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Abstract: A hyperspectral image (HSI), which contains a number of contiguous and narrow spectral
wavelength bands, is a valuable source of data for ground cover examinations. Classification using
the entire original HSI suffers from the “curse of dimensionality” problem because (i) the image bands
are highly correlated both spectrally and spatially, (ii) not every band can carry equal information,
(iii) there is a lack of enough training samples for some classes, and (iv) the overall computational
cost is high. Therefore, effective feature (band) reduction is necessary through feature extraction (FE)
and/or feature selection (FS) for improving the classification in a cost-effective manner. Principal
component analysis (PCA) is a frequently adopted unsupervised FE method in HSI classification.
Nevertheless, its performance worsens when the dataset is noisy, and the computational cost becomes
high. Consequently, this study first proposed an efficient FE approach using a normalized mutual
information (NMI)-based band grouping strategy, where the classical PCA was applied to each band
subgroup for intrinsic FE. Finally, the subspace of the most effective features was generated by the
NMI-based minimum redundancy and maximum relevance (mRMR) FS criteria. The subspace of
features was then classified using the kernel support vector machine. Two real HSIs collected by the
AVIRIS and HYDICE sensors were used in an experiment. The experimental results demonstrated
that the proposed feature reduction approach significantly improved the classification performance.
It achieved the highest overall classification accuracy of 94.93% for the AVIRIS dataset and 99.026%
for the HYDICE dataset. Moreover, the proposed approach reduced the computational cost compared
with the studied methods.

Keywords: hyperspectral image classification; remote sensing; feature extraction; feature selection;
feature reduction; band grouping; mutual information

1. Introduction

A hyperspectral image (HSI), which is acquired at a contiguous spectral wavelength
of the electromagnetic spectrum (EM), is a rich data source for a wide range of real-world
remote sensing applications, including agriculture, geology, mining, military surveillance,
and others [1,2]. Moreover, an HSI is set up as a hypercube and often has hundreds of
contiguous, narrow bands in the spectral image [3,4]. Due to the fact that each of these
image bands contains varying intensities for the ground cover, they are each referred to as
individual features [5–7].

There are two dimensions of spatial information and one dimension of spectral infor-
mation in an HSI, which comprise the three dimensions of spectral-spatial information in
the HSI (see Figure S1 in the Supplementary Files) [5,6]. Each spectral image is referred
to as a feature for classification in this context, since it contains the distinct responses
of the ground surface [7]. Four essential obstacles to a successful classification task are
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present in a high-dimensional HSI (i.e., an HSI with hundreds of image bands or features).
First, because the hyperspectral sensor collects the images in continuous and contiguous
spectral ranges, the neighboring image bands are highly correlated and certain image bands
carry less discriminating information [5,8]. Secondly, the spectral bands are not equally
important, as the bands are captured in different wavelengths of the EM spectrum [9].
Thirdly, there is a significant lack of training samples for some classes [10], which, in turn,
creates the Hughes phenomenon or curse of dimensionality problem [11]. The Hughes
phenomenon describes the fact that classification accuracy initially rises steadily as the
number of spectral bands or dimensions rises, but falls sharply after the number of bands
reaches a certain level. Finally, the computational cost of using the entire original HSI is
highly expensive [7].

Effective feature (band) reduction is necessary to lower high-dimensional HSIs and
create a suitable subspace of the features in order to improve the classification results [12–16]
in order to address the aforementioned issues. For the accurate classification of HSIs,
feature reduction (FR) techniques using feature extraction (FE) and/or feature selection
(FS) might be used. FE maps the original HSI into a new space with a dimensionality of
K from the original space with a dimensionality of P, where K � P, using nonlinear or
linear conversion [3]. Unsupervised and supervised procedures are the two methods of
reducing dimensionality that are used most frequently. While unsupervised procedures
do not make any assumptions about the existing knowledge, supervised methods are
intended to preserve previously known information (ground truth). The most widely
used unsupervised linear FE approach is principal component analysis (PCA) [17–19]. It
is based on the idea that adjacent bands are highly correlated, and uses global statistics
to eliminate the connections between bands [20,21]. It is often claimed that PCA is better
for data compression purposes but is not suitable for extracting the most informative
feature in the classification task [22–29]. The reasons for this are: (i) PCA may not catch
the detailed local statistics, as it determines the overall characteristics of the entire HSI;
(ii) the top principal components (PCs) or transformed features may not always contain the
informative structure of the entire HSI (i.e., the tasks are biased in PCs with high variance);
and (iii) PCA requires a high computational cost for high-volume hyperspectral data, as it
considers the global statistics [30–32].

To address the pitfalls of the classical PCA, correlation-based segmented PCA (SPCA)
was presented in [22], which applies conventional PCA to the bands’ subgroups. The
entire dataset is divided into multiple segments using the image’s band-to-band correlation
matrix. For a subgroup’s dataset, the contiguous strongly correlated bands are often
assigned. However, this correlation-based segmentation strategy can only sufficiently
reflect the linear relationships of the bands for making the subgroups. As such, correlation-
based segmentation might not be feasible for performing classical PCA on large-volume
HSIs with a huge number of bands for effective FE. Comparatively, mutual information
(MI) is a dependence metric that has a built-in ability to manage the HSI in both linear and
nonlinear connections [9,33]. With this motivation, we proposed a band grouping method
of partitioning the spectral bands using a band-to-band normalized MI (NMI) matrix for
effective FE, which is called band grouping-based PCA (BgPCA). The suggested FE method,
BgPCA, first uses the NMI measure to divide the original bands into multiple groups and
then applies conventional PCA separately to each subgroup of the original image bands at
a minimum computing cost.

As segmented PCA is applied to the complete dataset, there is a need to apply feature
selection to select the optimal number of features. For FS, the subspace of effective features
extracted by our BgPCA transformation for classification is selected using the NMI values
of the transformed features to a specific range, thus meeting the minimum redundancy and
maximum relevance (mRMR) criteria. Accordingly, the complete FR approach is known
as BgPCA-NMI, which significantly enhances the classification performance and mini-
mizes the computational costs as well. Although the proposed method shows outstanding
performance in terms of different performance measure metrics, it has some limitations.
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A user-defined threshold is used to effectively partition the complete HSI. It can be opti-
mized adaptively, and our future goal is to use a network model that automatically selects
the threshold value from the dataset. On the other hand, the proposed method only ad-
dresses the spectral features. However, data redundancy exists in the spatial domain of
the HSI. As such, in the future, a deep learning-based approach could be used to extract
the spectral-spatial information [34,35] alongside our proposed FR technique for further
improving the classification outcome. To this end, the main contributions of this study are
listed below.

• We propose an MI-driven efficient FR approach for the effective classification of HSI.
• We introduce an NMI-based band grouping strategy for intrinsic FE by applying

classical PCA transformation to each group of bands independently for effective FE
from HSI.

• We propose an NMI-based mRMR FS method using the extracted features through
our proposed transformation.

• We performed extensive experiments on two widely used benchmark HSI datasets cap-
tured by the AVIRIS and HYDICE sensors to validate the superiority of our proposed
FR approach.

We have organized the rest of the article as follows. In Section 2, we first describe the
insights of the proposed NMI-based band grouping strategy for applying classical PCA in
a segmented manner. Next, the proposed FE called BgPCA is elaborately presented. After
that, we discuss the NMI-based mRMR FS criteria on top of our BgPCA transformation.
Lastly, we present the complete FR method called BgPCA-NMI at the end of Section 2. In
Section 3, we intricately analyze the experiments conducted on two real HSI datasets using
the proposed BgPCA-NMI FR approach and the state-of-the-art methods. Finally, Section 4
summarizes the outcomes and concludes the article.

2. Methodology

The proposed FR approach, called BgPCA-NMI, encompasses three main steps:
(i) band grouping based on the band-to-band NMI matrix of the entire original HSI; (ii) FE
through implementation of classical PCA on each subgroup dataset independently; and
(iii) FS through measurement of the NMI-based mRMR criteria of the transformed features
of the HSI. Figure 1 illustrates the working steps of our BgPCA-NMI.
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2.1. Proposed Band Grouping Strategy Based on NMI

The MI is a popular information-theoretic metric used to measure the general depen-
dency of two random variables, say two image bands A and B. The MI, denoted I(A, B), is
defined as

I(A, B) = ∑
b∈B

∑
a∈A

p(a, b) log
p(a, b)

p(a) p(b)
(1)

where p(.) denotes the marginal probability and p(., .) is the distribution of the joint
probability. In the context of HSI, the MI assesses the information that is shared among the
spectral image bands and intuitively determines the interdependence among the image
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bands. A higher MI indicates more dependency between them and vice versa. Note
that although correlation has been successfully applied as a similarity measure tool in
many studies [22,36,37], it suffers when nonlinearity exists in the image bands. Unlike
the correlation metric, the MI finds the dependency of the image bands both in linear and
nonlinear ways. However, the MI value is not bound to a precise range, which creates
difficulty when measuring the actual relationships of the relevant image bands of the HSI.
Therefore, the MI value can be mapped to a specific range for normalizing the measure as
follows [38]

Î(A, B) =
I(A, B)√

H(A)H(B)
(2)

In Equation (2), Î(A, B) is the NMI between the image bands A and B, and H(.)
denotes the marginal entropy. Figure 2 represents how the NMI measure is more influential
compared with the correlation measure and traditional MI. Figure 2a depicts the scatterplots
of two random variables showing a perfect linear relationship, and Figure 2b illustrates the
scatterplots expressing a point-to-point but nonlinear relationship between the variables. It
can be observed that the correlation is strong when the variables are fully linear and low
when the variables are nonlinear. Contrariwise, the NMI is high (i.e., 1.0) for both cases,
which reemphasizes the superiority of the NMI-based similarity measure.
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We determined the band-to-band NMI matrix for the dataset by computing the NMI
between every pair of HSI bands in order to segment the complete HSI. As an illustration,
Figure 3a shows the baseline correlation matrix image notation and Figure 3b shows the
NMI matrix in image notation of the AVIRIS Indian Pines dataset. The NMI values of the
HSI bands that are close to one another are greater than those of the bands that are farther
apart. The HSI bands from the original data cube were therefore divided and grouped
using the NMI matrix image. The details of the subgroups using this proposed NMI-based
segmentation strategy and the baseline correlation-based segmentation strategy of SPCA
for the AVIRIS and HYDICE datasets are shown in Tables 1 and 2, respectively.
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Table 1. Band grouping information of the Indian Pines (AVIRIS) HSI.

SPCA (Baseline Approach) BgPCA (Proposed Approach)

Group Range of
Bands

# of
Bands

Average
Correlation

Range of
Bands

# of
Bands

Average
NMI

1 1–35 35 0.8770 1–102 102 0.3400
2 36–103 68 0.7171 103–143 41 0.7171
3 104–200 97 0.6950 144–200 67 0.6950

Table 2. Band grouping information of the Washington DC (HYDICE) HSI.

SPCA (Baseline Approach) BgPCA (Proposed Approach)

Group Range of
Bands

# of
Bands

Average
Correlation

Range of
Bands

# of
Bands

Average
NMI

1 1–56 56 0.9443 1–58 58 0.4500
2 57–102 46 0.8842 59–108 50 0.5460
3 103–191 89 0.9813 109–159 51 0.5460
4 - - - 159–191 33 0.5600

2.2. PCA

In order to extract meaningful information, PCA was used to calculate the relation-
ships between the spectral image bands in HSI. This depended on the fact that the HSI’s
neighboring bands were strongly linked and frequently communicate information about
the ground entities that were similar to one another [28,29]. Let the spectral vector, denoted
as Xn, in X be defined as Xn = [Xn1Xn2 . . . XnP]

T, where n ∈ [1 Sall]. The mean adjusted
spectral vector, In, can now be obtained as follows

In = Xn −M (3)

where the mean image vector, M = 1
Sall

Sall
∑

n=1
Xn. The zero-mean image, denoted I, is thus

obtained as I = [I1I2 . . . In]. After that, the covariance matrix, C is computed as follows

C =
1

Sall
I IT (4)

Eigenvalues E = [E1E2 . . . EP] and eigenvectors V = [V1V2 . . . VP] are obtained by disin-
tegrating the covariance matrix C as C = VEVT. The orthonormal matrix, Z, is collected
by picking K eigenvectors after reorganizing the eigenvectors with the peak eigenvalues,
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where K < P and often K � P. Finally, the transformed or projected data matrix, Y, is
calculated as

Y = ZTI (5)

2.3. Proposed BgPCA

When the multispectral dataset has a small number of distinct bands, it has been
observed that conventional PCA is practical and delivers satisfactory results when ex-
tracting appropriate features [19]. Applying traditional PCA to the complete dataset for
hyperspectral images may provide biased outcomes in addition to an exponential rise in
processing time and computing expense [22]. The highly connected image bands of the
HSI, however, appear in blocks and were shown to be highly associated with respect to
the bands that are closer together. Additionally, PCA retrieves the HSI data while taking
the overall HSI features into account and fails to extract the local information. In order to
eliminate the less correlated bands between the highly correlated blocks, SPCA changes
the use of traditional PCA.

Because it cannot handle the nonlinear interactions between the bands during the
segmentation phase, the correlation-based segmentation of HSI utilized in SPCA may still
be impractical. As such, we proposed an NMI-based band grouping mechanism for more
efficient band segmentation to handle both linearity and nonlinearity in the image bands,
which was discussed in Section 2.1. The improvement allowed by the proposed BgPCA
over conventional PCA is that it extracts the local characteristics of data in an efficient way
rather than considering the global statistics of the HSI. Moreover, the computational cost of
conventional PCA can be significantly reduced with BgPCA and, consequently, the total
computational cost of HSI classification is decreased.

In the implementation of BgPCA, the complete HSI dataset is separated into k subgroup
datasets based on the NMI-based segmentation scheme. Next, the covariance matrix is
computed for each subgroup’s dataset. Afterward, each estimated covariance matrix of
the distinct subgroups is subjected to the eigen-decomposition procedure independently.
Consequently, the final projection matrix of the entire dataset is found by merging the
individual projection matrices consecutively. We pictorially illustrate the working principle
of the proposed BgPCA in Figure 4, and the pseudocode is given in Algorithm 1.
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Algorithm 1. BgPCA

1. Start {X: the 2D dataset of the HSI}
2. Calculate the band-to-band NMI matrix to produce the subgroups of X
3. Based on the NMI matrix, divide X into k subgroups
4. For each subgroup, do
5. Compute the projection matrix via PCA
6. Combine all individual projection matrices successively to build the complete projection

matrix

2.4. Proposed BgPCA-NMI

For selecting the effective subspace of the extracted features, we first measured the
MI between each new extracted feature, Yi, from our BgPCA transformation and the
ground truth image, T. Accordingly, the most informative feature could be calculated using
Equation (6) and assigned to the feature subspace, S.

V = maxi∈P I(Yi, T). (6)

The K features selected by using Equation (6) can have potential redundancy, which
would affect the classification performance. As such, the redundancy between the selected
features needed to be minimized for efficient classification. To address this, we applied the
mRMR criteria for selecting K effective features as follows

G(Yi, K) = I(Yi, T)− 1
K ∑

sj∈S
I
(
Yi, sj

)
, Yi
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3. Experiment and Analysis of the Results
3.1. Description of the Dataset

In the experiment, the classification task used two different benchmark HSI datasets.
We leveraged the dataset from an urban mall in Washington, DC, and the mixed agricultural
Indian Pines dataset, which were captured by the AVIRIS and HYDICE sensors, respectively.
The Indian Pines HSI has 220 spectral imaging bands in total, each with a spatial resolution
of 145 × 145 pixels [39]. However, due to the impact of atmospheric phenomena, its
20 water absorption bands ([104, 108], [150, 163], and 220) have been disregarded in this
analysis. For classification purposes, there w 16 classes in the ground truth map. The
“grass/mown pasture” and “oats” classes were not utilized in this experiment, since
there were insufficient data for them. A high-volume dataset with a spatial resolution of
1280 × 307 pixels, the urban Washington DC Mall dataset, comprises 191 spectral image
bands [40]. The ground truth map has seven classes available. The “paths” class was not
utilized for classification in the experimental analysis, as there were insufficient samples.
We display some sample band images and the ground truth image of the Indian Pines HSI
and the false color image of the Washington DC Mall HSI with its ground truth information
in Figure S2 in the Supplementary Files, while Table 3 illustrates the key properties of
these datasets.

Table 3. Summary of the datasets.

Name of the Dataset Capturing
Sensor P Wavelength

Range (nm) H W Ground
Classes

Ground Sampling
Distance (m)

Indian Pines AVIRIS 220 400–2500 145 145 16 20
Washington DC Mall HYDICE 191 400–2400 1280 307 7 3

3.2. Results of FE and FS

The SPCA transformation partitioned the original HSI into several subgroups using
the correlation matrix; however, the suggested FE method BgPCA divided the image bands
using the NMI matrix. The results of BgPCA segmentation shown in Table 1 are based on
the findings obtained by accounting for NMI values greater than the threshold of 0.3 and
looking for edges in the image of the NMI matrix (Figure 3a) together with the diagonal
direction. The total number of subgroup datasets that will be created is indicated by the
user-defined threshold when the threshold is low, the number of subgroups increases,
and uncorrelated bands may be clustered together. We chose the threshold value so that
the image bands with high correlations were grouped together. To carry this out, we
looked at the dataset and the NMI matrix image, and used the trial-and-error method
to choose the threshold value. The entire AVIRIS dataset was split into three subgroups
in Table 1, which each contained 102, 41, and 57 bands. However, the correlation-based
SPCA also partitioned the entire dataset into three subgroups consisting of 35, 68, and
97 bands. Similarly, we partitioned the whole HYDICE dataset into four subgroup datasets
comprising 58, 50, 51, and 33 bands for BgPCA, as illustrated in Table 2. Nevertheless,
SPCA divided the entire HYDICE dataset into three highly correlated subgroups consisting
of 56, 46, and 89 bands. PCA was applied separately to each individual subgroup for both
BgPCA and SPCA with both datasets. For both BgPCA and SPCA, the informative features
were selected using the NMI-based mRMR criteria for effective subspace detection. Table S1
in the Supplementary Files presents the acronyms associated with the proposed method
and the different methods studied, while the order of ranked features that were used for
classification is listed in Tables S2 and S3 in the Supplementary Files for the Indian Pines
and Washington DC datasets, respectively. In Tables S2 and S3, the segmentation number is
utilized first, followed by the PC number of this segment (Segment:PC) for the segmented
PCA (SPCA) technique. The proposed BgPCA approach initially gives the group number,
followed by the number of PCs in this group (Group:PC).
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3.3. Performance Evaluation Metrics

The overall accuracy (OA), average accuracy (AA), Kappa coefficient, and F1 score
are widely used quality indices applied in this study to evaluate how well the proposed
technique performed. The percentage of all correctly identified pixels is known as the OA,
and it can be calculated as follows:

OA =
C

∑
i=1

Aii
B

(10)

In Equation (11), C stands for the number of classes and A for the confusion matrix,
which is determined by contrasting the classification map with the ground truth image.
The number of samples belonging to Class i and labeled as Class i (i.e., values found along
the diagonal of the confusion matrix) is represented by Aii, whereas the total number of
test samples is represented by B.

AA stands for the average accuracy, which is the average proportion of correctly
classified pixels for each class, which is determined as follows

AA =
∑C

i=1

(
Aii/ ∑C

i=1 Ai+

)
C

(11)

where Aii stands for total number of samples belonging to Class i and classified as Class i
(i.e., values found along the diagonal of the confusion matrix), and Ai+ represents the total
number of samples as classified as Class i.

The Kappa coefficient computes the proportion of classified pixels adjusted for the
number of agreements predicted only by chance. The Kappa statistic indicates how much
better the categorization performs than the likelihood of randomly assigning pixels to their
correct categories and can be calculated using the notation used in Equations (10) and (11) as

Kappa =
(B ∑C

i=1 Aii −∑C
i=1(Ai+)(A+i))

(B2 −∑C
i=1 ∑C

i=1(Ai+)(A+i))
(12)

where A+i represents the total number of actual samples in Class i. The F1 score can now be
calculated as follows

F1 score =
2× Precision× Recall

Precision + Recall
(13)

where the precision and recall can be calculated as follows:

Precision =
TP

TP + FP
and Recall =

TP
TP + FN

(14)

Here, TP, FP, and FN denote the number of true positive, false positive, and false negative
classifications of the testing samples of multiple classes, respectively.

3.4. Classification Results and Evaluation

The performance of the proposed FR method, BgPCA-NMI, was assessed in terms of
the following classical performance measure metrics: OA, AA, Kappa, precision, recall,
and F1 score. We also considered a scatterplot-based feature space analysis scheme and the
computation cost for better expressing the robustness of our BgPCA-NMI FR method. After
FE, the first few ranked features selected by the FS approach, as illustrated in Tables S2 and
S3 in the Supplementary Files, were used to calculate the abovementioned performance
measure metrics using the kernel support vector machine (KSVM) and the radial basis
kernel function (RBF) [41] to tackle any nonlinearity in the final feature set. For the task of
efficient training, 10-fold cross-validation with a grid search strategy was used for selecting
the best cost parameter (C_cost) and kernel width (γ) associated with the RBF-KSVM.
The proposed FR approach was compared with conventional PCA and correlation-based
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SPCA with variance, and with NMI-based mRMR FS and BgPCA with variance-based
feature ranking. The kernel parameters C_cost = 8 and γ = 1.33 for the AVIRIS dataset
and C_cost = 6 and γ = 1.23 for the HYDICE dataset were tuned by using 15 features of
the AVIRIS dataset and 8 features of the HYDICE dataset. Table 4 shows all the parameter
tuning results for the KSVM classifier of the proposed and other algorithms studied for the
two HSI datasets. In total, 2127 pixels from 14 different classes from the AVIRIS dataset
were used for the classification, where around 50% were used for training and 50% were
used for testing, as shown in Table S4 in the Supplementary Files. On the other hand, 4464
pixels in total from six classes from the HYDICE dataset were used for classification, where
30% were used for training and 70% were used for testing, as illustrated in Table S5 in the
Supplementary Files.

Table 4. Parameter tuning using 10-fold cross-validation.

Method Name Best C Best γ Training Accuracy

AVIRIS

PCA 10 3 98.55
SPCA 3.5 2.8 94.65

SPCA-NMI 5 2 98.50
BgPCA 1.8 3.7 96.85

BgPCA-NMI 7 1.2 98.88

HYDICE

PCA 10 3 97.55
SPCA 4 2.1 95.83

SPCA-NMI 2.5 3.9 97.68
BgPCA 3 1.5 98.15

BgPCA-NMI 7 1.2 98.95

For the AVIRIS Indian Pines dataset, the OAs produced by the studied methods (PCA,
SPCA, and SPCA-NMI) and the proposed approach (BgPCA-NMI along with plain BgPCA)
are depicted in Figure 5. In this case, a line graph was utilized to assess the relevance of
the ranking attributes at each stage. To begin, just the top-ranked feature was utilized to
calculate the classification accuracy. The top two features were then used and calculated.
Following that, the classification accuracy was computed using the first three characteristics.
In this manner, the total classification accuracy was determined and shown in the line graph
using the selected features. The traditional PCA and correlation-based SPCA achieved
92.45% and 83.40% OA, respectively. On the other hand, the proposed FR method, BgPCA-
NMI, had the highest OA of 94.93% using the same number of features, which clearly
indicates the advantage of using the proposed approach. For the HYDICE Washington
DC Mall dataset, the OAs for the different methods are illustrated in Figure 6. The OAs
produced by PCA and SPCA were 92.8% and 94.81%, respectively, whereas the proposed FR
method, BgPCA-NMI, had the highest OA of 99.026% using the same number of features.
This also led to the superiority of using the proposed feature space identification over the
existing methods.

Tables 5 and 6 show all the classification performance metrics (AA, OA, Kappa, and F1
score) for the proposed FR method and each of the other studied methods. The proposed
method demonstrated an improvement in terms of all these metrics as compared with the
studied methods. The robustness of the proposed method, BgPCA-nMI, for multiclass
classification was also evaluated using the error matrices, as shown in Tables S6 and S7
for the AVIRIS and HYDICE datasets, respectively, in the Supplementary Files. From both
error matrices, it can be seen that almost all classes were correctly predicted, except for very
few of them.
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Table 5. Detailed classification outcomes for the Indian Pines dataset.

Class PCA SPCA SPCA-NMI BgPCA BgPCA-NMI

Hay—windrowed 97.66 90.60 90.60 94.41 96.43
Soybean—no till 80.41 76.67 94.81 84.54 84.69

Woods 94.96 92.27 91.27 96.19 96.71
Wheat 100.00 98.41 100 94.03 100.00

Grass—trees 100.00 100.00 100 100 100.00
Soybean– min. till 89.67 70.21 92.64 94.34 94.94

Grass—pasture 94.74 60.00 90.00 77.42 85.71
Corn –no till 96.67 95.24 95.12 100 100.00

Corn 88.10 92.68 76.47 88.00 97.78
Corn—min. till 100.00 100.00 68.75 87.50 100.00

Stone, steel, towers 100.00 100.00 77.27 100 100.00
Alfalfa 54.55 100.00 100 100 100.00

Soybean—clean 100.00 69.23 83.33 100 100.00
Buildings, grass, trees, roads 80.00 75.00 83.33 88.89 81.82

AA 91.20 87.17 88.83 93.24 95.58
OA 92.45 83.40 91.35 92.54 94.93

Kappa 91.24 80.77 90.00 91.41 94.16
Precision 80.23 70.45 82.22 82.23 91.87

Recall 91.20 87.17 88.83 93.24 95.58
F1 score 85.36 77.92 85.40 87.95 93.69

Table 6. Detailed classification outcomes for the Washington DC Mall dataset.

Class PCA SPCA SPCA-NMI BgPCA BgPCA-NMI

Shadow 34.04 57.14 59.26 72.73 88.89
Tree 99.27 99.88 99 99.79 99.81
Roof 100 99.05 99.08 100 100

Water 100 100 100 100 100
Street 93.63 81.51 89.41 83.86 97.62
Grass 69.12 86.46 87.42 95.82 98.26

AA 95.05 87.34 89.03 92.03 97.43
OA 92.80 92.07 93.57 95.97 99.03

Kappa 90.22 89.32 91.30 94.54 98.67
Precision 93.62 95.49 96.79 97.77 99.51

Recall 95.05 87.34 89.02 92.03 97.43
F1 score 94.33 91.23 92.75 94.81 98.46
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By utilizing the feature space analysis framework, we evaluated the robustness of
the suggested method, BgPCA-NMI. Figure 7 depicts the 2D feature space for the AVIRIS
Indian Pines HSI using the first two ranked features for each method to show the effects
of feature selection and feature extraction. For simplicity, eight classes were plotted in the
feature space. Visually, it is clear that the proposed FR method separated the classes better
than the tested methods. Similarly, Figure 8 shows the 2D feature space for the Washington
DC Mall dataset using the first two ranked features. The outcome further proved that the
suggested FR strategy separated the classes more effectively than the approaches under
investigation. It was therefore observed that the scatterplots represented how the classes
were separated from one another. For the proposed method, we can see that the classes are
more separated compared with the studied methods. If the classes are separated well, the
method will classify the samples more accurately. Note that we could not find any other
additional statistics to calculate these classes regarding the transformed spaces from the
literature on hyperspectral imagery.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16 
 

 

Table 6. Detailed classification outcomes for the Washington DC Mall dataset. 

Class PCA SPCA SPCA-NMI BgPCA BgPCA-NMI 
Shadow 34.04 57.14 59.26 72.73 88.89 

Tree 99.27 99.88 99 99.79 99.81 
Roof 100 99.05 99.08 100 100 

Water 100 100 100 100 100 
Street 93.63 81.51 89.41 83.86 97.62 
Grass 69.12 86.46 87.42 95.82 98.26 
AA 95.05 87.34 89.03 92.03 97.43 
OA 92.80 92.07 93.57 95.97 99.03 

Kappa 90.22 89.32 91.30 94.54 98.67 
Precision 93.62 95.49 96.79 97.77 99.51 

Recall 95.05 87.34 89.02 92.03 97.43 
F1 score 94.33 91.23 92.75 94.81 98.46 

By utilizing the feature space analysis framework, we evaluated the robustness of the 
suggested method, BgPCA-NMI. Figure 7 depicts the 2D feature space for the AVIRIS 
Indian Pines HSI using the first two ranked features for each method to show the effects 
of feature selection and feature extraction. For simplicity, eight classes were plotted in the 
feature space. Visually, it is clear that the proposed FR method separated the classes better 
than the tested methods. Similarly, Figure 8 shows the 2D feature space for the 
Washington DC Mall dataset using the first two ranked features. The outcome further 
proved that the suggested FR strategy separated the classes more effectively than the 
approaches under investigation. It was therefore observed that the scatterplots 
represented how the classes were separated from one another. For the proposed method, 
we can see that the classes are more separated compared with the studied methods. If the 
classes are separated well, the method will classify the samples more accurately. Note that 
we could not find any other additional statistics to calculate these classes regarding the 
transformed spaces from the literature on hyperspectral imagery. 

 

  
(a) (b) 

Figure 7. Cont.



Sensors 2023, 23, 657 13 of 16

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

  
(c) (d) 

Figure 7. Scatterplots for different methods for the Indian Pines dataset: (a) PCA, (b) SPCA, (c) 
BgPCA, and (d) BgPCA-NMI. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Scatterplots for different methods for the Washington DC Mall dataset: (a) PCA, (b) SPCA, 
(c) BgPCA, and (d) BgPCA-NMI. 

The effectiveness of the proposed approach, BgPCA-NMI, was finally assessed using 
the total computational time in different stages, as given in Table 7, for both datasets. The 

Figure 7. Scatterplots for different methods for the Indian Pines dataset: (a) PCA, (b) SPCA, (c)
BgPCA, and (d) BgPCA-NMI.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

  
(c) (d) 

Figure 7. Scatterplots for different methods for the Indian Pines dataset: (a) PCA, (b) SPCA, (c) 
BgPCA, and (d) BgPCA-NMI. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Scatterplots for different methods for the Washington DC Mall dataset: (a) PCA, (b) SPCA, 
(c) BgPCA, and (d) BgPCA-NMI. 

The effectiveness of the proposed approach, BgPCA-NMI, was finally assessed using 
the total computational time in different stages, as given in Table 7, for both datasets. The 

Figure 8. Scatterplots for different methods for the Washington DC Mall dataset: (a) PCA, (b) SPCA,
(c) BgPCA, and (d) BgPCA-NMI.



Sensors 2023, 23, 657 14 of 16

The effectiveness of the proposed approach, BgPCA-NMI, was finally assessed using
the total computational time in different stages, as given in Table 7, for both datasets.
The proposed method was tested on a personal computer equipped with an Intel Core i5
3.2 GHz CPU and 8 GB of RAM, running on the Microsoft Windows 10 operating system.
It was evident that the suggested approach, BgPCA-NMI, took less time overall to compute
than conventional PCA, indicating an increase in computational efficiency.

Table 7. Computational time in seconds (s) of the proposed and studied methods.

Stage
AVIRIS HYDICE

PCA BgPCA-NMI PCA BgPCA-NMI

FE 0.098 s 0.017 s 0.120 s 0.067 s
FS 1.200 s 0.980 s 1.100 s 0.670 s

Total cost 1.298 s 0.997 s 1.220 s 0.737 s

4. Conclusions and Future Work

Because an HSI is a high-dimensional data cube, effective FE is necessary to provide
outstanding classification performance while decreasing the computing costs. In this
study, we used the NMI measure because of its appropriate treatment of nonlinearity
in partitioning the original HSI bands efficiently instead of using the correlation for the
segmentation, as in the case of SPCA. For successful FE, PCA was performed on each
subgroup of bands after the band-to-band NMI matrix of the HSI had been utilized to
divide all the spectral bands into a number of groups. As a result, the proposed FE approach
extracted useful features while taking the HSI dataset’s local characteristics into account,
and the computational cost of extracting the features decreased greatly. After that, the NMI
between each transformed feature and the ground truth was used for selecting the subspace
of informative features using the mRMR scheme. In comparison with traditional PCA and
correlation-based SPCA, BgPCA-NMI increased the classification accuracy, as shown by
the classification performance and analysis of the results on two actual HSI datasets, Indian
Pines and Washington DC Mall. Ultimately, the proposed method, BgPCA-NMI, effectively
reduced the computational cost.

Effective partitioning of the whole HSI was achieved by using a user-defined thresh-
old. We want to utilize a network model that automatically chooses the threshold value
from the dataset in the future. It may be optimized adaptively. On the other hand, the
proposed method just takes the spectral characteristics into account. However, there is
data redundancy in the HSI’s spatial domain. As a result, in the future, our suggested FR
technique, as well as a deep learning-based strategy, will be used to extract the spectral
and spatial information to further improve the classification results. Finally, as well as
our feature space analysis, other distance metrics or statistics, such as the Bhattacharyya
distance, class compactness, etc., within the PC space and BgPCA space could be used in
the future to quantify the separation better.
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www.mdpi.com/article/10.3390/s23020657/s1, Figure S1: Structure of an HSI; Table S1: Acronyms
of different studied and proposed methods; Figure S2: HSI datasets; Table S2: The rank of selected
features for the classification of Indian Pines dataset; Table S3: The rank of selected features for the
classification of DC Mall dataset; Table S4: Training and testing samples for AVIRIS dataset; Table S5:
Training and testing samples for HYDICE dataset; Table S6: Error matrix of BgPCA-NMI for Indian
Pines dataset; Table S7: Error matrix of BgPCA-NMI for DC Mall dataset.
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