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Abstract: Object detection and tracking is one of the key applications of wireless sensor networks
(WSNs). The key issues associated with this application include network lifetime, object detection and
localization accuracy. To ensure the high quality of the service, there should be a trade-off between
energy efficiency and detection accuracy, which is challenging in a resource-constrained WSN. Most
researchers have enhanced the application lifetime while achieving target detection accuracy at
the cost of high node density. They neither considered the system cost nor the object localization
accuracy. Some researchers focused on object detection accuracy while achieving energy efficiency by
limiting the detection to a predefined target trajectory. In particular, some researchers only focused
on node clustering and node scheduling for energy efficiency. In this study, we proposed a mobile
object detection and tracking framework named the Energy Efficient Object Detection and Tracking
Framework (EEODTF) for heterogeneous WSNs, which minimizes energy consumption during
tracking while not affecting the object detection and localization accuracy. It focuses on achieving
energy efficiency via node optimization, mobile node trajectory optimization, node clustering, data
reporting optimization and detection optimization. We compared the performance of the EEODTF
with the Energy Efficient Tracking and Localization of Object (EETLO) model and the Particle-Swarm-
Optimization-based Energy Efficient Target Tracking Model (PSOEETTM). It was found that the
EEODTF is more energy efficient than the EETLO and PSOEETTM models.

Keywords: wireless sensor network; energy efficiency; object detection; object tracking; object
localization

1. Introduction

One of the key applications of WSNs is object detection and tracking. Examples of
this application include surveillance systems, smart home systems, smart cities, wildlife
monitoring, environment monitoring, etc. Although WSN-based object detection and
tracking systems are cost-effective, they face a number of challenges [1,2], such as sensor
node failure, network coverage and connectivity, node cooperation, the recovery of targets,
energy management, data aggregation, data transmission, the stability of the network,
sensor technology, node localization techniques, reporting frequency, object localization
precision, sampling frequency and the security of the network. There is often a chance of
sensor node failure due to early battery depletion, a natural problem, or hardware failure.
The loss of a target arises due to the presence of an obstacle in the AOI, low tracking
precision or changes in the object speed and object path. Data aggregation at a cluster head
may create unnecessary delays in transmitting messages to the BS. There are many reasons
why early energy depletion limits the network lifetime, including large size overheads, very
high node density, congestion, the number of transmissions, etc. Network coverage holes
affect the tracking precision. In the past, many studies have been carried out to mitigate
these issues and develop a robust object detection and tracking system. However, to date
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significant success has not been achieved. This is why today researchers have not lost any
interest in this topic.

Three types of network structures are used for object detection and tracking: tree
structures, cluster structures and flat structures. Among them, the cluster structure is
the most commonly used network structure, as it guarantees a lower level of energy
consumption by limiting the number of transmissions among nodes. The task of object
detection and tracking mainly consists of two steps: the detection of an object’s movement
path and the estimation of the exact location of the object at a particular period of time.
Different types of object detection and tracking schemes include prediction-based tracking,
probabilistic tracking, etc. Both of these schemes are used to implement sleep–awake
schedules for deployed sensors. In prediction-based tracking, the next location of the object
is predicted from the current location and past location. Based on the next location, nearby
nodes are awakened for cooperation in tracking. In the case of probabilistic tracking, the
probability of the appearance of a target at a particular location is calculated from the
past data, and accordingly nearby nodes are awakened for tracking. To determine the
object position at a particular time in the AOI, two methods are used: the range-based
positioning method and the range-free positioning method. In the range-based method,
GPS-equipped nodes are used for object location estimation, whereas in the range-free
method a few GPS-based nodes, known as anchor nodes, are used. Range-free methods
are popular as they are cheap, but the precision of the results is lower in comparison to
range-based methods.

To be energy efficient, a typical target tracking scheme should consider the follow-
ing points [3]:

• The selection of the optimum number of nodes for object detection and localization;
• A distributed prediction algorithm for the optimal prediction of an object’s state;
• The selection of the optimum data reporting path;
• The optimum node activation mechanism;
• The optimum logical network structure;
• The optimal node synchronization scheme.

In the past, researchers have studied object detection and tracking in homogeneous
WSNs from different perspectives in order to mitigate the associated issues. Most re-
searchers aimed to enhance the lifetime of a network while achieving object detection
accuracy by deploying as many nodes as possible. They neither considered the cost of
the system nor the accuracy of object localization. Some researchers have focused on the
accuracy of object detection by tracking the object in a predefined object path while achiev-
ing energy efficiency by optimizing the mobile node trajectory. They neither considered
the case of tracking an object at any place in the AOI nor accurate object localization. No
researcher has previously focused on the case of robust data reporting for the minimization
of information loss. Similarly, we can find a lot of work on smartphone-assisted mobile
platforms. Though they provide improved quality service, they require sophisticated
platforms for operation and are not cost effective.

In this paper, we proposed an energy-efficient object detection and tracking framework
for heterogeneous WSNs called the EEODTF. The framework focuses on the issue of
energy efficiency in WSN-based object detection and tracking while not affecting the
accuracy of object detection and localization. The issue of energy efficiency is addressed by
focusing on energy-efficient node deployment, energy-efficient data reporting or routing
and energy-efficient object detection. The issue of object detection and localization accuracy
is handled by maximizing the network coverage, minimizing the node localization error
and minimizing the object detection error.

The contributions of this paper are:

• Energy-efficient node deployment for high network coverage and connectivity in
order to achieve a high level of accuracy in object detection. Minimizing the number
of hardware components will minimize the cost of the system.

• A node localization solution to minimize object localization errors.
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• Energy-efficient object detection.
• Energy-efficient routing of object detection information to the BS.

In Section 2, a brief description of literature relating to our work is provided, and
in Section 3, a description of the proposed object detection and tracking framework is
presented. In Section 4, the simulation environment and results are described. In Section 5,
conclusions are drawn, and information related to future work is provided.

2. Literature Review

In this section, we discuss the current key research that has been conducted regarding
energy-efficient object detection and tracking.

J. Rejina Parvin and C. Vasanthanayaki [4] proposed a target tracking model named
Particle-Swarm-Optimization-based Energy-Efficient Target Tracking (PSOEETTM) for
wireless sensor networks, which focuses on distributed energy optimization by optimizing
the mobile node movement while tracking the object. The model uses both static and
mobile nodes for object tracking. Periodically, when the object is sensed, its next location is
predicted based on its current position, velocity and angle of movement, and accordingly
mobile node locations for the next time period are predicted, and mobile nodes are moved
to those locations. The objective of moving mobile nodes is to cover the trajectory of
the moving object in order to achieve a high level of detection accuracy. This causes the
wastage of energy for the sake of accuracy. Again, the number of nodes to be deployed is
not considered. It is assumed that high network coverage and connectivity can be achieved
by deploying more nodes. This is not always true. When more nodes are deployed, more
transmissions of packets occur, which requires more energy consumption. Again, increases
in the number of nodes for deployment increases the system’s costs.

M. Akter et al. [5] proposed a model for the energy-efficient tracking and localization
(EETL) of objects, which focused on enhancing the accuracy of object detection and localiza-
tion. This model detects and tracks objects at the cluster boundary using energy-efficient
incremental clustering based on the Gaussian adaptive resonance theory. The algorithm
can learn, create, update and retain clusters incrementally through online learning. Energy
efficiency is achieved using online clustering and by retaining past cluster information.
For object localization, a trilateration-based approach is used. The drawback of this model
is that more communication with the sink occurs, which leads to energy wastage. As
the LEACH protocol is used to cluster nodes, the issue of energy balancing is ignored,
which may lead to network partitioning. No clear definition of the boundary node is given,
which raises the question of the applicability of online cluster creation at the boundary
region of the cluster. Again, ART is not applicable when there is a single boundary node
in a cluster, as ART uses the competitive learning method. The model does not address
network coverage and connectivity. When an object is sensed by a cluster head (CH), it
sends information to the sink. The sink activates all of the members of that cluster for
object localization purposes. The activation of all of the sensor nodes in a cluster may be
unnecessary, as the trilateration method is used for object localization.

Khalid Jamal Jadaa et al. [6] proposed a model for the detection and localization of
objects in WSNs using the probabilistic model, which focuses on the issue of the reliability
of object sensing information in surveillance systems. According to the authors, the use of
a predefined sensing range for sensors for object detection does not reflect sensor reliability,
object characteristics or environment conditions. Hence, the detection information cannot
be fully relied upon. Thus, the predefined sensing model or binary sensing model can be
replaced with the probabilistic sensing model for the accurate detection of the presence of
objects in the AOI. The approach focuses on enhancing object detection and localization
accuracy. It does not address the lifetime of the network. The concept is meaningless in a
network where no attempt is made to lengthen the lifetime of the network.

P. Leela Rani and G. A. Sathish Kumar [7] proposed an energy-efficient object detection
and tracking model named the TDTT model. The model uses the concept of cliques to
cluster the nodes and a Kalman filter for object localization. It can regulate the number
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of nodes engaged in object detection and localization at a particular period of time. The
authors studied the maximum error in target position estimation based on the node density
and sensing range of sensors. The clique formation is carried out each time the object’s
position changes. The proposed model does not address network coverage and connectivity,
which has a major impact on the tracking results.

Koyuncu, H. and Koyuncu, B. [8] proposed a dynamic object trajectory localization
technique based on the Kalman filter and Artificial Neural Network (ANN), which was
studied in a closed indoor environment. The model is used to determine the location of a
person in a 2D area. The ANN algorithm is used to determine a moving person’s location
from a fingerprint map consisting of RSSI information collected from RFID nodes. The
Kalman filter is used to model the trajectory of a moving person. The proposed technique
focuses on the minimization of errors in the location of an object.

Ammar Hawbani et al. [9] proposed a group-based multi-object location tracking
model intended for scalable WSNs and focused on energy-efficient tracking. The nodes
deployed are partitioned into a number of groups based on their maximum coverage region,
and each group consists of nodes and a leader, which controls the operation inside the
group. The proposed algorithm consists of two tiers. The first tier is called the ‘Notification
Tree’ and is associated with an activation mechanism, data cleaning mechanism and energy
balancing mechanism. The second tier is called the ‘Hierarchical Spanning Tree’ and is
associated with the data reporting mechanism and lifetime-enhancing mechanism. GLT
reduces the communication overhead and thereby saves energy and provides improved
tracking accuracy. However, it ignores the wastage of energy due to the overhead generated
due to the bulk amount of node deployment.

Wang, T. et al. [10] studied the problem from the perspective of sensing and decision
fusion and proposed a probabilistic object detection model which uses a probabilistic
sensing model to sense objects. The model uses spatiotemporal information at the CH
to make final decisions about an object’s presence. The authors claimed that their model
guarantees a high probability of detection and a low probability of false alarm. The model
does not address energy efficiency and object localization accuracy.

Wamuyu, P. K. [11] proposed a conceptual framework for a WSN-based cattle detection
and recovery system which focuses on detection accuracy. The movement of cattle is
tracked at the village level and in harsh terrain, and their location is estimated using the
DV-HOP algorithm in order to recover cattle in the case of theft. The framework does not
address effective power management in the network, which greatly affects the lifetime of
the network.

Hirpara, K. and Rana, K. [12] proposed an energy-efficient target tracking model
in which a trade-off between tracking accuracy and power consumption in tracking is
attempted. The model combines the feature of node clustering and prediction-based
collaborative tracking for effective tracking. The model uses a mobile BS for data collection
from cluster heads and hence decreases the level of redundant data transmission among
the cluster heads. The BS predicts the next location of the target using a Kalman filter and
sends information regarding the predictions to the CH adjacent to the predicted location,
and then three other nodes are awakened, and the target location is calculated using a
trilateration algorithm by the leader node selected by the CH. The leader node sends the
information regarding location to the CH where this calculated value is compared with
the predicted location value by the mobile BS. If the difference between them is greater
than the predefined threshold value, the CH sends this difference value to the BS, which
updates the predicted value.

Wei C. et al. [13] studied the problem of determination of the location of a target in
the AOI. They proposed the use of an error-correcting code with the target localization
process to minimize target localization errors. This error-correcting code uses the weighted
average sensor positions with binary weightings from local decisions to minimize the error.
It uses information regarding sensor locations to determine the location of the target. The
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authors claimed that the model provides accurate object location information even when
some nodes are under a byzantine network.

Calafate, C. T. et al. [14] proposed a comprehensive model for target detection and
tracking which combines a tracking algorithm with a routing algorithm. The model
consists of two algorithms: an intruder tracking algorithm and the Mobile Sink Routing for
Large Grid (MRLG) algorithm. Routing information is also used by the nodes for packet
transmission to the sink. The model uses a mobile sink to minimize delays in transmission
and packet loss. The mobility of the sink increases the generation of overhead information.

Soderlund, A. A. and Kumar, M. [15] proposed a new node-clustering approach named
the Information Guided Rapid Clustering Algorithm (IGRCA) for applications in WSN-
based multi-target tracking, which helps to minimize the target localization error and avoids
the loss of target tracks. This study involved the optimization of the cluster formation
process and the selection of optimum sensors within the cluster for the measurement of
object location. A three-step process is applied in order to minimize the object localization
error. In the sensing feasibility step, only the sensors that can sense the target’s presence at
any time are selected as feasible nodes, and a cluster is created. In the information utility
step, feasible nodes that have high potential to reduce the uncertainty in target tracking
at a particular time are selected based on the information collected. Then, the optimum
node is selected to measure the target’s location. The third step involves reducing the
computational cost of routing information from the sensor to the processing node and
vice versa.

Cao, X. and Madria, S. [16] proposed an object tracking framework which predicts
the trajectory of a moving object using a sequence-to-sequence learning model and only
wakes up the sensors that fall within the predicted trajectory to continue the tracking oper-
ation. The framework translates the object’s moving trajectory to a sequence of cascaded
hyperbolas, encodes these hyperbolas with the DV-Hop algorithm and generates routing
constraints. A specially designed control packet containing these constraints is used to
prevent nodes that are not in within the predicted trajectory from awakening and partici-
pating in the tracking process. The proposed framework maintains location anonymity by
only transmitting information regarding hop count relating to the location of object. This
framework requires a predefined trajectory for encoding.

Chen, H. W. and Liang, C. K. [17] proposed an energy-efficient algorithm which
considers the problem of the coverage of a moving object in a predefined trajectory in a
mobile wireless sensor network with a limited number of mobile nodes. Energy efficiency
is achieved by regulating the movement of mobile sensors while continuing the coverage of
the object’s trajectory at a particular period of time. The paper focuses on the optimization
of mobile sensor node paths in order to cover the object’s trajectory using the Genetic
Algorithm (GA) and the Discrete Particle Swarm Algorithm (DPSA). It can be used to track
single objects and predefined object trajectories.

Barijini et al. [18] proposed an energy-efficient target tracking algorithm called the
NGEKF algorithm, in which energy efficiency is achieved through sensor scheduling. An
optimal sequence of eight sensor nodes is scheduled to determine the presence of an object
and its position. The model is designed for static sensor nodes. The model does not address
the achievement of detection accuracy.

Lv C. et al. [19] proposed a prediction-based object tracking model named Measurement-
Compensation-based Mixture-Population-Monte-Carlo (MC-MPMC). This model achieves
energy efficiency by using predicted locations to track targets. The model also has the ability
to compensate for missed predicted locations or false location estimations and thereby
avoids the degradation of tracking behavior.

Liu F. et al. [20] proposed a novel Adaptive-Dynamic-Programming-based Multi-Sensor
Scheduling (ADP-MSS) algorithm for collaborative target tracking in energy-harvesting WSNs.
It schedules multiple sensors for each time step over an infinite horizon to achieve a high level
of tracking accuracy.
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Qu Z. and Li B. [21] proposed a clustering method named the Tracking-Anchor-based
Clustering Method (TACM) to achieve energy efficiency in WSN-based target tracking
applications. They introduced tracking anchors which activate nodes depending upon the
object position and form clusters. It achieves energy efficiency by minimizing the overhead
generated from cluster creation and minimizing the number of transmissions.

Tang Chao et al. [22] proposed an algorithm for object detection and localization in
WSNs. They designed a weight-based distribution algorithm which assigns stability weight
to each sensor according to their survival prediction. It suppresses signal measurement
dropout and automatically adjusts the weight of a sensor based on the measurement of
error covariance in order to achieve a high level of tracking accuracy.

Shahbazian, R. and Ghorashi, S.A [23] proposed a distributed cooperative target de-
tection and localization model for decentralized wireless sensor networks. This includes
distributed-consensus-based target detection and distributed-consensus-based target local-
ization. This model considers the case of detection in the case of communication link failure.
Individual sensor nodes make the decision about a target’s presence in their sensing range,
determine the location of the object and exchange this information with their neighbor.

Most researchers have attempted to enhance the application lifetime while achieving
target detection accuracy at the cost of high node density. They neither considered the
system cost nor the accuracy of object localization. Some researchers focused on the
accuracy of object detection while achieving energy efficiency by limiting the detection
to the predefined target trajectory. In particular, some researchers only focused on node
clustering and node scheduling for energy efficiency.

The features incorporated in our framework and in other previous research studied by
us are shown in Table 1. In previous research, energy efficiency is mainly achieved by node
clustering, optimizing the mobile node trajectory and sleep scheduling. However, in the
current study, additional points are considered. These include node optimization, minimiz-
ing the number of transmissions by minimizing the number of nodes and minimizing the
number of clusters. Tables 2 and 3 give a description of the comparative study of the past
research described in the literature.

Table 1. Features incorporated in different models and in our framework.

Paper Node Opti-
mization

Mobile
Node
Use

Node Lo-
calization

Cluster
Structure

Object
Detection

Decision
Fusion

Route
Optimization

of Mobile
Node

Route Op-
timization
of Packets

On-
Demand
Cluster

[4] ×
√

×
√

P1 ×
√

× ×
[5] × × ×

√
P3 × P4 ×

√

[6] × × × × P2 × P4 × ×
[7] × × ×

√
P2 × P4 × ×

[8] × × × × P3 × P4 × ×
[9] × × × × P3 × P4

√
×

[10] × × ×
√

P2
√

P4 × ×
[11] × ×

√
× P3 × P4 × ×

[12] × × ×
√

P1 × P4 × ×
[13] × ×

√
× P1

√
P4 × ×

[14] × × × × P1
√

P4
√

×
[15] × × ×

√
P1

√
P4

√ √

[16] × ×
√ √

P1 × P4
√

×
[17] ×

√
× × P1 ×

√
× ×

[18] × × ×
√

P1 × × × ×
[19] × × ×

√
P1 × P4

√
×

[20] × × ×
√

P2 × × ×
√

[21] × × ×
√

P1 × × × ×
[22] ×

√
×

√
P1 × P4 × ×

[23] × × × × P1 × ×
√

×
Proposed

√ √ √ √
P1

√ √ √ √

P1—prediction based, P2—probabilistic based, P3—not mentioned, P4—not applicable.
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Table 2. Comparative Study of Past Research-I.

Attribute [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]

Node Mobility Y N N N N N N Y N N N N N Y N N N N N N
Sink Mobility N N N N N N N N Y N Y N N N N N N N N N

Power Management G G 3 G 4 G G G G G G G G G G G 4 G G G
Network Lifetime G G 3 G VG G G G G G G G G G G G VG G G G

Scalability N N N N N Y N Y N N N N N N N N N N N Y
Prediction L L L NL NL L NL NL NL NL L NL L L NL NL NL NL NL NL

Data Aggregation G G 3 N G G G G G G G G G G G G G G N G
Network Architecture C C 3 F 3 T C C C T C C T C 3 C C C C F

Sensing Model P 3 P P 3 B P P P B B P B B P P P P P P
Static/ Dynamic S D S D S S D D S,D S D S S S S S S D S S

No. of Targets 1 1 1 1 2 2 2 2 1 1 1 2 2 1 1 2 1 1 1 1
Target Type CT CT DI CT CT CT DI CT CT CT CT CT CT CT CT CT CT CT D CT
No. of Sinks 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

C-Cluster, F-Face, T-Tree, B-Binary Sensing Model, P-Probabilistic Sensing Model, S-Static, D-Dynamic, 2-Multiple,
CT-Continuous, DI-Discrete, G-Good, NS-Not Supported, VG-Very Good, Y-Yes, N-No, L-Linear, NL-Non-linear,
4-Not Required, 3-Not Mentioned.

Table 3. Comparative Study of Past Research-II.

Paper Advantage Limitation

[4] High detection accuracy, energy efficiency Requires predefined object trajectory, limited energy
efficiency, no attention on node density

[5] Avoids energy wastage by online cluster
maintenance and high detection accuracy

Poor sensor scheduling, no attention on node density,
difficulties in boundary node selection, no attention on full
coverage of AOI

[6] High object detection accuracy by using
probabilistic sensing model

Limited energy efficiency, no attention on node density, no
attention on full coverage of AOI and object localization
accuracy

[7] Energy efficiency, reduction in nodes for
object tracking

No guarantee of accurate object detection, no attention on
node density, no attention on full coverage of AOI

[8] High object detection accuracy No guarantee on accuracy of collected data, limited network
lifetime and no attention on system cost

[9] Better tracking accuracy, scalable, minimum
network overhead Increased transmission, no attention on node density

[10] Better tracking accuracy Limited energy efficiency, no attention on node density and
object localization accuracy

[11] Accurate cattle detection and recovery Limited energy efficiency

[12] Energy efficiency and adjustment in object
localization error

Limited energy efficiency, no attention on node density and
detection accuracy

[13] Minimize the object localization error and
tolerant to byzantine attack

Limited energy efficiency, no attention on node density,
efficiency of model depends on the proper weight
determination for each node which is a difficult task.

[14] Usage of mobile sink, minimum delay in
detection, minimum packet loss

Increase in network overhead, no attention on node density,
limited energy efficiency

[15]
Minimization in computational cost,
optimization in sleep scheduling and
cluster formation

Limited energy efficiency, no focus on controlling node
density

[16] Energy efficient tracking, optimization of
data reporting

Requires predefined object trajectory, limited energy
efficiency, no attention on controlling node density

[17] Better detection accuracy and
energy efficiency

Limited energy efficiency, limited detection accuracy,
requires predefined object trajectory, no attention on node
density

[18] Energy efficient sensor scheduling Limited target detection accuracy and energy efficiency, no
attention on node density

[19]
Ability to compensate false detection
and missed detection, energy efficient
node scheduling

Silent about node density, limited energy efficiency and
tracking accuracy
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Table 3. Cont.

Paper Advantage Limitation

[20] No energy issue, collaborative target
tracking, energy efficient sensor scheduling

Silent about node density, limited detection accuracy and
object localization accuracy

[21] Energy efficiency, minimization of processing
burden on nodes, minimization of overhead

No attention on node density and object localization error,
cluster formation based on tracking anchor information is a
challenge, limited energy efficiency.

[22] Distributed object tracking, tracking
error adjustment

Sensor survival prediction is a challenge, limited network
lifetime and no attention on node density

[23]
Consensus-based object detection and
localization, considers the case of detection in
case of communication link failure

No attention on node density and application lifetime,
increased node-to-node communication

3. Proposed Energy-Efficient Object Detection and Tracking Framework
3.1. Preliminaries
3.1.1. Assumptions

• AOI is a two-dimensional rectangular area.
• The CH and BS are synchronized.
• The CH and cluster members are synchronized.
• The communication range of each sensor is twice its sensing range.
• The energy consumed by sleeping nodes is neglected.
• The sensing area of each sensor is circular.
• The binary sensing model is used.
• When the network coverage is high, the network connectivity is high.

3.1.2. Network Model

Consider a heterogeneous wireless sensor network consisting of both static and mobile
nodes. All of the nodes are divided into a number of clusters, as shown in Figure 1. Mobile
nodes are used to enhance the network coverage. After deployment, no nodes change
their position throughout the operation. An object is planned to move randomly with
uniform velocity.
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Figure 1. Network model.

The AOI is obstacle free. Initially, all of the sensor nodes are in the sleep state. When a
sensor node senses the presence of an object, it sends sensing information to its CH. The CH
acts as a Fusion Centre (FC), where all of the local decisions are fused and a final decision
about the object’s presence is made. The CH sends this decision information to the BS. If
the decision is positive, the BS determines the object position and predicts the next location
of the object. Based upon the predicted information, the BS sends an alert message to the
nearest CH. If the predicted location is not within the sensing area of any cluster, then the
BS declares the last node that sensed the object as the CH, a new on-demand cluster is
created and tracking continues. This increases the tracking accuracy.
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3.1.3. System Architecture

Figure 2 shows the system architecture. The system flow chart is given in Figure 3.
The object emits a signal, and this signal is sensed by sensors. The sensors measure the
distance between the object and the sensor and then calculate the signal strength.
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If the signal strength is greater than the threshold, then the object is present. Otherwise,
the object is absent. The sensor sends this information to the CH. The CH aggregates
this information from the sensor nodes, and a final decision is made on the basis of the
aggregated signal. The final decision is reported to the BS. Then, the BS initiates the process
of object localization.

3.1.4. Prediction Model

This framework uses a linear-prediction-based mechanism to track objects. In this
case, the algorithm predicts the next location of the object in the AOI, and based on the
location information, specific nodes are activated to continue the tracking. The remaining
nodes are kept in the sleep state. The next location of the object is calculated based on
the current and previous location. Let (xi,yi) and (xi−1,yi−1) be the current and previous
positions of the object in time ti and ti-1, respectively. The object speed v is calculated using
the following Equation (1):

v =

√
(xi − xi−1)

2 + (yi − yi−1)
2

ti − ti−1
(1)

The direction of the object is determined using Equation (2):

θ = cos−1 xi − xi−1√
(xi − xi−1)

2 + (yi − yi−1)
2

(2)

The next location of the object (xi+1,yi+1) is calculated using Equation (3):

xi+1 = xi + vt cos θyi+1 = yi + vt sin θ (3)

3.1.5. Energy Model

If the packet size is k-bit, then the energy consumption at the sender’s end is given in
the following Equation (4):

ETX(k, d) =
{

k ∗ Eelec + k ∗ Eamp ∗ d2, i f d < d0
K ∗ Eelec + K ∗ E f s ∗ d4, i f d ≥ d0

(4)

where ETX is the energy required for packet transmission, d is the distance between the
source and destination and d0 is the threshold distance. Eelec is the base energy required to
run the transmitter or receiver. E f s and Eamp are the unit energy required for the transmitter
and amplifier.

d0=

√
E f s

Eamp
(5)

The energy ERX required to receive k-bit messages is given in Equation (6):

ERX(k) = k∗Eelec (6)

3.1.6. Problem Statement

Three major issues in WSN-based object detection and tracking are energy efficiency,
detection accuracy and object localization accuracy. From the related literature studied,
we did not find a complete study in which it was attempted to minimize the energy
consumption in different stages of an object tracking application and ensure high levels of
object detection and localization. Some studies are based on object localization accuracy
and energy efficiency in a network. Very few studies are based on node deployment and
node localization with the scheme of target tracking. No studies mention energy-efficient
node deployment which guarantees the maximum coverage of the AOI and energy-efficient
routing for the minimization of data loss. Similarly, none of the literature studied focuses
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on improving the object localization accuracy by improving the node localization accuracy.
No studies discuss the importance of the adaptive threshold required for object detection,
as the distances between the cluster head and member nodes are not the same in all cases.
In this study, we did not consider the adaptive threshold. The research problem is defined
as follows:

Given n number of static nodes and m number of mobile nodes for the operation
of object detection and tracking, design a complete framework that minimizes energy
consumption for a tracking operation while maximizing the object detection and localiza-
tion accuracy.

3.2. Proposed EEODTF Framework
3.2.1. Overview of the Proposed Framework

The fundamental problem addressed in this research is energy-efficient tracking which
does not compromise object detection accuracy and object localization accuracy. Figure 4
outlines the overview of the proposed framework. The framework consists of four major
parts: network initialization, object detection, object localization and object tracking.
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Network Initialization

Heterogeneous nodes are randomly deployed in a two-dimensional area of interest. A
mixture of static nodes and mobile nodes are used for deployment. Two types of mobile
nodes are used: ordinary mobile nodes and powerful mobile nodes. The number of nodes
deployed is optimized using the PSO algorithm. Initially, the nodes are deployed randomly.
Then, to cover up the coverage hole in the network, the locations of the mobile nodes are
adjusted. This maximizes the network coverage and connectivity while controlling the cost
of the network. The network is considered as a grid for the optimization of the trajectory
of mobile nodes. The movement of low-powered mobile nodes is optimized using an
eight-neighborhood algorithm, whereas the movement of high-powered mobile nodes is
optimized using the PSO algorithm [24]. After the deployment task, the mobile nodes do
not move any further. Then, the BS divides the nodes into different clusters. The cluster
formation process is adaptive and energy efficient. Then, the boundary nodes of each
cluster are determined using the technique used in [5]. The nodes are localized using the
range-free localization method by BS. The Hybrid Particle Swarm Optimization–Grey Wolf
Optimization algorithm with the poor-for-change strategy is used for node localization.

Object Detection

After the initialization of the network, the BS initiates object detection. It instructs
the cluster head (CH) to inform it about the presence of an object in their area, and in
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turn the CH passes this information to its cluster members. The CH runs a scheduling
algorithm which determines the time taken for each member to communicate with the
CH. When a member node senses the presence of an object in its sensing area, it passes the
information regarding its decision to the CH. The CH collects decision-related information
about an object’s presence from its other members, fuses all of the decisions and sends
this information to the BS. The BS issues a notification to the nodes nearest to the object’s
position via their CH to wake up and help in the process of localization and tracking. The
remaining nodes remain in the sleep state at this time. The majority voting technique is
used to make the final decision.

Object Localization

After the confirmation of the object’s presence in the cluster area, the object localization
process is initiated by the BS. The three nodes nearest to the object’s current position are
selected by the BS, and the trilateration algorithm [5] is applied to determine the location of
the object in each step. The next location of the object is predicted using the past location
information, the velocity of the object and time-related information.

Object Tracking

The object is continuously tracked by the CH, and object-presence-related information
is sent to the BS as long as the object is in the cluster area. When the object is at the
boundary area of the cluster, the CH shares the object’s current location, predicts the next
location of the object with the neighboring CH and waits for a reply from them. CHs
present at a one-hop distance are neighbors of a CH. If the next predicted location is in
any of the neighboring cluster areas, then that CH sends a positive reply to the sender CH.
Otherwise, it sends a negative reply to the sender CH. In case of a positive reply, the sender
CH transfers the control of object tracking to the neighboring CH. When the CH receives
negative replies from all of the neighboring clusters, the BS selects a suitable boundary
node to act as a CH for on-demand cluster creation. The BS allows the formation of an
on-demand cluster with the said CH, and the nearby nodes join to this cluster as members.
The BS shares on-demand cluster-formation-related information with the CHs. Then, the
control of object tracking is transferred to the CH of the on-demand cluster and tracking
continues. The CH of the on-demand cluster continues tracking until the object is in its area.

3.2.2. Proposed Energy-Efficient Object Detection and Tracking Algorithm

Algorithm 1 describes the complete EEODTF algorithm for moving object detection
and tracking in WSNs. This algorithm is an integration of different steps in the tracking
process such as node deployment, node localization, cluster formation, object detection,
object localization and the routing of tracking information to BS. In each step, the en-
ergy consumption is minimized where possible. Additionally, the detection accuracy is
maximized, and the object localization error is minimized where possible.

Algorithm 2 describes the energy-efficient node deployment, node localization and
static cluster formation. It is sensible to have maximum area coverage with the minimum
number of nodes in terms of the network cost and energy efficiency. The AOI is divided
into a number of cells of equal size, and each cell has eight neighboring cells. A hole is a
cell in the network which is not in the sensing range of any sensor, either fully or partially.
Three types of nodes are used for deployment: static nodes, ordinary mobile nodes and
powerful mobile nodes. An ordinary mobile node, the majority of the sensing area of which
is overlapped by other sensors, is relocated to any of the immediate neighboring cells if
it is a hole. This is known as the eight-neighborhood technique. Distant holes are filled
by moving eligible powerful mobile nodes to these locations using the PSO algorithm.
Both the eight-neighborhood technique and the PSO algorithm are used to optimize the
trajectory of mobile nodes so that less energy will be consumed while maximizing the
network coverage; see Figure 5a,b. The objective function used for the optimization of the
number of nodes (both static and mobile) when using PSO is given in Equation (7).
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Minimize f (n, m, p) = n + m + p
Subject to Acov ≥ 0.99× AreaAOI , n > 0 , m > 0, p > 0

(7)

where Acov = ∑n
i=1 πr2

1 + ∑m
j=1 πr2

2 + ∑
p
k=1 πr2

3 , where n, m, p are the number of static
nodes, the number of ordinary mobile nodes and the number of powerful mobile nodes,
respectively, and r1,r2,r3 are their sensing ranges. Acov and AreaROI are the coverage area
and the area of the AOI, respectively.

Actualcov = Acov − Aov (8)

where Actualcov and Aov are the actual coverage area and overlapping area, respectively.

Algorithm 1: Energy-efficient object detection and tracking.

Requires: Network Initialization, Cluster Formation, Object Trajectory Pattern, Time of simulation
Ensures: Energy-efficient robust object tracking and localization

1. Initialize the network
2. Deploy the nodes using Algorithm 2.
3. Localize the sensor nodes and form static cluster using Algorithm 3.
4. For t=1:time_of_simulation

I. Create Cluster using Algorithm 4.
II. Create cluster boundary and determine the boundary nodes of each cluster using Algorithm 5
III. If presence of object is sensed by a static cluster node

a. Perform Decision Fusion at CH for final decision using Algorithm 6
b. Report decision to BS using Algorithm 7
c. If decision is positive

i. BS awakes necessary nodes for object localization
ii. Location of object is estimated using Algorithm 8
iii. Next location of object is predicted using Equation (3)
iv. If next location of object is outside currently tracking cluster area

If the next location of object is in the none of the neighboring cluster area
a. Select boundary node as CH
b. Create On-demand cluster and continue tracking using Algorithm 9
Else

Continue tracking in neighboring cluster
End

Else
Continue tracking in same cluster

End
Else

Nodes go to sleep mode
End

Else
Nodes go to sleep mode

End
End
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The objective function used for the optimization of the trajectory of mobile nodes
when using PSO is given in Equation (9). (xold,yold) is the old position of the mobile node.
(xnew,ynew) is the new position of the mobile node, and (xm×ym) defines the AOI size. Uu1
and Uu2 define the required updates to the position.

Minimize Aov
Subject to f (xnew, ynew) = ((xold + Uu1), (yold + Uu2))

(9)

where 0 < Uu1 < xm and 0 < Uu2 < ym

Algorithm 2: Energy-efficient node deployment

1. Initialize network parameters
2. Determine no. of static nodes, ordinary mobile nodes and powerful mobile nodes required for desired

coverage in AOI using Equation (7) and deploy them randomly
3. Divide AOI into grids and define area of each rectangular cell
4. Determine the hole area in each cell and calculate its size
5. Determine the hole segments
6. //Fill the holes with the help of mobile nodes
7. Determine the eligible mobile nodes for hole filling
8. If eligible_node_type == ordinary mobile node

i. Move the ordinary mobile node to the hole segment in adjacent cells of the cell where currently
the node is present using 8-neighborhood technique.
ii. Update the ordinary mobile node location

Else if eligible_node_type == powerful mobile node
iii. Move the powerful mobile node to cover a large hole segment in the network using PSO
algorithm in order to fill it. Use Equation (9)
iv. Update the powerful mobile node location
End

9. Repeat steps 8 and 9 until desired area coverage is achieved

The node localization method greatly affects the object localization performance when
the range-free method is used for object localization. When the node localization error
is lower, the object localization error is lower. DV-Hop [25,26] is a commonly used node
localization algorithm, but a limitation is that it causes more node localization errors. PSO
and Grey Wolf Optimization (GWO) [27] are two nature-inspired optimization algorithms.
Algorithm 3 uses the hybrid DV-Hop-PSO-GWO algorithm with the poor-for-change
strategy for node localization. We tried to minimize the node localization error with the
hybrid PSO-GWO algorithm with the poor-for-change strategy. According to this strategy,
the poor individuals in the population are modified to increase their strength.

Let {(x1,y1),(x2,y2),(x3,y3), . . . ,(xn,yn)} be beacon node positions and {d1,d2,d3, . . . .,dn}
be the distances between the unknown nodes and each of the beacon nodes. Let (xa, ya) be
the actual location of the unknown node. Let {e1, e2, e3, . . . ,en} be the differences between
the estimated distance and the actual distance between each of the beacon nodes and
unknown nodes. DV-Hop uses the following set of equations to calculate node location
(see Equation (10)): 

√
(xa − x1)

2 + (ya − y1)
2 = d1 + e1√

(xa − x2)
2 + (ya − y2)

2 = d2 + e2

. . .√
(xa − xn)

2 + (ya − yn)
2 = d1 + e1

(10)

Equation (10) can be rewritten as in Equation (11).

ei =

∣∣∣∣√(xi − xa)
2 + (yi − ya)

2 − di

∣∣∣∣ , f or i = 1, 2, ..., n (11)



Sensors 2023, 23, 746 15 of 30

The fitness function used for node localization is given in Equation (12).

Minimize f (e) =
n

∑
i=1

(
ei

hopi

)2
(12)

where hopi is the minimum hop count in between the unknown node and beacon node i,
and e is the localization error for the unknown node.

Algorithm 3: Hybrid DV-Hop-PSO-GWO algorithm for node localization.

1. Deploy ‘n’ beacon nodes and ‘m’ unknown nodes
2. Beacon nodes determine their own location
3. Calculate the distance between each pair of beacon node and broadcast this information along with

location information
4. For i=1 to m

Ei=0
For j=1 to n
a. Calculate minimum hopj for each i from each j
b. Calculate distance between each i from each j
c.Calculate the error ej between actual distance and calculated distance for each j using Equation
(10)
d. Ei=Ei+ (ej / hopj)
End

End

5. Calculate the average localization error ∑m
i=1 Ei
m

6. Minimize the average localization error

i. Initialize the population and all parameters
ii. Evaluate fitness of each individual in the population using Equation (12)
iii. Find alpha, beta, delta, pbest, gbest
iv. Find Xα, Xβ, Xδ

v. Update the current individual according to the poor-for-change strategy
vi. Check for boundary condition violation
vii. Update the velocity and position all individuals
viii. Sort the population according to the decreasing order of fitness of individual
ix. Update pbest, gbest, alpha, beta, delta
x. Update GWO parameters
xi. Repeat steps iv to x until termination criteria is reached

7. Output the best result

Algorithm 4 deals with the creation of an energy-efficient cluster. The PSO algorithm
is used for cluster head (CH) selection, and Euclidean-distance-based clusters are created.
Let S={s1,s2, . . . ,sn} be the set of sensor nodes, RE={RE1,RE2, . . . ,REn} be the current energy
level of the nodes, ND = {ND1,ND2, . . . ., NDn} be the node degree of each sensor node and
ED = {ED1,ED2, . . . ,EDn} be the set of Euclidean distances between each node and the BS.
The number of CH is represented as k for a given area and is randomly taken. The fitness
function for the selection of a node as a CH is given in Equation (13).

f iti = m× (REi + NDi) + (1−m)×
(

1
EDi

)
(13)

where REi is the residual energy of node i, NDi is the node degree of node i and EDi is the
Euclidean distance between node i and BS and m∈[0, 1].

Let Xi={x1,x2,x3,...,xn} represent the ith solution in the population. The fitness of the
solution is calculated using Equation (14).

F(Xi) = ∑k
i=1 f iti (14)
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Algorithm 4: PSO Euclidean-distance-based cluster formation

1. Initialize the network parameters, PSO algorithm parameters and initialize the population.
2. For i= 1 to no_of_iteration

//Select the CHs
a. For count=1 to no_of_rounds
i. For i=1 to no_of_rows in population //Calculate fitness

Calculate the fitness of each search agent using Equation (13)
End

ii. Determine the fittest solution comprising of CHs using Equation (14)
iii. Find particle best Pbest and global best Gbest
iv. Update velocity and position of particles using following equations and generate the new solution

a). vi(t + 1) = w*vi(t) + c1r1[ Pbesti (t) − xi(t)] + c2r2[Gbest(t) − xi(t)]
b). xi(t + 1) = xi(t) + vi(t + 1)

End
(c) Form cluster on the basis of proximity using Euclidean distance formula

The cluster boundary, which is roughly a circle, is determined according to the commu-
nication range of the CH. This is because two sensors can only communicate with each other
when they are in each other’s communication range. In cluster-based network architecture,
a member of one cluster cannot directly communicate with a member of another cluster,
even if they are in each other’s communication range. This is a drawback of cluster-based
continuous object tracking in WSNs. If the next location of the object is outside the cluster
boundary and this location is not in any of the cluster areas, then a false negative will occur.
To bridge this gap, we used Algorithm 5, which determines the boundary node for each
cluster to facilitate the creation of an on-demand cluster to manage the situation of a false
negative or a target being missed.

Algorithm 5: Boundary node selection algorithm.

1. For i=1:number_of_clusters

i Determine cluster boundary considering the sensing range of cluster members
ii Determine the nodes adjacent to boundary

End

2. For i=1:number_of_clusters

Member(i)=member nodes of cluster i
Size(i)=size of cluster
For j=1:Size(i)

3. For i=1:number_of_clusters

Member(i)=member nodes of cluster i
Size(i)=size of cluster
For j=1:Size(i)

If a node belonging to Member(i) has overlapping communication range with the node of
adjacent cluster then that node is declared as boundary node

End
End

An object enters the AOI. The node activation schedule run at the BS determines which
nodes will remain in the active state and which will be in the sleep state in an instant. Active
sensors periodically emit radio signals and measure reflected signals in order to detect the
presence of an object. In the absence of an object, the measured signal strength is negligible,
whereas in the case of the presence of an object, it is comparatively strong. Again, the
received signal strength is high if the node position is closer to the object’s position, and it
is weak in the case of a distant sensor. Object detection operation is initiated and regulated



Sensors 2023, 23, 746 17 of 30

by the BS. Let the sensor i be di meters away from the object. Then, the attenuated signal
energy sxi is given in Equation (15).

sxi =


E0(
di
r

)k , i f di > d0

E0 , i f di ≤ d0

(15)

where E0 is the original signal strength, r is the size of the object, k is the attenuation factor
which ranges from 2 to 5 and d0 is the reference distance.

Again, the received signal is not free from environmental noise. Let H0 represent the
object’s absence and H1 represent the object’s presence. Sensors detect the presence of the
object independently. Then, we can write Equation (16) as follows:

H0 : yi = ηi and H1 : yi = sxi + ηi (16)

where yi is the received signal strength and ηi is random white Gaussian noise with zero µi
and variance of σi

2. The decision regarding a signal’s presence (denoted as 1) or absence
(denoted as 0) is modelled as in Equation (17).

ui =

{
1, i f yi > θ
0, i f yi ≤ θ

(17)

where ui is the decision at sensor i and θ is the predefined threshold.
In our work, we tried to calculate the relative received signal strength when an object

is detected based on the reference distance and reference signal strength. Noise variance
and attenuation are kept constant for all of the nodes. Let the reference signal strength be
20 dB and the reference distance be 10m. If the object is 20 m away from the node, then the
received signal strength is 40 dB.

When a sensor senses the object’s presence, it reports to its CH. Each sensor takes three
measurements when it senses the object. If any two measurements are positive, then the
sensor reports a 1 to CH. This will avoid a false alarm. The CH collects information from
all the members and makes a final decision based on the collected information using the
majority rule. According to this rule, if the majority of the members signal 1, then the final
decision is 1. Otherwise, the final decision is 0. The final decision of the CH is reported to
the BS. Algorithm 6 describes the decision fusion algorithm.

An energy-efficient path is used for communication between the CH and BS. By
requiring an energy-efficient path, the objective is to balance the energy throughout the
network and minimize the data loss due to node failure which is often caused by a shortage
of energy. For route selection, a graph is constructed with nodes which are the CHs and
BS. The edges of the graph are the connectivity in the network. The member nodes of two
different clusters cannot communicate with each other, and hence there should not be any
edge between them. An edge exists in between the CH and a member node. The edge cost
is calculated using Equation (18) considering the residual energy of the node, the node
degree and the distance between the node and the BS.

wij =
E f × dij

Ej
× Ei

Ej
+

NDj

Ej
(18)

where w(i,j) is the cost of the edge-connecting source node i and destination node j. E j
is the residual energy of destination j. Ei is the residual energy of source i. NDj is the
node degree of node j. Ef is the energy consumed to send a packet to node j, and dij is the
distance between source i and destination j. The potential of a node j to be part of the route
is calculated using Equation (19).

potentialj = wij × priorityj (19)
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where priorityj is a random integer number, the value of which lies in the range of 2 to
100. This is used so as not to overburden a particular node with routing and to balance the
network energy.

Algorithm 6: Decision fusion algorithm.

1. Num1 = 0;
2. For i = 1:no_of_members_in_cluster

i. Num = 0;
ii. For count=1:3

a. Measure attenuated signal energy sxi using Equation (15)
b. Calculate the received signal strength yi using Equation (16)
c. Calculate ui is Equation (17)
d. If ui ==1

Num=Num+1
End

End
iii. If Num>1

lui=1
Else

lui==0
End

iv. Report ui to CH
v. If lui==1

Num1=Num1+1;
End

End

3. //Decision Fusion at CH

If Num1 > (0.5× no_of_members_in_cluster)
Decision=1

Else
Decision=0

End

4. Report Decision to BS

Algorithm 7 describes the energy-efficient routing. This algorithm uses the Firefly
algorithm [28] for the determination of energy-efficient paths between the source nodes
and BSs. This algorithm is a meta-heuristic optimization algorithm which is based on the
flying behavior of fireflies. The objective function of the optimum route selection problem
is given in Equation (20).

Minimize f (Cost(path(i, j))) = Cost(i, u1)+
n1

∑
(i,j)∈E

Cost
(
ui, uj

)
+Cost(un1, j) (20)

where n1 is the number of intermediary vertices present between i and j and

Cost
(
ui, uj

)
= potential

(
uj
)

(21)

Fireflies can communicate with each other, search for prey and attract each other using
bioluminescence with varied flashing patterns. The brightness of a firefly at position x is
determined by the objective function. The attractiveness β over the dij is defined using
Equation (22).

β
(
dij
)
= β0e−γd2

ij (22)
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where β0 is the attractiveness at dij = 0. γ is the degree of variation in the attractiveness, and
it plays an important role in the speed of the convergence in firefly behavior. The distance
between two fireflies i and j at position xi and xj is calculated using Equation (23).

dij = ∑d
k=1

√(
xi,k − xj,k

)2
+
(

yi,k − yj,k

)2
(23)

where k is the kth component of both fireflies.
Equation (24) is used to update the position of the firefly.

xi = xi + β0e−γd2
ij
(
xj − xi

)
+ α Sk(rand− 0.5) (24)

where α ∈ [0, 1] and Sk is the scaling factor for k = 1, 2, . . . .. D, where D is the dimension
of the problem.

Algorithm 7: Energy-efficient path determination.

1. S=sourceNode
2. u=S
3. D=destinationNode
4. Create an initial population of fireflies
5. Evaluate the fitness of fireflies using Equation (20)
6. Determine the initial best solution, i.e., the initial best PATH
7. For j=1 to maxIteration

a). For each firefly in the population
PATH={S}
Repeat until firefly k moves to the destination D

i. Determine Adjacent(u) and find the strong neighbor v of u using Equation (21)
ii. Select v as the next node
iii. PATH=PATH U {v}
iv. u= v
v. Update Firefly algorithm parameters using Equation (24)

End
End

b). Find best solution and output corresponding PATH
c). Evaluate the fitness of fireflies using Equation (20)
d). Update best solution

End

8. Output PATH

After receiving information from the CH, the BS initiates the object localization process
in coordination with the CH. The trilateration algorithm [5,29] is used for object localization.
Algorithm 8 is used for object localization. The three nodes nearest to the object are selected
by the BS for the determination of the location of the object. These three nodes act as beacon
nodes with known locations. Let (X1,Y1), (X2,Y2) and (X3,Y3) be the locations of these three
nodes. (Xn,Yn) is the blind location of the object to be calculated. Di is the distance between
the blind location and sensor node i. The sensing range of the node is a circle. Then, the
intersection point of these three circles is the location of the object. Algorithm 8 shows
trilateration-based object localization.
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Algorithm 8: Trilateration-algorithm-based object localization.

1. Select three nodes of a cluster that sense the object location to act as beacon node
2. //Let (X1,Y1), (X2,Y2), (X3,Y3) are three beacon node location and (Xn,Yn) is blind location of object
3. For i = 1 to 3

Di =
√
(Xi − Xn)

2 + (Yi −Yn)
2 //Euclidean distance between (Xi,Yi) and (Xn,Yn)

End

4. //Find (Xi,Yi) and (Xn,Yn)

Xn =
D2

1−D2
2+X2

2
2X2

Yn =
D2

1−D2
3+X2

3+Y2
3−2Xn X3

2Y3

After the determination of the location of the object, the next location of the object is
predicted using Equation (3). Based on the predicted location, an alert message is sent to
the nearest nodes, and they are awakened. If the next location is not in any of the cluster
boundaries, then the current boundary node of the current cluster is declared as the CH,
and the creation of an on-demand cluster is allowed. Nearby nodes join this CH as its
cluster members. The on-demand cluster remains in operation until the next location of the
currently moving object is within its cluster boundary. After that, the related information is
deleted from the memory of the BS. The objective behind the creation of the on-demand
cluster is to increase the object detection accuracy and to minimize the rate of objects going
missing. This helps to improve the object localization accuracy if the object is sensed by
two or more boundary nodes belonging to different clusters. Let the boundary nodes of a
cluster currently tracking the object be {b1, b2, . . . ,bn} and (xpred, ypred) be the predicted next
location of the object. Then, the boundary node bi is selected as the CH of the on-demand
cluster, which satisfies the following criteria:

• The current energy level of bi is greater than the threshold energy level Th. All of the
bi that satisfy the energy criteria form S1. This is required to avoid the death of the CH
during operation.

S1 = {bb1, bb2, . . . .., bbn}

where REbbi > Th and bbi is the candidate node, satisfying the energy criteria.

There is at least one node which belongs to a different cluster and joins as a member of the
cluster whose CH will be bbi. Let S2= {a1, a2, . . . . . . , an}

be the set of nodes satisfying this criterion.

• The Euclidean distance between ai and (xpred, ypred) is minimum among all of the
candidate nodes, which is calculated using Equation (25).

Di =

√(
xpred − axi

)2
+
(

ypred − ayi

)2
(25)

Algorithm 9 describes the creation of an on-demand cluster and object tracking
within it.
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Algorithm 9: On-demand cluster creation for tracking.

1. For each predicted next location (Xpred, Ypred) of object which is outside current cluster boundary

i. CH Sends the predicted location to the neighboring CH
ii. If the predicted next location is in any of the neighboring cluster area

a. Neighboring CH sends a response
b. Sender CH transfers the control of tracking to neighboring CH

End
iii. If the sender CH gets no reply from any of the neighboring CH

a. Sender CH sends this information to BS and waits for reply
b. BS selects suitable boundary node of that cluster using Equation (25) and declares it as CH of

on-demand cluster to be created
c. BS allows its neighboring nodes to communicate with it temporarily for cluster formation
d. CH of on-demand cluster communicates with neighboring nodes and form cluster
e. Sender CH transfers the control of tracking to on-demand CH
f. Use Algorithm 6 for object detection
g. Use Algorithm 8 for object localization

End

4. Result and Discussion
4.1. Simulation Environment

The system setup for the simulation of the proposed framework is as follows: a laptop
with 16GB RAM, x64-based processor, a 64-bit operating system, a Windows 10 operating
system and Matlab R2020b. The object tracking data were stored in the BS, which is
equipped with memory devices. The proposed framework consists of four phases: network
initialization, object detection, object localization and object trajectory. We performed the
simulation-based study of each phase in object detection and tracking. We focused our
study on energy-efficient detection and tracking without compromising object detection
accuracy or object localization accuracy. The node parameters used in this study (for AOI
size 500 × 500 m2) are shown in Table 4.

Table 4. Node Parameters.

Name of the
Model

No. of Nodes with Power Sensing Range of Nodes

Static
Node

Mobile Node Static Node
and Low-Power

Mobile Node
(in m)

High-Power
Mobile Node

(in m)Low Power High Power

EEODTF 115 (5J) 57 (5J) 82 (10J) 30 40
EETLO 169 (10J) 0 85 (10J) 33.2283 33.2283

PSOEETTM 254 (10J) 0 0 33.2283 0

A total of 254 nodes were used in each case, and if the nodes did not overlap, the area
coverage remained the same. The BS location was (500,500) m. For convenience, the time
taken in the simulation was equal to the number of steps in the object trajectory. Table 5
shows the energy model parameters used in the network. A simulated object trajectory was
used in this study. Table 6 shows the algorithmic parameters used for the node deployment
algorithm, and Table 7 shows the algorithmic parameters used for the node localization
algorithm. Table 8 shows the parameters used to model the object trajectory and object
detection. Table 9 shows the parameters used for energy-efficient path selection to report
data to the BS.
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Table 5. Energy parameters and message size.

Parameter Value

ETX 50 × 0.000000001
ERX 50 × 0.000000001
EFS 10 × 10−12

EMP 0.0013 × 10−12

EDA 5 × 0.000000001
msgsize 2000

Table 6. Parameters used by PSO algorithm in node deployment.

Parameter Value

C1=C2 2
w [0.4, 0.9]
v 0.1 × InitialPosition

No. of Swarms 100
Coverage Degree 1

Table 7. Parameters used by node localization algorithm.

Parameter Value

C1=C2 2
w 0.5

No. of Swarms 100
v 0.1 × InitialPosition
a 2 × (1 − (itr/maxitr)

maxitr 500
Beacon amount 0.08 × 254

Table 8. Simulation parameters used in object trajectory and object detection modeling.

Parameter Value

vel [2.31, −0.55]
dt 0.5

Initial_Position [0, 350]
Noise Variance 0.66

Noise Mean 0
Attenuation Factor 2

Reference Distance(d0) 30 m
Reference Signal Strength (S0) −80 dB

Table 9. Parameters used in Firefly-based data reporting algorithm.

Parameter Value

Node Priority [1, 200]
α 1.0
β 1.0
γ 0.01
θ 0.97

4.2. Simulation Result
4.2.1. Tracking Sequence Analysis

Figure 6 shows the object’s movement path along with the clusters and on-demand
clusters created for the EEODTF framework. The static clusters formed are shown as star
structures, and on-demand clusters are shown as circles. The object was shown to move
in a straight line. The blue straight line is the object trajectory. The blue-filled circle is the
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object in the last iteration. The cyan-highlighted CHs are the CHs which took part in the
object detection and tracking process.
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In the first round of the tracking process, the object was detected by node 30 and
node 207, which belonged to cluster 48 and cluster 9, respectively. At that time, the object
position was (0,350). Node 30 was a static node, whereas node 207 was a powerful mobile
node. Both the sensors sent their measured signals to their respective CHs (node number
23 and 6, respectively). These two clusters were static clusters. Both the CHs carried out
their designated tasks. They collected sensing information from their respective members.
The members of the cluster with node 23 as the CH were: 2, 23, 37, 32, 154, 158 and 236.
The members of the cluster with node 6 as the CH were: 133, 6, 43, 48, 54, 160, 167, 226 and
232. The neighbor of cluster 48 was cluster 50. The neighbor of cluster 9 was cluster 19.
The fusion decision of cluster 48 was 1, whereas the fusion decision of cluster 9 was 0. The
BS’s location was (500,500). An energy-efficient path in between cluster 48 and the BS was
calculated, and detection-related information was sent to the BS. The energy-efficient path
was 23-152-206-1-169-22. Similarly, an energy-efficient path in between cluster 9 and BS was
calculated, and detection-related information was sent to the BS. An energy-efficient path
in between cluster 48 and BS was calculated, and detection-related information was sent to
the BS. This energy-efficient path was 6-88-194-227-105-240. The next actual location of the
object was (1.1550, 349.7520), and the predicted location was (1.1560, 349.7250). According
to the predicted location, the nodes 45, 3, 8 and 11 were awakened for the next round. The
predicted location was not in the sensing range of any of the existing clusters. Thus, an
on-demand cluster was created, the cluster head of which was node 23. The members of the
on-demand cluster were nodes 45, 3, 8 and 11. The BS calculated the location of the object
in the first round using the location of nodes 2, 133 and 37. The object location calculated
at the BS was (1.0082, 350.0000). This process was continued, and the object’s trajectory
was tracked.

4.2.2. Network Coverage and Object Detection

The static clustered network, in which nodes do not change their position after de-
ployment, is energy efficient in the sense that energy wastage due to frequent movement
of the mobile nodes according to the object trajectory can be avoided. Two of the factors
that affect the object detection accuracy is the network coverage and connectivity. Other
factors that affect the object detection accuracy are noise and attenuation. The noise and
attenuation were kept constant in this study. We only used mobile nodes to fill the coverage
hole and to maximize the network coverage and connectivity. By choosing a mixture of
static and mobile nodes for deployment, we could make the system cost effective and hence
user friendly. In the articles studied in the literature, a high level of detection accuracy
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is achieved with a high level of node density, which has an adverse effect on the cost of
the system and energy level of the network as the number of communications increases
with an increase in the number of nodes, which leads to more energy wastage. We assume
that nodes with high power are costlier than low-power nodes. We wanted to minimize
the deployment cost by minimizing the number of nodes and by using more low-power
nodes. In our study, we tried to achieve a high level of detection accuracy with minimum
hardware costs by reducing the number of nodes for deployment. The number of static and
mobile nodes used in the EEODTF given in Table 4 was after node optimization using PSO.
Table 10 shows the network coverage and detection accuracy for varying area sizes. For
network coverage calculation, the point coverage method was used, and for the calculation
of detection accuracy, Equation (26) was used.

DetectionAccuracy =

(
CD
TS

)
× 100 (26)

where CD is the number of object positions correctly detected, and TS is the total number
of steps.

Table 10. Network coverage and detection accuracy for varying area sizes.

Area Size
(in m2)

Name of the
Model

Network
Coverage

Detection
Accuracy True Positive Number of

Misses

500 × 500
EEODTF 97.6828 96.76 419 14
EETLO 97.56 72.51 314 119

PSOEETTM 98.3012 84.2956 365 68

550 × 500
EEODTF 97.7073 93.5010 446 31
EETLO 96.6084 72.9559 348 129

PSOEETTM 97.3451 76.9392 367 110

600 × 600
EEODTF 97.0611 77.1154 401 119
EETLO 94.2553 70 364 156

PSOEETTM 93.0231 71.3462 371 149

In this study, it was found that there is a directly proportional relationship between
network coverage and detection accuracy in the absence of noise and attenuation. However,
in the presence of white noise and attenuation, the detection accuracy is lower than the
network coverage; see Table 10. The detection accuracy is better in the case of the EEODTF
in comparison to the other two models. It is clear that the number of misses increases with
the increase in the size of the AOI.

4.2.3. Node Localization Accuracy and Object Localization Accuracy

In this subsection, we studied the effect of node localization accuracy on the object
localization accuracy when the range-free method of object localization is used. When the
node localization error is lower (i.e., the node localization accuracy is higher), the object
localization accuracy is higher. The average node localization error was calculated using
Equation (27).

Average_ErrorNodeLocalization =
1
n ∑n

i,j=1

√((
xi − xj

)2
+
(

yi − yj

)2
)

(27)

where (xi,yi) is the actual node location and (xj,yj) is the calculated node location. If the
Average_ErrorNodeLocalization is less than the tolerance level (the value taken here is 0.02),
then the object is treated as being accurately localized. The node localization accuracy was
calculated using Equation (28).

AccuracynodeLocalization =

(
No. o f nodes correctly localized

Total no. o f nodes

)
× 100 (28)
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In a similar way, the object localization error and object localization accuracy were
calculated.Here, the tolerance value of 0.02 is also taken. If the difference between the
predicted value and estimated value is less than the tolerance level, then the object is
treated as being correctly localized. This difference was calculated using the Euclidean
distance formula.

Table 11 shows the node localization accuracy and object localization accuracy for
different area sizes for the EEODTF. The object localization accuracy decreased with an
increase in area size. The object localization accuracy was lower than the node local-
ization accuracy. The object localization accuracy decreased when the node localization
accuracy decreased.

Table 11. Node localization accuracy and object localization accuracy.

Area Size
(in m2)

Total
Nodes

Nodes with
Correctly
Known

Locations

Node Local-
ization

Accuracy

Total Steps
in Object
Trajectory

No. of Steps
Which Are
Correctly
Estimated

Object Lo-
calization
Accuracy

500 × 500 254 197 78.5591 433 339 78.2910
550 × 500 276 216 78.2608 477 367 76.9392
600 × 600 300 226 75.3333 520 371 71.3462

4.2.4. Energy Consumption and Object Localization Error

In this study, energy consumption during object detection and tracking was monitored,
and the result was compared with EETLO and PSOEETTM. The energy consumption
calculation was based on three parameters: energy consumed in mobile node movement,
energy consumed in object detection and energy consumed in data reporting. Table 12
shows information regarding the energy consumption and object localization error.

The energy consumed by the proposed framework was calculated using Equation (29).

Econsumed =
m

∑
i=1

EmobileNodeMovement +
t

∑
j=1

Edetection +
t

∑
k=1

EdataReportingtoCH +
t

∑
l=1

EdataReportingtoBS (29)

where m is the number of mobile nodes relocated to increase the network coverage, t is
the time taken in the simulation in rounds, EmobileNodeMovement is the energy consumed in
relocating mobile nodes, Edetection is the energy consumed in the detection of the object,
EdataReportingtoCH is the energy consumed by nodes to send detection information to the CH
and EdataReportingtoBS is the energy consumed by CHs to report detection-related information
to the BS. To report data to the BS, an energy-efficient path was used, which was calculated
using Algorithm 7.

Table 12. Average object localization error and energy consumption for AOI of 500 × 500 m2.

Models Average Object Localization Error Energy Consumed

EEODTF 89.3789 829.7607 J
EETLO 128.5434 2.3146 × 103 J

PSOEETTM 403.3012 1.2178 × 103

Table 13 shows the energy consumption, average detection error and average ob-
ject localization error of the EEODTF for different object trajectories for the area size of
500 × 500 m2. Trajectory 1 is given in Figure 6. Trajectory 2 and trajectory 3 are shown
in Figures 7 and 8. Trajectory 2 had the velocity of [2.31, 0.65] and a time step of 0.5. The
object moved in this trajectory at a constant speed. In trajectory 3, the object travelled
with varying velocity and a time step of 0.5. The velocity was incremented by 0.1 (in both
the x-direction and y-direction) when the object’s position was less than 100. However,
when the object position was greater than 200, the velocity was decremented by 0.1 in the
y-direction, and there was no change in the velocity in the x-direction.
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Figure 9 shows the object localization error for each step in the trajectory in the case of
the EEODTF for an area size of 500 × 500 m2.

Table 13. Energy consumption, average detection error and average object localization error.

Trajectory No. Energy
Consumption (in J)

Average Detection
Error

Average Object
Localization Error

Trajectory 1 829.7607 0.032 89.3789
Trajectory 2 829.4836 0.217 63.6053
Trajectory 3 953.7882 0.256 74.0773
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4.2.5. Network Lifetime Analysis

For any object detection and tracking application, the lifetime of the network is very
important. The following figures (Figures 10–12) compare the lifetime of the network of the
proposed framework, the EEODTF, with the EETLO model and PSOEETTM in terms of the
number of alive nodes, the number of dead nodes and the residual energy of the network
at the end of the simulation (433 rounds). From the figures, it is clear that the proposed
framework is more energy efficient in comparison to the other two models; see Figures 10
and 11. A total of 254 nodes were deployed. For the EEODTF, this was the optimal number
of nodes required to cover the AOI. This number of nodes remained the same in the other
two models to compare their performance. There were more alive nodes at the end of
433 rounds in the EEODTF than in the other models.
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The initial energy value in the EEODTF was lower in comparison to the other two
models; see Figure 12. However, at the end there was more residual energy in the proposed
framework. This is because the predictive node awakening process was carried out by the
BS to track and limit the movement of the mobile nodes. There was less initial energy in
case of the EEODTF because low-power static nodes and ordinary mobile nodes were used
for deployment.

The time complexity of algorithm 1 is O(nm), where n is the number of steps travelled
by the object at time t and m is the number of nodes deployed in the network.

5. Conclusions and Future Work

The lifetime and quality of service of WSN-based object detection and tracking appli-
cations depend on the lifetime of the network. However, the main limitation of WSNs is
limited energy, and in order to achieve its purpose, energy efficiency must be maintained
during object detection and tracking. In this paper, we proposed an energy-efficient object
detection and tracking framework, the EEODTF, which was shown to reduce energy con-
sumption during object tracking and thereby increase the lifetime of the network while not
affecting the object detection and localization accuracy. The framework consists of a node
deployment algorithm, node localization algorithm, cluster formation algorithm, object
detection algorithm, object localization algorithm and energy-efficient routing algorithm for
the reporting of data to the BS; see Table 14. This was created in an attempt to reduce energy
consumption while carrying out the designated task. Node deployment was optimized
using the PSO algorithm to achieve energy efficiency and the maximum coverage of the
AOI. Node localization was optimized using the hybrid DV- HOP_PSO_GWO algorithm to
reduce the level of object localization errors. Cluster formation, object detection and data
reporting processes were optimized using the PSO algorithm, the prediction mechanism
and the Firefly algorithm, respectively, for energy efficiency. The performance of the frame-
work was compared with the EETLO and PSOEETTM models using different metrics such
as residual energy, the number of alive nodes, the number of dead nodes and detection
accuracy. It was found that the proposed framework performed better in comparison to the
abovementioned models. Our future work will focus on using a probabilistic sensing model
instead of a binary sensing model. We will also focus on the environmental characteristics
that affect object detection operations. We will also extend our work to multiple object
tracking and object detection applications with adaptive thresholds in the AOI.
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Table 14. Summary of Proposed Framework.

Specification and Tools Description

Specification

The proposed framework is mainly divided into four different parts: node
deployment, node localization, object detection and object tracking.

• Node deployment: Node density and random deployment of
heterogeneous mobile and static nodes are considered for full
coverage of AOI.

• Node Localization: Minimize the node localization error to
minimize object localization error.

• Object Detection: Decision fusion with triangulation mechanism is
used for energy-efficient object detection and localization.

• Object Tracking: Energy-efficient data reporting with prediction
mechanism is used for error-free tracking. If required, on-demand
cluster is created at the cluster boundary to increase the detection
accuracy.

Methodology

Our study is on how to achieve energy-efficient tracking in
energy-constrained WSNs without affecting the object localization
accuracy. This study is completely a simulation-based study. We have
considered the case of sensors that cannot be recharged once deployed.
Energy management of sensor nodes is done at different levels, such as:
limiting the mobile node movement, forming clusters, minimizing the
number of nodes engaged for object detection and localization,
minimizing retransmission of packets by using energy efficient paths for
data reporting. We think that overall energy consumption can be
minimized with a collective approach of energy minimization. Simulated
object trajectory is used for analysis.

Tools Used A laptop with 16GB RAM, x64-based processor, a 64-bit operating system,
Windows 10 operating system and Matlab R2020b.

Statistical Data

First 10 records of object trajectory 1 are:
Sl. ObjX ObjY
1. 0.0 350.0000
2. 1.1550 349.7250
3. 2.3100 349.4500
4. 3.4650 349.1750
5. 4.6200 348.9000
6. 5.7750 348.6250
7. 6.9300 348.3500
8. 8.0850 348.0750
9. 9.2400 347.8000
10. 10.3950 347.5250
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