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Abstract: In recent years, the use of optical methods for temperature measurements has been attract-
ing increased attention. High-performance miniature sensors can be based on glass microspheres
with whispering gallery modes (WGMs), as their resonant frequencies shift in response to the ambient
parameter variations. In this work, we present a systematic comprehensive numerical analysis of
temperature microsensors with a realistic design based on standard silica fibers, as well as commer-
cially available special soft glass fibers (GeO2, tellurite, As2S3, and As2Se3). Possible experimental
implementation and some practical recommendations are discussed in detail. We developed a re-
alistic numerical model that takes into account the spectral and temperature dependence of basic
glass characteristics in a wide parameter range. To the best of our knowledge, spherical tempera-
ture microsensors based on the majority of the considered glass fibers have been investigated for
the first time. The highest sensitivity dλ/dT was obtained for the chalcogenide As2Se3 and As2S3

microspheres: for measurements at room temperature conditions at a wavelength of λ = 1.55 µm,
it was as high as 57 pm/K and 36 pm/K, correspondingly, which is several times larger than for
common silica glass (9.4 pm/K). Importantly, dλ/dT was almost independent of microresonator size,
WGM polarization and structure; this is a practically crucial feature showing the robustness of the
sensing devices of the proposed design.

Keywords: microresonator with whispering gallery modes (WGMs); silica glass microsphere; tellurite
glass microsphere; germanate glass microsphere; chalcogenide glass microsphere; thermo-optical
effect; thermo-optical sensitivity

1. Introduction

Accurate temperature measurements are vital for many technological processes, vari-
ous practical applications and scientific research. In recent years, in addition to non-optical
sensors (liquid thermometers, bimetal thermometers, Peltier devices, resistance tempera-
ture detectors, and so on), optical temperature measurement tools have been increasingly
used [1–3]. These photonic devices exploit the fact that their parameters may vary with
temperature, thus affecting the properties of propagating light, such as wavelength, phase,
intensity, and polarization [2]. Examples are stand-off thermometers, including radia-
tion thermometers and pyrometers, Raman and Rayleigh scattering-based thermometers,
thermometers based on spectral changes, and others [1,2].

Measurements with glass-fiber-based temperature devices are fairly common [4–6].
Solid microspherical resonators with whispering gallery modes (WGMs), which can be
routinely manufactured by melting the tip of an optical fiber [3], form an important subclass
of such systems. In general, these microspheres have a wide range of applications and
can be produced from various materials using different techniques [7–10]. WGM-based
temperature measurement devices attract a lot of attention due to the unique advantages
of this platform: high sensitivity, small size (ranging from a few tens to a few hundred
micrometers), light weight, wide temperature operating range, and lack of electromagnetic
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interference [7]. Microsphere thermo-optic sensors rely on two principles of operation:
(i) a WGM resonant frequency drift due to the temperature dependence of refractive index
and microresonator size and (ii) a luminescence peak shift in gain microspheres caused by
changes in temperature [3,8]. This work is dedicated to the numerical study of spherical,
fiber-based temperature microsensors that employ the first principle.

Modern technologies allow fabricating high-quality optical glasses with different
chemical compositions and properties. Nowadays, silica glasses are by far the most com-
mon, owing to the advancement in fiber-optic communication systems. On the other hand,
special soft glasses (chalcogenide, tellurite, germanate, fluoride, etc.) have immense poten-
tial thanks to their outstanding optical and physicochemical characteristics; the interest in
their use has been growing steadily over the past few years. Various photonic devices based
on these glasses offer enhanced performance compared to their silica-based counterparts;
they are being actively studied in the frame of fiber, waveguide, and microresonator optics.
Soft glasses usually have a much lower phonon energy and a wider transparency range
than fused silica, thus allowing lasing in spectral regions that are unavailable for regular
silica-based systems [11–16]. Chalcogenide and tellurite glasses exhibit enormous Kerr
and Raman nonlinearities [17,18]. This makes them an exceptional platform for nonlinear
wave conversion applications in a wide parameter range, including supercontinuum gener-
ation [17,19,20], Raman soliton generation [21], continuous-wave Raman generation [22],
generation of optical frequency combs [23,24], all-optical switching [25], ultrafast metrol-
ogy [26], sensing and biosensing [27], etc. Although the nonlinear optical processes are not
directly related to temperature sensing, thermo-optical effects are crucial for their practical
realization and efficient control [23]. Precise knowledge of the temperature response of
a microresonator may help to advance the studies of nonlinear and laser effects in such
systems [8,23]. The aforementioned applications, in turn, stimulate further improvements
in fiber glass quality and properties, the optimization of technological processes and, most
importantly, the launch of commercial products. Quite a lot of scientific institutes and
laboratories are involved in the synthesis of special glasses and optical fiber fabrication;
however, far from all of the interested researchers have access to their products. Currently,
tellurite and germanate glasses can be manufactured on request. Chalcogenide glasses
based on arsenic sulfide (As2S3) and arsenic selenide (As2Se3) are produced by different
commercial companies, which undoubtedly greatly expands their availability.

Although wide-range mid-IR transparency and large Kerr and Raman nonlinear
coefficients are irrelevant for temperature microsensor design, some of the considered
special soft glasses have significantly larger thermal expansion coefficients than fused silica
(almost 50 times higher for amorphous As2S3 and As2Se3 [28–31]), thus being interesting
candidates for the development of highly sensitive thermometric devices.

In this work, we present a systematic comprehensive numerical analysis of tempera-
ture microsensors with a realistic design based on standard silica glasses, as well as special
soft glasses (GeO2, tellurite, As2S3, and As2Se3), extensively discuss a possible experimental
implementation, and formulate certain practical recommendations. The primary focus is on
commercially available components for the operation at the light wavelength near 1.55 µm,
hence combining the remarkable properties of soft glasses, the existing technological basis
for microsphere fabrication from glass fibers [7], and the advantages of the well-developed,
robust, and cheap telecommunication component base. We utilize a realistic numerical
model that accounts for temperature- and spectral-dependent glass characteristics. To the
best of our knowledge, the study of solid microspherical temperature sensors made of
passive As2Se3, GeO2 and tellurite soft glass fibers has been performed for the first time.

2. Materials and Methods

Glass-based microresonators are routinely manufactured by melting the tip of an
optical fiber: under the action of surface tension forces a solid sphere is formed [7]. This can
be done, for example, using a CO2 laser for any type of glass [7,23,32]. A regular telecom-
munication fiber splicer may also be used to make fused silica microspheres [33], and a
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microheater to make soft glass microspheres [22,34]. Earlier, we successfully employed
the latter method to produce different-sized spherical microresonators from commercially
available chalcogenide and customized tellurite fibers [35,36].

The operation of temperature sensors based on microresonators with WGMs relies
on the thermo-optical shift of resonant frequencies. A possible measurement scheme with
such a microsensor is shown in Figure 1a. We assumed that the microsphere was pumped
using a broadband source (for example, amplified spontaneous emission (ASE) from an
Er-doped fiber); the input power was set to be low to avoid nonlinear Kerr effects. The
light propagates along a thin fiber taper placed in the “equatorial” plane of the spherical
microresonator (also denoted as z = 0). Regardless of the sphere material, a standard
telecommunication silica fiber can be used to manufacture the microtaper [22,32,36,37],
for example, employing a gas torch to soften and stretch the glass [33]. The suggested
pumping setup facilitated the excitation of near-surface microsphere eigenmodes localized
in the “equatorial” plane. The established coupling between the light inside the microtaper
and the resonator optical modes was also used to extract and spectrally analyze the output
radiation. In this configuration, the WGM frequencies appeared as spectral dips that were
susceptible to variations in ambient parameters. The exact temperature change could be
deduced from the corresponding eigenfrequency shift.
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sphere with radius 50 μm. 

Figure 1. (a) Schematic of temperature microsensor; red arrows show light propagation direction.
(b–g) Spatial distribution of electric field absolute value for WGMs with different indices (exact
expressions are rather cumbersome and can be found in [38]). Eigenmodes shown in the same row
have equal frequencies; color scale is identical for all figures. All calculations are for SiO2 microsphere
with radius 50 µm.

For a perfectly shaped solid dielectric microsphere, the WGM frequencies and electro-
magnetic fields can be found directly from the solution of Maxwell equations in a spherical
coordinate system with definite boundary conditions [38]. Two eigenmode polarizations
are possible (TE and TM); additionally, WGMs are enumerated with three integer indices:
radial q≥ 1, polar l≥ 0, and azimuthal –l≤m≤ l that define the spatial mode configuration.
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The number of electromagnetic field maxima can be expressed via q, l, and m: q in the radial
direction, 2|m| in the “equatorial” direction (i.e., in the z = 0 plane), and l − |m| + 1 in the
“meridional” direction, as illustrated in Figure 1b–g. Eigenmodes with q = 1, l = |m| are
typically called fundamental WGMs.

The WGM eigenfrequencies were determined from the following characteristic
equation [38]: [

(nkR)1/2 Jν(nkR)
]′

(nkR)1/2 Jν(nkR)
= np

[
(kR)1/2 H(1)

ν (kR)
]′

(kR)1/2 H(1)
ν (kR)

, (1)

where R is the microsphere radius, k = 2π/λ, fl(0) = c/λ is the eigenfrequency of a WGM
with polar index l, ν = l + 1/2, Jν and Hν

(1) are Bessel and Hankel functions of the first kind
of order ν, and n(λ) is the refractive index of the material, which for the considered glasses
can be calculated from the Sellmeier equation (the used literature sources are provided in
Table 1):

n2(λ) = A0 + ∑i=N
i=1

Aiλ
2

λ2 − λ2
i

(2)

The radial mode index q corresponds to the sequence number of the root of the char-
acteristic equation (1); whereas the azimuthal index m is not present in (1), as the WGM
eigenfrequencies of an ideal microsphere are degenerate by m. Naturally, this degener-
acy is lifted in a real experiment due to shape imperfections caused by the manufacture
process. In the simplest case of a deformation into a spheroid with semiaxes Rz and Rx
(maintaining axial symmetry along z) and the deformation parameter η = (Rz − Rx)/R, the
eigenfrequencies can be calculated as follows [39]:

fl,m = f (0)l

(
1− η

3
+

ηm2

l(l + 1)

)
(3)

Table 1. Glass parameters from the literature used in simulations. Numerical values are given at
room temperature T0 = 293 K and at light wavelength λ = 1.55 µm.

Glass n(λ)
Thermal Expansion α= 1

L
dL
dT Thermo-Optic Effect dn/dT

α,
10−6 K−1

Available
Data α(T)

dn
dT

10−6 K−1
Available

Data dn
dT (T, λ)

SiO2 [40] 0.48
α(T); 10 K ≤
T ≤ 300 K;

[41]
8.2

dn
dT (T, λ); 30 K ≤ T
≤ 300 K; [42]

GeO2 [40] 6.1
α(T); 95 K ≤
T ≤ 720 K;

[43]
16 dn

dT = const; [44]

TeO2−WO3−
La2O3 (TWL) [36] 14.2 α(T); T ≤ 600

K; [45] −8 dn
dT = const; [46]

As2S3 [47] 22.5
α(T); 2 K ≤ T
≤ 373 K;
[28,29]

3.7 dn
dT (λ); [29]

As2Se3 [48] 21.4
α = const; 293
K ≤ T ≤ 423

K; [30,31]
48.6 dn

dT (λ); [31]

Thermally induced WGM frequency shifts mostly originate from two effects: thermal
expansion of the resonator leading to changes in R, and refractive index dependence on
temperature n(T), which is often referred to as the thermo-optic effect. For the examined
glasses, these effects are usually considered to be linear at room temperature, and the corre-
sponding coefficients are introduced: the thermal expansion coefficient α = L−1·dL/dT (L is
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the sample length) and the thermo-optic coefficient dn/dT (in absolute values). However,
when exploring a broader parameter range, it is critical to account for the spectral and
temperature dependency of α(T) and dn(T,λ)/dT as follows:

R(T0 + ∆T) = R0(1 +
∫ T=T0+∆T

T=T0

α(T)dT) (4)

n(T0 + ∆T, λ) = n(T0, λ) +
∫ T=T0+∆T

T=T0

dn
dT

(T, λ)dT (5)

where T0 is the initial microsensor temperature (T0 = 293 K), R0 = R(T = T0) is the micro-
sphere radius at room temperature, and ∆T is the temperature change. Unfortunately, the
data required for the considered glasses are available in the literature only in a limited
parameter range, which, however, contains room temperature conditions. The values used
for numerical simulations, their applicability and the corresponding literature sources are
given in detail in Table 1. As illustrated in Table 1, the analyzed glasses have radically
different values of α and dn/dT at room temperature (293 K): for example, for fused silica
(SiO2), α is an order of magnitude smaller than dn/dT, while for tellurite glass (TeO2–WO3–
La2O3 or TWL), dn/dT is negative and its absolute value is comparable to that of SiO2.
For chalcogenide glasses (As2S3 and As2Se3), α is approximately similar, being several
times higher than for GeO2 and TWL, and almost 50 times higher than for regular SiO2;
conversely, their dn/dT values differ drastically, as it is close to zero for As2S3 and for
As2Se3 it is the highest among the considered materials. Consequently, studying WGM
temperature sensors based on such a diverse selection of glasses is of certain interest.

We developed a numerical code for solving the characteristic Equation (1) taking into
account glass dispersion (2) and thermal effects (4,5); high-order approximations were
utilized iteratively to localize the roots [49]. The resonant wavelength shift ∆λ as a function
of temperature change ∆T was calculated from the obtained data. Previously, we employed
a similar approach for tellurite microspheres [36]; however, the present work accounts for
glass parameter functions α(T) and dn(T,λ)/dT, which are plotted in Figure 2. The spatial
distribution of ∆T was assumed to be homogeneous, as only stationary measurements
of the ambient temperature were considered. The obtained values of ∆λ were used to
calculate the sensitivity of the device dλ/dT.
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Figure 2. Optical and thermo-optical glass parameters used in numerical simulations (the corre-
sponding literature sources are provided in Table 1). (a) Glass refractive index as a function of light
wavelength λ. (b) Temperature dependence of thermal expansion coefficient α. (c,d) Thermo-optic
coefficient dn/dT as a function of temperature T at λ = 1.55 µm (c) and as a function of λ at room
temperature T0 = 293 K (d).

3. Results
3.1. Temperature Sensitivity of Same-Sized Microspheres

We used the developed approach to study the temperature sensitivity dλ/dT of
microresonators based on the considered glasses. The calculations were performed in
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a wide parameter range: 150 K ≤ T ≤ 450 K, 20 µm ≤ R0 ≤ 200 µm (Section 3.2),
1.0 µm ≤ λ ≤ 2.2 µm (Section 3.3); the ambient temperature was additionally constrained
by the availability of the specific glass data (see Table 1 and Figure 2b,c for clarification). The
simulation results for same-sized (R0 = 100 µm) microsensors made of different materials
are shown in Figure 3; the data are plotted here only for the fundamental TE modes that
are the closest to λ = 1.55 µm at the corresponding temperature.
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Figure 3. Calculated temperature sensitivities dλ/dT of spherical microresonators based on different
glasses as a function of ambient temperature. The data are shown only for TE fundamental WGMs
that are the closest to λ = 1.55 µm for the corresponding T; line segments between dots denote
different operating WGMs. Room temperature (T0 = 293 K) microsphere radius is R0 = 100 µm.

As illustrated in Figure 3, the highest temperature sensitivity was achieved for the
chalcogenide microresonators: 57 pm/K for As2Se3 and 37 pm/K for As2S3 at room
temperature. This is significantly more than for the microspheres made of silica glass
(9.4 pm/K) or of chalcogenide glass with different chemical composition (Ge20Ga5Sb10S65,
28 pm/K [37]). Moreover, the values of dλ/dT for As2S3 and As2Se3 are almost constant at
high temperatures; this may be a convenient quality for microsensor calibration.

It is worth noting that the results for silica glass microspheres were in good agreement
with experimental measurements [50], thus validating our theoretical model. In [50], the
obtained sensitivity at cryogenic temperatures (120 K ≤ T ≤ 293 K) was 5.9 pm/K at 150 K,
7.8 pm/K at 200 K, and 10.7 pm/K at 293 K. The blue curve in Figure 3 illustrates the results
of theoretical calculations for silica glass microresonators obtained in the present work:
4.9 pm/K at T = 150 K, 6.7 pm/K at T = 200 K, and 9.4 pm/K at room temperature.

The results shown in Figure 3 are only for fundamental TE modes of the same-sized,
ideally spherical microresonators; in a real experiment, however, imperfections in microres-
onator dimensions are inevitable. Moreover, it is usually impossible to determine WGM
polarization and structure from spectral data (an example of real-world ∆λ measurements
can be found in [36]).

To account for these practically important factors, we calculated the temperature
sensitivity dλ/dT for microsphere eigenmodes with different indices and polarizations. The
WGMs with q ≥ 1 and l ≤ |m| were examined. In the considered setup, the highest excita-
tion coefficient is achieved for “equatorially” localized WGMs, as its value is proportional
to field overlap integral. Such modes have a relatively small number of radial and “merid-
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ional” variations (see Figure 1b–g), hence we limited our study to q ≤ 10, l − |m| ≤ 10.
The numerical simulations showed that, for microspheres with R0 = 100 µm, the relative
variations in temperature sensitivity for WGMs with different structures and polarizations
did not surpass 0.3% at room temperature. This quality is crucial for the development of
microsensors, as it ensures the same dλ/dT for all WGMs near a specific wavelength.

Additionally, we assessed possible sensitivity inconsistencies among different WGMs
of a microsphere with minor shape imperfections. Figure 4 illustrates a few resonant
frequencies of a slightly deformed microresonator at different temperatures; here the small
shape deviation (η = 7× 10−4) has broken the spherical symmetry of the system, thus lifting
the mode degeneracy by m as shown in Equation (3). According to our calculations, to keep
the relative variations in dλ/dT below 0.1% across WGMs with l − |m| ≤ 10 for a fixed
deformed geometry (initial microsphere radius R0 = 100 µm), the deformation parameter
η must not exceed 0.03 for SiO2 glass and 0.06 for As2Se3 glass. The obtained results
demonstrate high robustness of the proposed microsensor design to various manufacture
imperfections, which is an important quality from a practical standpoint.
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Figure 4. WGM resonant wavelengths (marked with vertical lines) calculated at different ambient
temperatures: (a) T = 293 K, (b) T = 296 K, (c) T = 299 K. Modes with identical radial indices q and
polarizations are denoted by lines of the same color; arrows indicate mode drift with changes in
T. Data are shown for As2S3 microsphere with R0 = 100 µm, 1 ≤ q ≤ 10, 0 ≤ l − |m| ≤ 10; shape
deformation parameter η = 7 × 10−4. Total wavelength range is roughly a third of the fundamental
WGM distance.

3.2. Temperature Sensitivity of Different-Sized Microspheres

Next, we analyzed the temperature sensitivity of microspheres with different R0:
20 µm ≤ R0 ≤ 200 µm. The results are shown in Figure 5 at room temperature for micro-
spheres made of the considered types of glasses (only fundamental TE modes are shown
for the reasons mentioned above). Note that dλ/dT was almost independent of micro-
sphere radius; according to our simulations, its relative variations did not exceed 1% in the
examined parameter range.

Further, we thoroughly studied the temperature sensitivity of WGMs with various
structures and polarizations for microspheres of different radii. We found dλ/dT to be
almost independent of the system parameters: for 20 µm ≤ R0 ≤ 200 µm, the largest spread
of dλ/dT values across the modes with 1 ≤ q ≤ 10 was 5% (for SiO2 microsensors with
R0 = 20 µm). Microspheres with a larger R0 exhibited significantly smaller temperature
sensitivity variations: for R0 ≥ 50 µm, the spread was less than 1% for silica microspheres
and was less than 0.2% for tellurite and chalcogenide glass microspheres, as illustrated in
detail in Figure 6.
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As mentioned above, the weak sensitivity dependence on WGM structure is a crucial
quality of microresonator-based temperature microsensors. Additionally, the results shown
in Figures 5 and 6 underline the insignificant role of the microsphere size, which was also
experimentally verified for silica glass microcavities in [50]. Together with the weak con-
straints on spherical shape imperfections analyzed in Section 3.1, these qualities highlight
the practical robustness of such WGM-based temperature microsensors.

The fact that temperature sensitivity is independent of microresonator shape and
radius, as well as of mode structure and polarization, can be derived analytically from the
approximate resonance condition:

m·λ = 2π·R(T)·ne f f (6)

where neff is the effective refractive index of the mode, which is, strictly speaking, a function
of mode structure and resonator configuration. A small temperature variation in dT will
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cause the corresponding resonant wavelength shift dλ. Since the same WGM is used for
measurements, m = const. Therefore, Equations (4)–(6) can be rewritten as follows:

dλ =
2π

m

(
ne f f ·dR + R(T)·dn(T)

)
(7)

dλ ≈ λ

(
α(T) +

1
ne f f
· dn
dT

(T, λ)

)
·dT. (8)

Since neff rather weakly depends on microsphere radius, mode indices and light wave-
length, Equation (8) directly shows that the sensitivity dλ/dT should be almost independent
of these parameters. This feature is exceptionally convenient for the temperature microsen-
sor design based on thermo-optical WGM shifts. However, as Equation (6) is written in
the geometrical optics approximation, which assumes that the light propagates along the
microsphere circumference, it becomes less accurate for smaller radii. For example, the
WGM temperature sensitivity of bottle microresonators with diameters of 5–6 µm was
found to change with the microcavity size in contrast to the results of Equation (8) [51]. The
applicability of Equation (8) also explains the larger dλ/dT spread for lower R0.

3.3. Spectral Dependence of Temperature Sensitivity

Besides the telecommunication range considered above, measurements with other
light wavelengths may also be of practical interest. For example, cheap broadband Yb and
Tm fiber laser sources are available near 1 µm and 2 µm, respectively. Therefore, we also in-
vestigated the wavelength dependence of temperature sensitivity for 1.0 µm ≤ λ ≤ 2.2 µm.
The results of the calculations are shown in Figure 7 at room temperature for glass mi-
crospheres with R0 = 100 µm; it is clear that dλ/dT grows with an increase in λ; this
tendency can be explained using the previously derived Equation (8), which shows that
dλ/dT should be proportional to λ if we neglect the spectral dependence of the thermo-optic
coefficient. As before, chalcogenide microsensors are of significant interest owing to their
high sensitivity.
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4. Discussion

We performed a systematic numerical analysis of highly sensitive spherical tempera-
ture microsensors with a realistic design based on both standard silica telecommunication
glass fibers and special soft glass fibers (GeO2, tellurite, As2S3, and As2Se3), including
commercially available ones. The operation of the considered thermometers relies on the
effect of the thermo-optical whispering gallery mode frequency shift caused by changes in
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the ambient temperature. We calculated the sensitivity dλ/dT of the examined microsensors
in a wide parameter range; the spectral and temperature dependence of the properties of
glasses were taken into account. The highest dλ/dT was achieved for chalcogenide As2Se3
and As2S3 microspheres: 57 pm/K and 36 pm/K for measurements at room temperature
near the light wavelength λ = 1.55 µm, respectively. These values are several times higher
than for regular fused silica microspheres (9.4 pm/K) and higher than for a microsphere
made of customized Ge20Ga5Sb10S65 chalcogenide glass (28 pm/K), which was examined
in [37]. The results of the numerical simulations for SiO2 microspheres were in good
agreement with the experimental data in a wide temperature range reported in [50].

Importantly, the sensitivity was almost independent of the microresonator size, WGM
structure and polarization; this quality is of practical value as it shows the robustness of the
considered sensor design. A simple analytical explanation of this fact was provided in terms
of approximate resonance condition. We found that the variations in temperature sensitivity
among different WGMs decreased for larger microsphere radii R0: R0 ≥ 50 µm guaranteed
less than 0.1% relative spread for chalcogenide microresonators. Additionally, we assessed
possible dλ/dT inconsistencies across WGMs of different structures: the effect was found
to be negligible. As the considered chalcogenide fibers are commercially available, glass
microsphere fabrication methods are well known and fairly simple, and the size and shape
requirements are minimal, such microsensors can become relatively cheap, robust devices
for high-accuracy, on-site temperature measurements. Notably, dλ/dT is also independent
of the WGM Q-factor, which defines only the width of the resonance rather than the
position itself. In the considered measurement scheme, the minimal temperature resolution
is determined by the wavelength resolution of the used optical spectrum analyzer, which
can be of the order of 0.01 nm. Alternatively, a tunable, narrow-band, continuous-wave
(CW) laser operating in the sweeping mode may be utilized as a light source to increase
the accuracy. In this case, a photodetector and an oscilloscope are needed to diagnose
the output radiation. This CW-based scheme can improve the temperature resolution by
several orders of magnitude.

The present work may serve as an effective guide for the development of highly
accurate robust thermo-optical sensors that are made of commercially available glass fibers
and, simultaneously, take advantage of the well-developed telecommunication base.
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