusters using the same strategy. They adopt the triangle
inequality to further speed up finding the closest items in a cluster and lower the CPU cost.
iDistance-PS. In [120], researchers undertook the first extensive study of several parti-
tioning techniques for the iDistance method. They demonstrate how the performance
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of iDistance is significantly impacted by partitioning techniques and also discuss the
state-of-the-art for utilising the indexing approach in current applications or comparative
assessments. Since its first release, iDistance [110,111] has become one of the most effective
and cutting-edge high-dimensional indexing approaches. Recently, it has been employed in
a variety of challenging applications, including image retrieval [157], video indexing [158],
etc. [159–161]. In this work, they also provide an open-source version of the original iDis-
tance technique (http://code.google.com/p/idistance/) (Accessed 22 November 2022).
The Partitioning Approach can be considered a significant computational parameter for
iDistance. Here, the authors mentioned the three fundamental stages for processing a query
q of radius r are as follows: Initially, it identifies the set of divisions to search and then it
needs to figure out the search range for every division in the set. Finally, the data points are
retrieved and then filtered by actual distance.
PL-Tree. In ref. [115], the authors introduced a novel Indexing Technique to facilitate
effective point queries, range queries and kNN queries. The PL-tree technique recursively
divides the original data space into hypercubes until it has a specific number of data
points in it. They are labelled using the Cantor pair function where items within the same
hypercube end up with the same label. Because of the Cantor function’s computational
effectiveness and bijective property, high-dimensional vectors can be easily mapped to
scalar labels. If the number of data objects in a subspace exceeds its limit, the partitioning
and labelling procedure divides the subspace.
iDStar. In this study [162], many important and manageable factors are looked at in
order to improve the efficiency of kNN Search queries using the iDistance and iDStar
algorithms. They also show the challenges of indexing in high-dimensional and tightly-
clustered dataspaces. Through experiments, they discovered that the iDStar method of local
division always works better than the iDistance method in any clustered space with fewer
than 256D. Ref. [162] is based on earlier evaluations of iDistance partitioning techniques
and iDStar extensions [120,163,164].

In earlier research, it was demonstrated that the iDistance effectiveness remains stable
in high-dimensional and closely clustered spaces by retrieving a complete partition to
fulfil the requirements of a specific query [163]. In iDStar [115], researchers additionally
divide the dense regions of the dataspace by dividing partitions into different parts that
correspond to separate parts of the B+-tree, which could be arbitrarily pruned during the
retrieval process. To accomplish this, they modified the indexing and retrieval methods in
various ways, which indirectly affects the way we use the B+-tree. Initially, the mapping
function was revised to construct a continuous region division inside the already separated
divisions. Secondly, once they have determined the region they should look for, they have
to identify parts inside every region that needed to be searched, along with their updated
search ranges within the B+-tree. They also store a sectional distmaxj

i (for partition Pi and

section j) during index construction. Here, distmaxj
i is the distance to its farthest point.

In experimentation results, it can be seen that all data fit in the memory, which avoids the
usual I/O bottleneck problem.
HC-O. In order to accelerate the item filtering process during the kNN Search, they in-
troduced a caching compact approximation [116] of data point renderings in the main
memory. However, it exhibits two complex problems: 1. Which data point encoding
strategy is the most efficient for supporting kNN Search? 2. How many bits should be
used to encode a data point? For the first problem (1), they develop and resolve a new
histogram optimisation problem that determines the best encoding method. They also
proposed a cost model for (2) in order to automatically modify the optimal number of
bits for encoding items. The proposed strategy works for both exact tree-based indexes
and approximate LSH techniques, so it can be used by anyone. Here, they also offer a
way of accelerating kNN Search on tree-based indexes. They basically started by running
queries and collecting information about how often each leaf node is accessed. Then, leaf
nodes are added to the cache in decreasing order of the access frequency. Lastly, using an

http://code.google.com/p/idistance/
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efficient histogram construction method [116] they create the histogram H and calculate
the approximate representations of data points (in leaf nodes). This proposed cache can
be used for any tree-based kNN Search solution (for example, [111,165]), with a few small
alterations. The proposed caching technique HC-O turns out to be way better than the
exact caching (such as iDistance, VP-tree [165] and VA-file [166]).

4.3. Parallel and Distributed

In the past few years, faster computing has led to a rise in the number of diverse
datasets in all fields. For a general sequential method, handling high-dimensional datasets
is a very costly and time-consuming operation. As a result, few works employ parallel
and distributed computing techniques to speed up processing. In order to manage a high-
dimensional dataset in the main memory associated with the processors, the use of multiple
processors makes it possible to utilise additional memory. Thus, parallel data processing is
highly sought after in a variety of applications. The recent availability of GPUs for general
purposes opens a door for parallel processing. Using the NVDI CUDA API greatly improves
performance. It provides a powerful platform for parallel processing functionality.
BF-CUDA Computing a kNN across huge collections of d-dimensional vectors is a compu-
tationally expensive operation. Pre-structuring the data, such as by utilising binary trees,
helps lessen this computational cost. This work [77] focuses on the CUDA implementation
of the kNN Search using brute force (BF). BF is a two-step process, i.e., distance compu-
tation and sorting. One of the most common and simplest ways to look for the kNN is
the BF approach. In the BF algorithm, the process of searching the kNN for a given query
q is as follows: 1. Determine the distance between all data points si for query point qi.
2. Using the calculated distance, sort the neighbours in ascending order. 3. Determine the k
closest neighbour points for a given query point. 4. Repeat steps 1–3 for each query point.
For experimental purposes, they used the variant of an insertion sort, which is faster and
better than the comb sort for small values of parameter k. The BF approach is extremely
parallelisable by default, which makes it well suited for a GPU implementation. Global
memory and texture memory are the two types of memory utilised. Despite the global
memory’s large bandwidth, the performance drops if memory accesses have not coalesced.
The experimental results demonstrate that using the NVIDIA CUDA API speeds up the
kNN Search up to 400 times the speed compared to using a CPU-based BF approach.
CUBLAS. The implementation of the kNN Search was built using CUDA, and CUDA
Basic Linear Algebra Subprograms (CUDA implementation of BLAS, i.e, CUBLAS) [75]
consist of the following kernels: Coalesced read/write calculations for the vectors NR and
NS were performed using CUDA in steps 1. and 2., respectively. In step 3., CUBLAS is
used to calculate the m × n-matrix A = 2RTS. 4. Using CUDA, add the ith element of
NR to each element of the ith row of the matrix A; the resulting matrix is denoted as B. 5.
Use the insertion sort variant [77] to sort each column of B in parallel; C represents the
resulting matrix. 6. Using CUDA (coalesced read/write), add the jth value of NS to the
first k elements of the jth column of the matrix C; the final matrix is denoted by the letter D.
7. To obtain the k lowest distances (coalesced read/write), square the first k components
of D; E is indicated as the resultant matrix here. 8. Remove the top-most k× n-submatrix
from E; the generated matrix is the required distance matrix for each query’s k nearest
neighbours. CUBLAS does the main work of computing, which is the calculation of A in
kernel 3. On synthetic data, the CUDA and CUBLAS implementations were up to 64 times
and 189 times faster, respectively, than the highly optimised ANN C++ library. Additionally,
they provided the open source code (https://github.com/vincentfpgarcia/kNN-CUDA)
(Accessed 22 November 2022).
TBiS. Numerous initiatives have leveraged GPUs (particularly those made by NVIDIA) as
multi-core parallel processing units with growing support for application interfaces [75,150].
The majority of GPU implementations adapt or customise certain sorting algorithms as
needed. As such, Garcia et al. used the insertion sort as well as a parallel comb sort [75].
Because the process of reading, comparing, swapping and writing for sorting is data-
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independent, bitonic sorting is well suited for parallel systems [167]. In this work, Sisma-
nis et al. [122] propose a novel study into parallel methods for determining the kNN of
each individual query in a high-dimensional space on a multi-core processor that supports
synchronous processes, such as a GPU. They focused on the BF kNN sorting process and
presented a group of truncated sort algorithms for parallel kNN Search by utilising the close
link between the two fundamental operations of select and sort. In particular, the truncated
bitonic sort (TBiS) offers simple data and programme structures, effective data locality
and synchronous concurrency. They outline several techniques and demonstrate that their
truncated bitonic sort performs extremely well on the GPU. The overhead of TBiS decreases
with each successive iteration. The time complexity of the parallel scan was O(logn). Here,
they first identified the k-th element as a threshold. Then, all elements below the threshold
are examined and further searches are conducted to find elements that equal the threshold.
Whenever it becomes certain that an item cannot be a part of the minimal k, it is removed
from the sort. Among the methods mentioned here, two methods, Bubble Sort and Bitonic
Sort, have data-independent synchronous processes.
QDBI. In the context of peer-to-peer (P2P) systems that manage and process a growing
amount of high-dimensional data such as text, photos and videos, understanding how to
search through this data has increasingly become a key research question. The processing
of difficult queries over high-dimensional data items, such as the kNN query, has been the
subject of several studies [168–170]. For effective data management and query optimisation
in a P2P system, in this study, researchers present a distributed multi-dimensional data
index (QDBI) [125] which is based on quad-trees. Here, every peer uses an MX-CIF
quad-tree to generate an index item for their high-dimensional data. Every index item
then obtains a code in accordance with the MX-CIF quad-tree. The entire index is then
organised into 1D rings based on their codes. Super-peers dynamically join the rings in
accordance with the requirements. This creates a structured super-peer network that is
based on semantics and an effective kNN query processing technique is designed for high-
dimensional data items based on the QDBI index structure. Research demonstrates that
the kNN query method and the index structure both offer good search performance and
scalability. Whenever a super-peer gets a kNN query, it first routes it to the super-peer that
stores its associated control point (quad-tree block), after which the super-peers evaluate
the query simultaneously. It might obtain the complete solutions from one super-peer to
multiple other super-peers along the ring in the counterclockwise direction because the
index items are stored in the ring clockwise according to the code value of their control
points. The concept is that the search space is expanded when the query is extended from
a narrow range. Finding the k closest data points to the query point in each search space
allows it to update the existing data in all search spaces with the more recent data. When
the closest data quantity exceeds k and does not get any closer over time, the whole process
comes to an end.
CU-kNN. In ref. [121], researchers emphasised CUDA architecture-based GPU paralleli-
sation of data mining applications. They originally offered three CUDA-based parallel
algorithms to take advantage of the novel parallel platforms for data mining: 1. A scalable
threads scheduling strategy for irregular patterns, which is used to address the problem of
irregular pattern computing; 2. a parallel distributed top-k strategy, parallel selection of
top-k values; and 3. parallel high dimension reduction using the dimensionality reduction
technique. Then, utilising the aforementioned methods and the CUDA platform, they
built the three common data mining algorithms: CU-Apriori, CU-kNN and CU-K-means.
These suggested methods enable CUDA versions of these algorithms to operate effectively.
However, because our research focused on kNN approaches, we will discuss the CU-kNN
approach only.

In CU-kNN [121], it has been seen that the majority of kNN computation is found
in two cores: choosing the kNN and calculating distance. Here, they demonstrate the
CUDA implementation. There is no data transmission between host memory and device
memory throughout the classification process in this approach since the GPU handles all



Sensors 2023, 23, 629 22 of 44

the calculations. Because pair-wise distance computation is independent, it is possible
to parallelise the process entirely. With this characteristic, kNN is well suited for a GPU-
parallel implementation. The objective of this kernel is to reduce the number of global
memory accesses while maximising the concurrency of the distance computation executed
by several threads. They split every object into many parts based on a dimension with a
specified size to handle the multi-dimension property of objects in this application and then
they iteratively calculate the distance between each of the partitions. The cooperative
efforts of the threads load one feature segment of the query objects and the associated
feature segment of the reference objects into the shared memory at a time via a coalesced
read and then perform a local calculation to generate a local summation. These local sums
are added together to determine the ultimate distance value. The main goal of choosing the
k nearest neighbour of a query item is to find the k shortest distance, which is a standard
top-k issue. Therefore, they put it into action using the parallel distributed top-k approach.
Since choosing the kNN for different query objects is independent, they do it in parallel by
giving some threads the job of choosing the k shortest distances for a single query object.
The tests revealed that CU-kNN outperforms an effective Fast-kNN [77] by up to 8.31 times
on the KDD-CUP 2004 quantum physics real-world dataset.
kNN-PA. In this study [123], the authors propose techniques and a library for performing
closest neighbour searches on any high-dimensional dataset across thousands of cores
using the message passing interface (MPI) [171] and OpenMP [172]. The proposed library
provides exact and approximate solutions. This study is mostly about a method for
solving approximate nearest neighbours (ANNs) which uses tree indexing, but here we
will concentrate on kNN approaches only. They have introduced two distributed brute-
force kNN techniques, which are two-dimensional partitioning and cyclic partitioning
techniques. In the first approach, initially they partition the reference and query points
into parts and move them to the nodes. Due to the fact that the reference points and the
query points are replicated multiple times, this approach is more memory intensive as
compared to cyclic partitioning, but when estimated time cost is an essential performance
parameter, this approach is much more helpful. The second technique, which requires more
communication but is memory-optimal, employs cyclic iteration. This approach divides R
and S into roughly equal-sized segments that are distributed across the processes. Based
on which set is bigger, either the reference points or the query points can be cycled.

Researchers also introduced the parallel tree-building technique called RKDT (ran-
domised k dimensional tree) [123] for indexing structures in any number of dimensions.
This method supports different kinds of trees, such as ball trees, KD-trees, etc. The ma-
jority of tree algorithms for high-dimensional datasets use a top-down approach. The
tree is used to divide and filter spatial searches. They investigated two point-splitting
methods: cluster-based (also known as RKDTC) and hyperplane-based (RKDTH). For the
cluster-based method, they utilise k means clustering and a standard KD-tree is used for
hyperplane splitting. In a hyperplane-based technique, they compute a projection direction
and project all points onto it. They try it with the three potential projection choices. The first
is random selection. Another is selecting the coordinate that has the greatest variation
among all the points. At last, they chose the direction in which the points are furthest apart.
According to the researchers’ experimental results, they find that the partitioning based on
the hyperplane is better than the cluster-based approach. Using the hyperplane strategy,
they can equally divide the data points, yielding nearly the same number of points per
group, which has significant effects on the parallel implementation and load balancing of
the method. On the other hand, clustering-based partitioning is more costly as it requires
solving k-means problems again and again. They also find that improved filtering during
neighbour searches is achieved by the hyperplane splitting technique. The two most com-
mon tree traversal techniques are greedy traversal and bounding ball traversal. In a greedy
traversal, a query point traverses the current node’s one of the child nodes. On the other
hand, in bounding ball traversal, the query node visits each leaf node that intersects the
bounding ball. To overcome the kNN challenges, they used the two-stage tree traversal
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approach. In the first phase, every query point uses a greedy traversal to reach a leaf
node and then find its kNN. Then, in the second phase, all nearest neighbours within the
bounding ball are found using a bounding ball search with a radius equal to the kNN (i.e.,
k-th item distance). Finally, among all detected neighbours, the closest k items are returned.
In a high-dimensional dataset, the bounding balls and leaf nodes overlap significantly.
HkNN. In ref. [124], the authors implemented a hybrid approach for kNN Search over the
high-dimensional dataset. D. Muhr and M. Affenzeller noticed that the indexing struc-
tures that are usually used for kNN Searches in high-dimensional spaces do not work
well and therefore they find that there is a need for efficient brute-force search. Using a
highly parallel method for brute-force search, the proposed method divides the computing
work between the CPU and GPU in an effective way. The main objective behind their
technique was to examine how the massively parallel architecture GPGPU paradigm [173]
and CPU-based shared-memory parallelism work together to overcome the problem of
dimensionality in kNN Search. Here, the CPU carries out k selection asynchronously
while the GPU performs distance calculation. Through the use of batching techniques,
the distance calculation on the GPU and the k selection on the CPU are performed con-
currently. They show that the effectiveness of their technique increases linearly as the
number of dimensions of the dataset increases, making it more efficient as compared to
other methods for large datasets. This approach was developed in Julia and is open-source
(https://github.com/davnn/ParallelNeighbors.jl) (Accessed 22 November 2022).

5. kNN Join Approaches

Spatial joins are used in many existing high-dimensional join processing techniques.
It was created for 2D objects. In the literature, several spatial join approaches have been
presented [174–177]. It is also worth noting that similarity join methods [178,179] have been
developed to find all paired objects that are closer than a user-specified distance. However,
these techniques to process similarity join cannot be effectively applied to kNN Joins since
it is hard to predict the search radius in kNN Joins [180,181].

If we look at the existing studies, there were mainly two types of similarity join,
i.e., distance range join, also called range join or distance join and k Distance Join, which is
also known as closest point query. In [53,54], Böhm and Krebs introduced the third type of
similarity join, which is known as the kNN Join. Incremental distance join is also sometimes
considered a type of similarity join.

We further classified the different kNN Join approaches into I/O-based, main-memory-
based, parallel and distributed techniques.

5.1. IO-Based

In the literature, many studies have been carried out on index structures that can
handle kNN Join. For instance, Böhm et al. [54] presented a kNN Join problem, which finds
the kNN for a set of queries in a single run operation. The work on kNN Join techniques
such as MuX (Multi-page Indexing) [54], Gorder (G-ordering kNN) [126] and iJoin [128]
involved the nested loop searching strategy for high-dimensional datasets.
MuX. Böhm and Krebs [53,54] presented the first work on kNN Join. To compute the kNN
Join, the researchers proposed a novel approach called multi-page indexing, which uses
the index nested loop join approach and follows the R-tree [61] structure. So, to minimise
the I/O time, large-size pages (hosting pages) were used. It also uses buckets, which are
smaller minimum bounding rectangles, as a secondary structure to split the data more
precisely and with less CPU cost. An index is provided for every set of objects (i.e., R and
S) and then MuX iterates the index pages on R. For pages of R maintained in the main
memory, pages of S are fetched using the index and search for the kNN. When all pages
have been visited or filtered out, the process reaches its end. A combination of page-loading
and bucket-selection strategies enhanced MuX performance. However, this approach has
certain limitations, i.e., performance degrades with an increase in the dimensionality and
high memory overhead that restricts the scalability of MuX kNN Join.

https://github.com/davnn/ParallelNeighbors.jl
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Gorder. The Gorder (G-ordering) [126] is a block-nested loop join approach. It utilises
sorting, join scheduling and distance computation to reduce both I/O and CPU costs. It
introduces two different phases, i.e., PCA [78] and grid order sorting. PCA identifies the
direction in which the data have more variance. The Grid Order sorting splits the entire
dataspace into rectangular cells. After partitioning, it is ordered according to the distance
of blocks and applies the scheduled block nested loop join on G-ordered data. Gorder
splits the G-ordered input dataset into blocks which consist of many physical pages. Two
characteristics define the join stage of Gorder. Firstly, it uses a two-tier partitioning method
to optimise I/O and CPU times independently. In a subsequent step, it schedules the data
joining to enhance kNN processing. In the first-tier partition strategy, for every R block, it
searched for the nearest neighbour from the loaded S block. R blocks are loaded sequentially
and iteratively in main memory and for each loaded R block an S block is also loaded based
on the scheduled sequence of similarity. The high CPU cost is incurred because of the large
block size. Hence, for more efficient processing, a second-tier partition strategy is used.
In the main memory, it splits the blocks into sub-blocks. As per the experimental result, one
sub-block contains 20–25 points for efficient processing. Because of the high-dimensional
data, reduction of distance calculation is critical for CPU time optimisation. Therefore, they
devised an algorithm to reduce the distance computation. It first calculates the minimum
distance between two blocks of G-ordered data, Br and Bs, and checks whether it is greater
than the pruning distance. If it is, then it is to be pruned. If it is smaller than the pruning
distance, then it is considered the k nearest neighbour.
iJoin, iJoinAC and iJoinDR. The proposed iJoin [128] method follows the iDistance in-
dex structure and the properties of the iDistance partition strategy help it to significantly
improve the performance. Here, they have come up with three different approaches: the
basic approach (called iJoin) and its two improved versions (i.e., iJoinAC and iJoinDR).
In the first extended version, approximation bounding cubes were used to minimise unnec-
essary kNN computation and disc usage (iJoinAC). In later improvements, the reduced
dimensions of the data space were used to minimise I/O and CPU costs (iJoinDR). In
iJoin, the two datasets R and S are divided into clusters with the same reference points.
To index the datasets, two B+-tree based iDistance indexes were constructed. The join
process was initiated by considering the partitions of R and S which are within the search
radius. The remaining partitions are pruned. If desired join pairs are found, then it stops
the process. Otherwise, they widen the search area and look for more S nodes. The main
objective of iJoinAC was to lower the number of distance calculations. If we exclude
the leaf level navigation section, the iJoinAC method and the iJoin algorithm are nearly
identical. Rather than processing the original feature vectors, it works on approximation
cubes. It was observed that the processing approximations were faster than the processing
of real feature vectors. They also present another improvement that utilises dimensionality
reduction i.e., iJoinDR. This improvement is basically based on two methods. Using the
dimensionality reduction technique PCA, the majority of the information is captured by
the initial dimension. Secondly, the sorting method is considered a very efficient option for
many issues. This approach is also similar to iJoin, but here the initial vector which captures
the majority of the information has been used for the approximation and filtering process.

However, [54,126,128] performed the operation on a static dataset, so when updating it
they have to perform the kNN computation on all the users, which is a very costly process.
IIB and IIIB algorithm. In ref. [127], researchers proposed the following three kNN Join
algorithms for high-dimension data. These algorithms perform well for the sparse dataset.
The BF algorithm compares the similarity score of each query point r in block Br to the
similarity score of each object point s in block Bs. If the similarity score turns out to be
higher than the pruning score of r, then the object point was considered as the nearest
neighbour to the query point. Furthermore, it updates the pruning score after every update
operation. The inverted index-based algorithm (IIB) is used to avoid unnecessary traversal
of every item in the object dataset. This algorithm helps to overcome the issues BF was
facing. For every feature of query point r, rather than visiting all, it prunes the unnecessary
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features of s during the calculation of the dot product of r and s. Here, they utilise the
inverted list {I1, I2, . . . , ID} which is a set of lists (for every dimension). It computes the
kNN for each r query point in Br. An improved inverted index-based algorithm (IIIB)
enhances the features of IIB. The authors came up with a new threshold-based pruning
algorithm called IIIB. It uses the previously calculated results as a threshold for the next
loops. These approaches resolve the kNN Join problem for sparse vectors.
kNNJoin+. Yu, Cui, et al. introduced the kNNJoin+ technique for processing kNN Join
queries on high-dimensional data. The RkNN query is an extremely expensive process
as compared to kNN. As a result, it can be regarded as optional, meaning that it can
only be utilised when necessary. Tables are dynamically updated for all operations. Four
different types of data structures were used in this study: the RkNN Join table, kNN Join
table, iDistance and sphere-tree. The sphere-tree is used to look for RkNN, i.e., points
with p as their kNN, whereas the iDistance indexing is used to find the kNN for a newly
inserted point p. The Pyramid technique is used by the iDistance method to transform
a high-dimensional space into a single-dimensional value. It divides the data space into
m parts, assigns a reference point to each partition and then converts each partition into
a one-dimensional space based on the similarity of other data points to the reference
point. These values are then mapped to the B+-tree so that they can be accessed and
updated more quickly. They develop a shared query optimisation strategy in order to
improve performance.

5.2. Memory-Based

HDR-Tree. Here, Yang, Chong et. al. [83] provided two different data structures, namely
HDR-tree (exact) and HDR*-tree (approximate solution). The HDR-tree utilises the PCA [79]
and clustering approach for dimensionality reduction. On the other hand, HDR*-tree em-
ploys the Random Projection [182] method. It uses a random matrix to transform the
datasets from d to r dimensions. The PCA approach is basically used to reduce the cost of
computation in the tree structure. Consider the XN.d dataset, which has been transformed
from d to r dimensions. During the process of reducing the number of dimensions, the di-
rection with the most variation was chosen as the first principal component and then the
second. The first dimension of the tree structure consists of values with high variance. Using
different dimensions gives better pruning power, which helps to reduce the computation
overhead. With the help of eigenvalues (derived from the covariance matrix of the input
dataset), they use different dimensionality at different levels. The high-dimensional dataset
was partitioned into clusters using the k means clustering approach. The root level was set
with d1 dimensionality and at the next level, dimensionality d2 was set. Every cluster from
the root node was sub-clustered. At each level, the dimensionality increases monotonically.
The leaf node was at full dimensionality dl , at level l. The HDR-tree search algorithm looks
for the affected users in a leaf node. It directly computes the distance between the user and
the item in the leaf node (LN). On the other hand, non-leaf nodes look for the pruning con-
dition and continue the search process if it is met. If the distance between the transformed
item and the cluster is greater than the maxdknn value (i.e., distpca(i, Cj) ≥ maxdknn),
the cluster is pruned because users within the cluster are not affected by the item’s update
operation. Thus, its child nodes need not be visited further. Here, maxdknn is the maximum
distance between the users and their kNN. The HDR-tree [83] method searches for the
affected users caused by any update operation and updates the kNN result. It addresses
the issue of continuous kNN Join processing over high-dimensional real-time datasets. This
turns out to be a very useful approach for reducing in-memory search costs.
CTD-kNNJ. Data become less relevant to some users as time passes. So, it is important to
suggest the most recent data for the query object that was asked for. In order to deal with
these problems, the researchers provided a time-dependent kNN Join solution [183] that
could be applied to any distance function. In this study, the exact solution was computed by
the kNN Join dynamically. Time is the critical parameter that has to be considered. When
the number of dimensions goes up, say to 4096D, the normal distance function will be very
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expensive to use. So, they used an approximation strategy that helps to reduce the distance
computation with the help of the Hamming distance technique. These techniques can be
applied to all kinds of time-dependent distance functions. They stated two approaches
for the time decay process, i.e., intersectable and non-intersectable. They mentioned the
algorithm for time-dependent exact kNN Join but did not provide any improvisation
technique for exact solutions.
EkNNJ. Real-world applications often perform dynamic update operations upon every
insertion or removal of an item. However, as per the analysis, it has been observed
that fundamental operations like batch updates and efficient deletion operations are not
supported by the current existing kNN Join algorithms. Therefore, the authors of [129]
present a novel approach for kNN Join over high-dimensional datasets where they focused
on batch operations, lazy updates and optimised deletions. The results of an experiment
show that the proposed approaches outperform existing techniques such as HDR-tree
and naive RkNN. Whenever any update operation occurs, i.e., insertion or deletion of
an item, they initially identify the affected users and mark them as “dirty” nodes in the
HDR-tree. So, in lazy updates, the actual update is delayed until the kNN values of the
affected users are needed. They also observe that the many newly inserted items affect
the same users again and again, which causes redundant computation. To avoid this
costly operation, rather than updating the user for every new item, they perform batch
operations. They look for affected users but do not update them with each newly inserted
or deleted item. Actually, to minimise computation costs, they process all updates at the
node left, before updating the parameters at the internal level. Performing a deletion
operation in kNN is a very expensive job. Normally, for any deletion operation, all the
affected users need to be searched (i.e., RkNN process) and, accordingly, their kNN list is
updated, which is a computationally expensive operation. To reduce the search cost and
accelerate the process, they maintained a reversed kNN (RkNN) table for all items in the
proposed method.

5.3. Parallel and Distributed

Considering the high-dimensional data, kNN Join is a very costly operation. To deal
with it, various efficient approaches have been proposed but they were designed to run on a
single machine or single-threaded environment. To tackle the issue, parallel and distributed
approaches catch the researcher’s attention. It has been accepted widely not only in industry
but also by academics. For this purpose, MapReduce [184] is the most widely accepted
framework. It is famous for its simple but effective parallel and distributed computing
model. The main purpose of the Distributed system is to overcome the limitations of main
memory (i.e., ineffective in processing huge amounts of data).

Researchers have developed parallel MapReduce kNN Join algorithms, namely H-
BNLJ [130], H-BRJ [130] and PGBJ [58]. The MapReduce [184] model is basically used to
process a huge dataset in parallel in a very efficient way.
H-BNLJ and H-BRJ. In this work, researchers proposed a Block Nested Loop Join
(BNLJ) [130]-based normal approach and further improvised the work using an R-Tree-
based index (i.e., H-BRJ) [130]. It was observed that the basic approach is unable to scale
well for high-dimensional and multidimensional data. Therefore, they came up with a new
approximation algorithm that maps the multidimensional data to one dimension using
space-filling curves (z-values).

They followed the simplest way to implement kNN-joins in MapReduce by using the
block nested loop join technique. Basically, they divide the R and S datasets, respectively,
into n equal-sized blocks in the mapping phase. This was accomplished quickly by linearly
scanning R (or S) datasets and grouping each |R|/n (or |S|/n) record into a block. After the
mapping phase, each potential pair of blocks (one from R and one from S) is divided into
buckets. Then, one r reducer is run for each bucket the mappers created. Each reducer
reads a bucket and runs a block nested loop kNN Join between the R and S blocks in that
bucket or uses a nested loop to locate kNNs for every record in the local block of R from the
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local block of S. All reducers’ resultant output is written to DFS (Distributed File System)
files. They just store the records’ ids, and the distance between each record r ∈ R to each of
its kNNs from a local S block. The record output format is (rid, sid, d(r, s)). Each reducer
obtains a pair of (rid, list(sid, d(r, s)) in order to sort the list (sid, d(r, s)) in ascending order
of d(r, s). The top-k results for each rid are then released by the reducer. This technique is
called H-BNLJ (Hadoop Block Nested Loop Join).

To improve the H-BNLJ strategy, researchers build an index for the local S block in
a bucket in the reducer, so that it can facilitate the kNN Searching of the record r in the
same bucket. They first use the R-tree to build a reducer-local spatial index over each block
Sbj and then they discover the local kNNs for each record from the local R block in the
same bucket as Sbj. Furthermore, they respond to knn(r, Sbj) in each bucket of the reducer
using the kNN feature of R-tree. Since bulk loading an R-tree for Sbj and kNN Search in
an R-tree are both highly efficient, the cost savings from not performing a local nested
loop in each bucket more than balances this expense. The remaining phases are adapted
from the H-BNLJ similarly. Therefore, they refer to this approach as H-BRJ (Hadoop Block
R-tree Join).
PGBJ. PGBJ [58] is a partitioning and grouping technique that uses the Voronoi diagram to
partition the entire data space into several cells and allocates the data based on the closest
pivot in each cell. It does not always guarantee to provide the kNN result from within
a single cell. Therefore, there is a need to look for more than one cell, which results in
duplication and extra-distance computation. Here, the author has provided two different
approaches for grouping the cells into large cells. (1) Geo grouping, which considers that
the cells closest to each other are more likely to be duplicated and (2) Greedy grouping,
which looks at the cells that seem to have the highest chance of being duplicated. It
was observed that increasing the k value does not affect the communication overhead.
Moreover, disk usage is also very low in PGBJ. However, this approach is inefficient for the
high-dimensional dataset, which is its main drawback. Selecting pivots has a significant
impact on the performance of PGBJ and it is also a time-consuming operation in terms of
big datasets.

6. Applications

kNN queries are associated with a wide spectrum of applications. We list some
examples as follows.

6.1. Sensor Networks

Applications in sensor networks include intrusion detection systems [6,7], fault detec-
tion [8], fault identification [9], fault classification [10], fall prediction [11], indoor localisa-
tion [12,13], etc. The intrusion detection system [6] can distinguish between unusual and
common nodes by monitoring their anomalous actions. In [8], it addresses the gas sensor
arrays fault detection issue, i.e., it can be employed in mine for monitoring and to provide
an early warning.

6.2. Robotics

In the field of robotics, it is used for arm movement recognition [14], human emotion
classification [15,16], scan matching [17], object recognition [18], fast point cloud regis-
tration [19], etc. The goal of arm movement recognition [14] research was to improve
classification using kNN for various prosthetic arm motions. In [17], the authors performed
scan matching with the help of the iterative closest point (ICP) algorithm. The purpose of
scan matching is to match two misaligned scans from a mine tunnel using ICP. It recovers
the relative position and orientation of two laser scans.

6.3. Mining Industry

All these applications of robotics and sensor networks are used in the mining industry.
Along with it, in the mining industry, kNN queries are also used to predict blast-induced
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ground vibration in open-pit coal mines [20], safety risk assessment and risk prediction
in underground coal mines [21], classification of human activities (such as lying, sitting,
standing and walking) [22] and the Iterative Closest Point (ICP) approach for calculating
the similarity of 3D log scans in the wood industry [185,186], etc.

6.4. Recommendation Systems

The kNN is a popular approach in recommendation systems. Based on what the
user selects, we can suggest a similar item. This makes it more likely that the user will
like the item. It is applicable for recommending products, recommending media to users
and also for showing targeted relevant advertisements to customers. Many well known
companies offer personalised recommendations to their customers, including Netflix,
Amazon, YouTube, Spotify and many others.

6.5. Data Mining

The kNN technique is also widely used in data mining fields such as pattern recogni-
tion [26–29], regression [30–32], outlier detection [33–36] and others because of its simplicity,
demonstrating high effectiveness.

6.6. Machine Learning

There are several NLP applications that employ the kNN classification algorithm,
including text categorisation [37,38], question answering [39], text mining [40] and others.
Other advanced applications of kNN include face recognition [41,42], emotion recogni-
tion [43,44], image recognition [45,46], handwriting recognition [47,48] and credit card
fraud detection [49]. For example, finding similar words using word embeddings is a great
example of kNN in high-dim space. Here, every document is considered as a vector. If the
documents are close to each other, it means the documents contain identical topics or the
documents are similar. Apart from that, it can also be used in time series [50], economic
forecasting for predicting financial distress and many more applications [51].

7. Comparative Study

In this section, we have compared the state-of-the-art kNN Search and kNN Join
approaches over high-dimensional datasets. This comparative study gives a better under-
standing of an approach and helps us figure out important features of the approach as well
as its limitations.

7.1. kNN Search Techniques

We compared the various kNN Search approaches in Table 5 and we provided details
on whether the considered exact approach is also further extended into approximate
approaches to improve performance or not (i.e., both exact and approximate). In our
analysis, we found that some studies mention they conducted experiments using high-
dimensional datasets, but the datasets they used had dimensionalities such as 12D [117],
30D [112], 32D [109], etc. As a result, there is no industry standard for high dimensional
values. Keeping the scenario in mind, we divide the dimensionality into three distinct
ranges. Most existing techniques are classified in the first category. In the first range, we
included everything from 2D to 99D. We included works in the second range that conducted
experiments on datasets with dimensionalities ranging from 100D to 499D. In the third
range, we consider the dataset to have a dimensionality equal to or greater than 500D.



Sensors 2023, 23, 629 29 of 44

Table 5. Comparative Study of kNN Search.

Sr No. Techniques Merits Demerits

1. iDistance [110,111]

1. Support online query answering
2. Robust and adaptive to different data
distributions
3. It can be integrated into DBMS
cost-effectively

1. It has a wide search region
2. Lossy transformation leads to false drops
3. When dim. increases, pruning efficiency
decreases

2. ∆-tree [74]
1. Provides an optimised index structure
2. Reduce the search space and speed up the
kNN query in the main memory environment

1. Effective for correlated dataset
2. Entire tree must be rebuilt on a recurring
basis

3. array-index [117] 1. Minimal disk access
2. It is simple and compact, yet faster

1. Not considered real-life dataset for
experiments

4. Diagonal
Ordering [112]

1. It avoids unnecessary distance computation
2. It can effectively adapt to varied data
distributions
3. Supports online query answering

1. Experimental study was performed on a 30D
dataset only, which doesn’t guarantee to
outperform a very high-dimensional dataset

5. VA+-file [109]

1. Prevents excessively uneven data
distribution across the clusters
2. Useful for kNN Search in non-uniform
datasets

1. For better search results, consider
approximation
2. The performance degrades as dim. increases
3. Do not consider the cache and query
workload

6. ∆+-tree [74,118]
1. It helps to minimise the computational cost
and cache misses
2. Outperforms iDistance, Pyramid tree, etc.

1. It cannot stop a tree-rebuilding process
2. With varying datasets, the optimum values
of parameters (like clusters) might also differ

7. BF-CUDA [77] 1. Supports fast, parallel kNN Search 1. Unable to scale to a very large dataset

8. CUBLAS [75] 1. It provides a significant speedup and
outperforms the ANN C++ library

1. The performance gets impacted by the cost
of data movement
2. It can be ineffective for large-scale
environments

9. ACDB [119]
1. Using the triangle inequality, CPU cost was
effectively minimised and provided better
performance

1. The initial center pivots and k value both
have a significant impact on the cluster method

10. TBiS [122]
1. Offers simple data and programme
structures, synchronous concurrency
and optimal data localisation

1. With an increasing number of data items
and k value, the performance dramatically
degrades

11. QDBI [125] 1. Good scalability and search performance
1. Experiments not performed on a real dataset
2. Not much focused on high-dimensional
dataset

12. iDistance-PS [120]
1. Enhancements to the filtering power of
iDistance
2. Provides efficient kNN querying

1. The problem of dimensionality is
significantly worse in space-based approaches

13. PL-Tree [115]
1. It can scale well with dimensionality and
data size. Also supports efficient point queries
& range queries

1. Perform experiments using 12D dim. only
2. iDistance outperforms PL-Tree for point
queries

14. CU-kNN [121]
1. Provides high-performance
2. It improves core issues with CUDA-based
data mining algorithms

1. Suffers from big data scalability
2. Data movement and the cost is an issue

15. iDStar [115] 1. It performs better in high-dimensional,
tightly clustered dataspaces

1. Less pruning power for scattered clusters
2. Not much effective for dimensionality above
256
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Table 5. Cont.

Sr No. Techniques Merits Demerits

16. kNN-PA [123] 1. It is scalable and allows kNN Searches for
any HD datasets over thousands of cores

1. Not designed for continuous point updates
2. Ineffective in a distributed-memory
environment

17. HC-O [116]

1. It speeds up the candidate refining process
during the kNN Search
2. It is a fundamental method that works for
both exact and approximate kNN Search
techniques

1. In the workload, they presume a stable
distribution of queries
2. The tightness of the distance bounds and the
histogram affects the pruning power

18. OTI and
EOTI [113]

1. Lower complexity and faster search
algorithm
2. It reduces costly distance computation

1. OTI suffers from large space and time
complexity
2. The process of constructing triangles can be
improved for better efficiency

19. BP [114]

1. It is the first high-dimensional non-metric
Bregman divergence that provides a better
kNN Search
2. Performance improvements in CPU time &
IO cost

1. Does not effectively support massive data
updates
2. By transforming Bregman distance to L2,
more effective solutions can be implemented

20. HkNN [124]

1. Effectively split work between the CPU and
GPU
2. It provides a hybrid approach for the kNN
Search
3. Effectiveness grows linearly with increasing
dim.

1. Compared results using only brute-force
tech.
2. There is scope to examine various optimised
k selection approaches and distance kernels

In this section, we discussed the advantages and disadvantages of each of the tech-
niques listed in Table 5.
iDistance. This method [110,111] makes it possible to obtain a small number of results
right away while looking for more. That is, it gives a response to an online query, which
is a key feature of interactive querying and data analysis. It is the most common baseline
method used in kNN techniques and it has been tested with many different datasets. It
outperforms various existing techniques as well, such as A-tree [187] and iMinMax [188],
so we can say that it is robust and adaptive to different data distributions. A standard
B+-tree is used to index the distance, as it only requires a very small amount of mapping
effort. This makes it easy to integrate with a relational database management system.

The transformation of original d-dimensional datasets to 1D values is lossy. Thus,
the chance of a false drop (i.e., an irrelevant or false data retrieval) happening is high during
the iDistance search process. It cannot fix these false drops because some data points in
high-dimensional space can be mapped to the same value in 1D space. It suffers from a bit
high distance computation and cache misses because of its wide searching region. When
the dimensionality of the iDistance technique becomes greater than 30D, the equidistant
effect starts to happen, which makes pruning less effective quickly.
∆-tree. They proposed a ∆-tree [74] as an effective new index technique for kNN Search. It
helps optimise the computation of HD kNN queries in memory environments. It provides
better pruning power, which means that it effectively cuts down the search space. This
reduces the distance computation and speeds up the kNN Search in the main memory
environment.

Its effectiveness depends on how well a dataset is globally correlated (i.e., works well
for correlated data). To improve overall performance, the whole tree needs to be rebuilt
every so often.
array-index. The array-index’s [117] compactness allows it to process the entire index
structure in the main memory, which avoids disc activities. The ordering of partitions
minimises the number of disc accesses required to obtain data pages and the ordering of
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data points inside partitions minimises the amount of computation required to determine
the distances between the points in the retrieved data pages.

They do not consider the real-world dataset for experiments. It is seen that the
synthetic data and real-world datasets provide different results. As we mostly deal with
real-world datasets, the approach needs to be tested on real-world datasets.
Diagonal Ordering. The approach [112] can be used to facilitate an online query response,
which involves providing an approximate query response by stopping the search process
early. This is an outcome of the iterative searching method. We can use diagonal ordering
to find a tight lower bound, which helps us get rid of irrelevant data points without having
to do expensive distance calculations (i.e., providing better pruning power). The diagonal
ordering index structure efficiently adjusts to various data distributions.

The experimental study was performed on a 30-dimensional dataset only, which does
not guarantee that it will perform well over a very high-dimensional dataset.
VA+-file. Ref. [109] prevent excessively uneven data distribution across the clusters by
restricting the cluster sizes from the top. This enhances the performance of a non-uniformly
distributed dataset by using PCA and a non-uniform bit allocation.

To enable faster sequential scanning, the VA+-file offers approximate representations
of data points. However, they have not taken into account the workload of the queries and
the cache. The performance degrades as dimensionality increases. Basically, it uses the KLT,
which is not scalable for large matrices.
∆+-tree. In ref. [74,118], researchers use PCA to make it easier to create an index structure
that supports pruning at various levels and with varying numbers of dimensions. It helps
to minimise L2 cache misses and computational overhead. This technique also outperforms
the iDistance, Pyramid-tree technique, etc.

The ∆+-tree also cannot stop a rebuilding process, but it can delay it for a sufficient
amount of time. With varying datasets, the best suitable values of the parameters (such
as clusters and segments) might also differ, because sometimes we are not aware of the
distribution of the dataset.
BF-CUDA. Ref. [77] utilised the GPU to implement the fast, parallel kNN Search technique.
It turns out that the NVIDIA CUDA API speeds up the kNN Search by 400 times the speed
compared to using a brute force CPU-based approach.

This method cannot be used with very large datasets because it needs to calculate and
store an entire m× n distance matrix.
CUBLAS. The compute unified device architecture (CUDA) and the CUDA basic linear
algebra subprograms (CUBLAS) [75] provide the significant speedup, i.e., 25 times and
62 times faster on high-dimensional datasets, as compared to the highly optimised ANN
C++ library [189].

It can be ineffective in large-scale environments. Actually, the brute force approach is
often infeasible for big datasets as they have quadratic complexity. Utilising an index data
structure may lower the quadratic complexity of brute force searches on the CPU or GPU.
To find the kNN, we need to compare the query point with all the data points and select
the k closest data points whose distances are the smallest. Even though GPGPUs are often
used to speed up this method, the cost of moving data has a big effect on performance.
However, utilising in-memory processing can greatly reduce the amount of data movement.
ACDB. They present an enhanced kNN Search method that uses adaptive cluster distance
bounding [119] for indexing. It reduces CPU costs by removing unnecessary distance
computations using triangle inequality.

The k value and the initial center pivots have a significant impact on the cluster
technique. They perform an experiment considering that they have no impact on the
cluster outcome. In this study, they utilised point-based triangular inequality to enhance
kNN Searching, but it usually experiences memory overhead and inconsistent calculations,
which leads to lesser performance.
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TBiS. The TBiS [122] is beneficial in all the performance parameters; specifically, it offers
synchronous concurrency, desired data locality and simple data and programme structures
for an effective parallel kNN Search. The TBiS provides data independence. At each step, it
divides the items evenly among the GPU’s threads so that there are no synchronisations or
memory access conflicts.

TBiS needs additional transient global memory for intermediate computations. The
study showed a sharp decline in performance as the number of data points n and closest
neighbours k rose.
QDBI. The quad-tree-based distributed multidimensional data index (QBDI) [125] structure
and the kNN query technique provide effective performance and scalability as compared
to other P2P systems. It is not very focused on high-dimensional datasets. They limited the
experiment to the dimensions 2D–5D.

In QDBI, the experiments are not performed on a real dataset. Considering most of the
existing works discussed earlier, we can say that the synthetic data provides better results
as compared to the real-world dataset because of several benefits of the synthetic datasets,
such as data quality, scalability, etc. CUBLAS [75], for example, outperforms the ANN C++
library 189-fold on synthetic datasets and 62-fold on high-dimensional real-world datasets,
according to experimental results. However, because these methods are meant to be used
in the real world, they need to be tested with real-world, high-dimensional datasets.
iDistance-PS. Authors provide the first in-depth research on various partitioning tech-
niques for the iDistance HD Indexing Technique. Ref. [120] helps us learn a lot more about
why some methods work better than others when applied to datasets with different sizes,
shapes and distributions. It helps find the best way to partition the datasets so that iDistance
can have better pruning power. The new Partitioning Approaches provide efficient kNN
querying for high-dimensional datasets. It also overcomes the limitations of the iDistance,
such as the negative effect of points that are the same distance apart (equidistant) and
partition overlap.

The problem of dimensionality is significantly worse with space-based approaches. By
shifting the reference points, we can obtain better outcomes because the optimal location of
reference points improves partitioning effectiveness.
PL-tree. To deal with the high-dimensional datasets, this new Indexing Technique [115]
uses Cantor paring functions, which help scale well with dimensionality and data size. It
outperforms the R*-tree and X-tree. It also supports efficient point queries, range queries
and kNN queries.

It works better than the R*-tree and X-tree, but it is outperformed by the iDistance for
point queries. They have done experiments with only 12 dimensions, but the real-world
application creates data with hundreds or thousands of dimensions.
CU-kNN. GPUs with the parallel compute unified device architecture provide high perfor-
mance and significant advantages. It helps address the core issues with CUDA-based data
mining algorithms.

Ref. [121] only looks at how the techniques can be used on a single GPU. This makes
them obsolete data mining methods, especially when you think about how well they work
with big datasets.
iDStar. Ref. [162] explored a number of significant configurable factors to improve the
performance of kNN queries utilising the iDistance and iDStar techniques, emphasising
the challenges of indexing in HD and tightly clustered dataspaces.

It cannot filter the data points more effectively when clusters are a bit scattered. It
also requires more time since more nodes must be visited. The problem of the curse of
dimensionality still exists above the 256 dimensions.
kNN-PA. In [123], the authors provide methods that support closest neighbour searches
over thousands of cores for arbitrary-dimensional datasets using the message passing
interface and OpenMP.



Sensors 2023, 23, 629 33 of 44

The method is unable to perform well in a distributed memory environment because
it is hard to predict how much memory will be used and there are a lot of communication
costs. It was not designed for continuous updates, i.e., the insertion and deletion of data
points.
HC-O. In ref. [116], the authors introduce the cache compact approximation representations
of data points in main memory to speed up the candidate refining process during the kNN
Search. It is a general method that can be used for both exact and approximate kNN
Search methods.

They consider that the distribution of queries within the workload will not change
quickly. The lower and upper bounds of query point q are calculated for every data point pi
found in the cache. The authors then calculate the k-th minimum upper and lower bounds
among all candidates. Data points whose si.lb values are above ubk are pruned since they
cannot be among the kNN. Additionally, they search for data points whose si.ub is less
than lbk since they could contain the needed solution and be added to the result set. That is
why the effectiveness of this technique depends on the tightness of the distance bounds
(and the histogram H).
OTI and EOTI. They provide a novel fast search technique based on the optimal trian-
gle inequality-based (OTI) approach [113] for kNN and also provide an effective optimal
triangle inequality-based check technique, taking into account the significant space com-
plexity and additional time complexity of OTI. When searching for the k closest neighbours,
the proposed triangle inequality-based techniques aid in reducing the costly redundant
distance calculations.

The distances between each cluster centre and each given instance are computed
and stored beforehand. The OTI’s space complexity for distance storage is S(N ×M) =
M× S(N), which can be considered unsatisfactory due to the high values of N and M in
the huge datasets. Here, N is the number of instances in the dataset and M is the number
of clusters in the dataset. The process of constructing triangles can be improved in order
to increase the effectiveness of the kNN technique. As the flat-index buildings are built
offline when the database is updated or the data changes, it is necessary to rebuild the data
structures.
BP. In the BP method [114], using the PCCP helps to significantly lower the I/O cost and
CPU time. The PCCP can minimise the number of data points, resulting in lower I/O costs
and time consumption. Moreover, the I/O cost also lowers as the number of partitions
rises and the CPU running time is minimised by setting the specified optimum value of
partitions. These factors help improve CPU performance and reduce I/O costs. It is the first
non-metric, high-dimensional technique that uses Bregman divergence to find the optimal
kNN Search results.

By transforming Bregman distances into Euclidean distances and employing con-
ventional metric searching methods, it is possible to solve the high-dimensional kNN
Search problem more effectively. Moreover, modifying the BB-forest structure can facilitate
massive data updates more effectively.
HkNN. The HkNN [124] offers a good hybrid, massively parallel closest neighbours ap-
proach that makes effective use of batching to distribute the computational burden between
CPU and GPU. The presented hybrid technique performs linearly as data dimensionality
increases. With high-dimensional datasets continuing to grow in size and dimension,
high-performance closest neighbours search algorithms become very important.

They compared the results only with brute-force search techniques, as other tree-based
approaches do not scale to very high-dimensional datasets (i.e., ≥ 500D), but they can
be tested with high-dimensional datasets (i.e., 100D to 499D). There is scope to examine
various optimised distance kernels, k selection approaches and combinations in distributed,
hybrid and CPU environments.
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7.2. kNN Join Techniques

Table 6 presents a comparative study of various kNN Join approaches discussed in
this survey. Here we have divided the approaches into two partition strategies, i.e., space-
based and data-based. The kNN Join techniques are classified based on the processing
of the method. This Computing Paradigm taxonomy includes four different approaches:
I/O, main memory, parallel and distributed. The taxonomy Indexing Techniques are
discussed in Sections 3 and 5. The Dimensionality Reduction Approach category includes
various Dimensionality Reduction Approaches that play an important role in improving
the capabilities of algorithms, such as reducing the distance computation cost.

Table 6. Comparative Study of kNN Join Techniques.

Sr No. Techniques Merits Demerits

1. MuX [53,54] 1. Designed to reduce the I/O and CPU costs
1. Performance degrades with an increased
dim.
2. High memory overhead

2. Gorder [126] 1. Reduce random access
2. Prunes the unpromising block blocks

1. It requires significantly more computation
2. Designed for static data

3. iJoin [128] 1. Adaptive and dynamic 1. Very costly for dynamic data

4. IIB and IIIB [127] 1. Effective for the sparse dataset 1. It may not be feasible for correlated datasets.
Algorithms’ effectiveness can be optimised

5. kNNJoin+ [76] 1. It supports efficient searching and dynamic
updates

1. Unable to meet the real-time requirements
2. High distance computation cost & node
overlap

6. H-BNLJ and
H-BRJ [130] 1. Easy to implement 1. Slower and unable to scale well

2. Communication overhead is very high

7. PGBJ [58]
1. Increasing the k value does not affect the
communication overhead
2. Disk usage is very low

1. Inefficient for high-dimensional data
2. Pivot selection significantly affects
performance
3. time-consuming operations for big datasets

8. HDR-tree [83] 1. Searches for affected users are made efficient
2. It is effective for high-dimensional data

1. Lack of Support for Deletions
2. Lack of Support for Batch Updates

9. EkNNJ [129]
1. Efficient dynamic update, batch and lazy
update
2. Provide optimised deletion

1. Does not support fully dynamic HD kNN
Join
2. Scope for deletion optimisation

In this section, we discussed the benefits and drawbacks of each of the techniques
listed in Table 6.
MuX. The multipage index (MuX) [53,54] was used to effectively process the kNN Join.
It employs page-loading and bucket-selection strategies to improve the performance of
kNN. In order to decrease the CPU and I/O costs here, they have implemented the loading
and processing strategies. The loading method accesses the hosting pages in decreasing
order of quality. On the other hand, processing techniques solve the problem of loading the
buckets of R and S into the cache in the right order so that they can be processed.

MuX employs an index to minimise the number of data pages that need to be accessed,
but it still suffers since it uses an R-tree-based join technique. Similar to the R-tree, its
performance is expected to decline as data dimensionality increases. It has a high memory
overhead due to the space requirements of high-dimensional MBRs.
Gorder. This method [126] cuts down on CPU and I/O costs by sorting, scheduling joins,
pruning and reducing the number of distance calculations. It essentially gains the benefit
of a block-nested loop join in terms of minimising random access. Utilising a G-ordered
data property, it removes from search any data blocks that are unfavourable in order to
reduce I/O and similarity calculation costs. They used the distance computation reduction
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technique to further reduce the CPU cost, i.e., it prunes unnecessary block access. It
manages high-dimensional data well while being simple and effective.

Gorder is a block-nested loop join technique where the pruning occurs at the block
and object levels. Therefore, it requires a lot more computation. Every data point in the
block keeps track of the k closest neighbours it has already visited, even though it computes
the nearest neighbours of all points in a block before continuing to analyse data points in
another block. With no reuse of neighbours of one point as neighbours of a point in close
distance, each data point does this job individually and separately. It was created for static
datasets and thus it is unable to work with dynamic datasets without having to recompute
the whole kNN Join result.
iJoin. Applications and datasets supported by these approaches [128] are not limited. It
can handle different k values because it is dynamic and adaptable.

MuX, Gorder and iJoin use the nested loops join technique, which needs to search a
complete dataset. It needs to be recomputed to acquire the updated result if there is any
change to either of the joining sets, i.e., the R or S dataset. None of these methods can be
simply extended to process the incremental kNN Join.
IIB and IIIB. The threshold-based pruning [127] significantly lowers overhead, such as
index creation and inverted list scanning. It also addresses the kNN Join problem for
high-dimensional sparse datasets.

It was made for high-dimensional, sparse datasets, which can be ineffective for most
correlated datasets. The effectiveness of the proposed algorithms can be optimised by using
a more efficient refinement approach. They did not consider the existing state-of-the-art
approaches for comparative study. The study only examined the brute force approach.
kNNJoin+. The kNNJoin+ method [76] searches for the k nearest neighbours efficiently
and dynamically updates the results whenever an update operation is performed.

To manage the dynamic update, they present a kNNJoin+ technique based on the
sphere-tree index. The sphere-tree follows an R-tree like structure, which normally has a
mediocre performance in high-dimensional environments. Moreover, the high I/O cost
makes it hard for disk-based solutions to meet real-time needs. They primarily focus on
reducing I/O costs and face the issue of high node overlap and high computation costs of
distances in high dimensional spaces.
H-BNLJ and H-BRJ. Ref. [130] proposes new ways to use MapReduce to do effective
parallel kNN Joins on very large datasets.

Because the number of partitions is proportional to the number of blocks in each input
dataset, the Hadoop block nested loop join (H-BNLJ) method does not work well with
multidimensional or high-dimensional data. To perform parallel processing, Hadoop block
R-tree join (H-BRJ) has to replicate dataset blocks. So, if we create n blocks, we have to
make n copies of each block for a total of n2 divisions, which causes a communication
overhead.
PGBJ. This basically requires a low amount of disc space. In [58], the authors show that
increasing the k value does not affect the communication overhead.

If the preprocessing and splitting steps do not reduce the number of search points by
a large amount, the number of values that need to be sorted in the reduce step could be
very high (up to |S|). The replication procedure requires computing several Euclidian
distances (i.e., the cost of computing the distance in the preprocessing phase), making it
computationally expensive. Therefore, it is not efficient for high-dimensional datasets. It
shows a significant communication overhead. This is a result of the cell grouping and pivot
selection. However, regardless of k, this overhead does not change.
HDR-tree. The researchers implement an HDR-tree [83] index structure to facilitate the
effective search of affected users (i.e., users affected by the update operation). The proposed
index structure provides an effective high-dimensional search by using clustering and PCA.

The HDR tree does not support optimised deletion. During the deletion operation,
it has to recalculate the kNN for all query points, just like in static solutions. This is a
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costly operation and makes the process less efficient. It does not support batch updates.
The performance is reduced because the kNN Join results must be updated every time a
new item is added or updated in the dataset.
EkNNJ. In ref. [129], authors address the problem of existing kNN Join techniques, i.e., the
lack of support for deletions and batch updates, with the help of new efficient deletion,
lazy update and batch update algorithms.

It does not support a fully dynamic high-dimensional kNN Join, i.e., one static and
one dynamic dataset where the user dataset is static while the item dataset is dynamic.
To speed up the search process and deletion optimisation, authors maintained an RkNN
table structure that continually mapped the item points in the sliding window to the
corresponding reverse kNN list (RkNN). With the use of an RkNN table, they get the
RkNN list of a deleted item instantly, but maintaining an RkNN table is a costly approach.
Therefore, there is further scope for deletion optimisation.

8. Conclusions

We noticed that most researchers worked on approximation solutions to boost the
effectiveness of the proposed techniques. However, there is a trade-off between efficiency
and accuracy when using approximate strategies, which compromises precision to achieve
efficiency. Several survey studies have been conducted on high-dimensional databases,
but none have included exact kNN queries. Therefore, in this paper, we tried to cover
almost all the high-dimensional kNN Search and kNN Join solutions. We provided a
brief overview of all approaches and categorised these kNN query approaches based on
five different factors, namely Indexing Technique, partitioning strategies, dimensionality
reduction strategy, distance computation approach and Computing Paradigm. We included
a comparison study as well in Section 7. In order to identify the limitations of the current
approaches, we presented a comparative analysis of their merits and demerits. As far
as we know, this will be the first detailed study of the exact kNN approaches over high-
dimensional space.

9. Challenges and Future Directions

In order to address the problems of existing techniques, future research can focus on
the following directions:

• In the approaches that use a cluster-based partitioning strategy, finding the ideal
number of clusters is always difficult because it mostly depends on the size of the
dataset, the number of features and the distribution of the data points. So, we can
take into account all these factors when designing an efficient approach. It will help to
improve the performance.

• A clustering approach is used for partitioning, which provides indexes with better
pruning power. So, considering the importance of effective search in high-dimensional
space, research can be conducted on the quality of dataset clustering to distribute the
data instances within clusters more reasonably.

• The structure of the relevant triangle has a big effect on how well a search method
based on triangle inequality works. As a result, existing works use an efficient optimal
triangle-inequality approach to select an optimal cluster centre from among all cluster
centres that aid in the construction of a suitable triangle. In order to reduce space and
time complexity further, the triangle’s composition can be optimised by creating a few
promising reference points and using them to make optimum triangles.

• The analysis in Tables 3 and 4 shows that most approaches do not support dynamic
datasets. Since real-world applications are increasingly using kNN queries, future
work needs to focus more on dynamic datasets.

• As per our survey, not a single parallel and distributed exact kNN Join approach for a
high-dimensional dataset is available. Distributed parallel computing offers several
problem-solving capabilities. Using it as a direction for research can improve the
overall performance of kNN queries over high-dimensional data by a large amount.
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The approaches that are available support up to 20 dimensionalities only. So, there is
room for further research in kNN Join over high-dimensional data based on parallel,
distributed or hybrid Computing Paradigms.
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