Multiport Single Element Mimo Antenna Systems: A Review
Abstract
:1. Introduction
2. Mathematical Concepts of MIMO
3. Isolation Techniques
3.1. Defected Ground Structure
3.2. Decoupling Network
3.3. Electromagnetic Bandgap (EBG) Structure
3.4. Neutralization Lines
3.5. Parasitic Elements
3.6. Complementary Split Ring Resonators (CSRR)
3.7. Metamaterials
4. Multiport Single Element System
4.1. Single Element Two-Ports MIMO Antenna System
4.2. Single Element Four-Ports MIMO Antenna System
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, H.; Yang, W.; Zhang, A.; Zhu, S.; Wang, Z.; Huang, T. A Miniaturized Gain-Enhanced Antipodal Vivaldi Antenna and Its Array for 5G Communication Applications. IEEE Access 2018, 6, 76282–76288. [Google Scholar] [CrossRef]
- Takahashi, K.; Arai, H.; Ihara, T.; Ishikawa, Y. A study of antenna configuration and channel capacity about MIMO. In Proceedings of the 2015 IEICE Society Conference, Tokyo, Japan, 16–18 September 2015. [Google Scholar]
- Rohani, B.; Arai, H. Enhancing 4× 4 MIMO channel capacity by dual polarized directional antenna. In Proceedings of the IEICE General Conference, Yokohama, Japan, 28–31 March 2016; p. 181. [Google Scholar]
- Nadeem, I.; Choi, D.-Y. Study on Mutual Coupling Reduction Technique for MIMO Antennas. IEEE Access 2018, 7, 563–586. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, S.; Chakarborty, U. Compact dual wide-band four/eight elements MIMO antenna for WLAN applications. Int. J. RF Microw. Comput. Eng. 2019, 29, e21749. [Google Scholar] [CrossRef]
- Dixit, A.S.; Kumar, S. A miniaturized antipodal Vivaldi antenna for 5G communication applications. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020. [Google Scholar]
- Seyyedesfahlan, M.; Uzun, A.; Skrivervik, A.; Tekin, I. Wideband Multiport Antennas. Sensors 2020, 20, 6960. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, R.; Andersen, J. Antenna diversity in mobile communications. IEEE Trans. Veh. Technol. 1987, 36, 149–172. [Google Scholar] [CrossRef]
- Mattheijssen, P.; Herben, M.; Dolmans, G.; Leyten, L. Antenna-Pattern Diversity Versus Space Diversity for Use at Handhelds. IEEE Trans. Veh. Technol. 2004, 53, 1035–1042. [Google Scholar] [CrossRef]
- Chouhan, S.; Panda, D.K.; Gupta, M.; Singhal, S. Multiport MIMO antennas with mutual coupling reduction techniques for modern wireless transreceive operations: A review. Int. J. RF Microw. Comput. Eng. 2017, 28, e21189. [Google Scholar] [CrossRef]
- Votis, C.; Tatsis, G.; Kostarakis, P. Envelope Correlation Parameter Measurements in a MIMO Antenna Array Configuration. Int. J. Commun. Netw. Syst. Sci. 2010, 3, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Glazunov, A.A.; Molisch, A.; Tufvesson, F. Mean effective gain of antennas in a wireless channel. IET Microw. Antennas Propag. 2009, 3, 214–227. [Google Scholar] [CrossRef] [Green Version]
- ho Chae, S.; il Kawk, W.; Park, S.O.; Lee, K. Analysis of mutual coupling in MIMO antenna array by TARC calculation. In Proceedings of the 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 12–15 December 2006; pp. 2090–2093. [Google Scholar]
- Fritz-Andrade, E.; Jardon-Aguilar, H.; Tirado-Mendez, J.A. The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports. Int. J. RF Microw. Comput. Eng. 2019, 30, e22113. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, B. Compact ultrawideband (UWB) slot antenna with wideband and high isolation for MIMO applications. Prog. Electromagn. Res. C 2014, 54, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xiong, J.; Ying, Z.; He, S. High isolation compact four-port MIMO antenna systems with built-in filters as isolation structure. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010. [Google Scholar]
- Wu, Y.; Chu, Q. Dual-band multiple input multiple output antenna with slitted ground. IET Microw. Antennas Propag. 2014, 8, 1007–1013. [Google Scholar] [CrossRef]
- Chiu, C.-Y.; Cheng, C.-H.; Murch, R.D.; Rowell, C.R. Reduction of Mutual Coupling Between Closely-Packed Antenna Elements. IEEE Trans. Antennas Propag. 2007, 55, 1732–1738. [Google Scholar] [CrossRef]
- Ghosh, C.K.; Parui, S.K. Reduction of cross polar radiation of a dual trace omnidirectional microstrip antenna array by using dumbbell-shaped resonator. Microw. Opt. Technol. Lett. 2013, 56, 141–145. [Google Scholar] [CrossRef]
- Salehi, M.; Motevasselian, A.; Tavakoli, A.; Heidari, T. Mutual coupling reduction of microstrip antennas using defected ground structure. In Proceedings of the 2006 10th IEEE Singapore International Conference on Communication Systems, Singapore, 30 October–1 November 2006. [Google Scholar]
- Wei, K.; Li, J.; Wang, L.; Xing, Z.; Xu, R. S-shaped periodic defected ground structures to reduce microstrip antenna array mutual coupling. Electron. Lett. 2016, 52, 1288–1290. [Google Scholar] [CrossRef]
- Anitha, R.; Sarin, V.; Mohanan, P.; Vasudevan, K. Enhanced isolation with defected ground structure in MIMO antenna. Electron. Lett. 2014, 50, 1784–1786. [Google Scholar] [CrossRef]
- Volmer, C.; Stephan, R.; Blau, K.; Hein, M.A. An Eigen-Analysis of Compact Antenna Arrays and Its Application to Port Decoupling. IEEE Trans. Antennas Propag. 2008, 56, 360–370. [Google Scholar] [CrossRef]
- Wallace, J.; Jensen, M. Mutual Coupling in MIMO Wireless Systems: A Rigorous Network Theory Analysis. IEEE Trans. Wirel. Commun. 2004, 3, 1317–1325. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Cheung, S.W.; Li, Q.L.; Yuk, T.I. Decoupling using diamond-shaped patterned ground resonator for small MIMO antennas. IET Microw. Antennas Propag. 2017, 11, 177–183. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, K.-L. A Dual-Band Coupled Resonator Decoupling Network for Two Coupled Antennas. IEEE Trans. Antennas Propag. 2015, 63, 2843–2850. [Google Scholar] [CrossRef]
- Yang, F.; Rahmat-Samii, Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 2003, 51, 2936–2946. [Google Scholar] [CrossRef] [Green Version]
- Inclan-Sanchez, L.; Vazquez-Roy, J.-L.; Rajo-Iglesias, E. High Isolation Proximity Coupled Multilayer Patch Antenna for Dual-Frequency Operation. IEEE Trans. Antennas Propag. 2008, 56, 1180–1183. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z. A Wideband Printed Dual-Antenna with Three Neutralization Lines for Mobile Terminals. IEEE Trans. Antennas Propag. 2013, 62, 1495–1500. [Google Scholar] [CrossRef]
- Zhang, S.; Lau, B.K.; Tan, Y.; Ying, Z.; He, S. Mutual Coupling Reduction of Two PIFAs with a T-Shape Slot Impedance Transformer for MIMO Mobile Terminals. IEEE Trans. Antennas Propag. 2011, 60, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.; Cai, X.; Qian, K. Two-element compact antennas decoupled with a simple neutralization line. Prog. Electromagn. Res. Lett. 2017, 65, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Kakade, A.B.; Kumbhar, M. Wideband circularly polarized conformal strip fed three layer hemispherical dielectric resonator antenna with parasitic patch. Microw. Opt. Technol. Lett. 2014, 56, 72–77. [Google Scholar] [CrossRef]
- Liu, L.; Cheung, S.W.; Yuk, T.I. Compact MIMO Antenna for Portable UWB Applications With Band-Notched Characteristic. IEEE Trans. Antennas Propag. 2015, 63, 1917–1924. [Google Scholar] [CrossRef]
- Sharawi, M.S. Printed Multi-Band MIMO Antenna Systems and Their Performance Metrics [Wireless Corner]. IEEE Antennas Propag. Mag. 2013, 55, 218–232. [Google Scholar] [CrossRef]
- Kahrizi, M.; Sarkar, T.; Maricevic, Z. Analysis of a wide radiating slot in the ground plane of a microstrip line. IEEE Trans. Microw. Theory Tech. 1993, 41, 29–37. [Google Scholar] [CrossRef]
- Fan, S.T.; Yin, Y.Z.; Lee, B.; Hu, W.; Yang, X. Bandwidth Enhancement of a Printed Slot Antenna With a Pair of Parasitic Patches. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1230–1233. [Google Scholar] [CrossRef]
- Row, J.-S.; Wu, S.-W. Circularly-Polarized Wide Slot Antenna Loaded With a Parasitic Patch. IEEE Trans. Antennas Propag. 2008, 56, 2826–2832. [Google Scholar] [CrossRef]
- Yoo, M.; Lim, S. SRR- and CSRR-loaded ultra-wideband (UWB) antenna with tri-band notch capability. J. Electromagn. Waves Appl. 2013, 27, 2190–2197. [Google Scholar] [CrossRef]
- Ren, Y.-H.; Ding, J.; Guo, C.-J.; Qu, Y.; Song, Y.-C. A Wideband Dual-Polarized Printed Antenna Based on Complementary Split-Ring Resonators. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 410–413. [Google Scholar] [CrossRef]
- Yang, D.-G.; Kim, D.O.; Kim, C.-Y. Design of dual-band MIMO monopole antenna with high isolation using slotted CSRR for WLAN. Microw. Opt. Technol. Lett. 2014, 56, 2252–2257. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, M.; Wen, H.; Wang, J. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, A.A.; Abdalla, M.A. CRLH MIMO antenna with reversal configuration. AEU-Int. J. Electron. Commun. 2016, 70, 1134–1141. [Google Scholar] [CrossRef]
- Yang, L.; Li, T. Box-folded four-element MIMO antenna system for LTE handsets. Electron. Lett. 2015, 51, 440–441. [Google Scholar] [CrossRef]
- Wang, L.; Wei, C.; Wei, W. Design of a high isolation dual-band MIMO antenna for LTE terminal. In Proceedings of the 2013 International Symposium on Antennas & Propagation, Nanjing, China, 23–25 October 2013. [Google Scholar]
- Sharawi, M.S.; Numan, A.B.; Khan, M.U.; Aloi, D.N. A Dual-Element Dual-Band MIMO Antenna System with Enhanced Isolation for Mobile Terminals. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1006–1009. [Google Scholar] [CrossRef]
- Li, M.Y.; Xu, Z.Q.; Ban, Y.L.; Sim, C.Y.D.; Yu, Z.F. Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone. IET Microw. Antennas Propag. 2017, 11, 1810–1816. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.-Y.-D.; Luo, Y.; Yang, G. High-Isolation 3.5 GHz Eight-Antenna MIMO Array Using Balanced Open-Slot Antenna Element for 5G Smartphones. IEEE Trans. Antennas Propag. 2019, 67, 3820–3830. [Google Scholar] [CrossRef]
- Dioum, I.; Diallo, A.; Farssi, S.M.; Luxey, C. A Novel Compact Dual-Band LTE Antenna-System for MIMO Operation. IEEE Trans. Antennas Propag. 2014, 62, 2291–2296. [Google Scholar] [CrossRef]
- Rahman, S.; Ren, X.-C.; Altaf, A.; Irfan, M.; Abdullah, M.; Muhammad, F.; Anjum, M.; Mursal, S.; AlKahtani, F. Nature Inspired MIMO Antenna System for Future mmWave Technologies. Micromachines 2020, 11, 1083. [Google Scholar] [CrossRef] [PubMed]
- Illahi, U.; Iqbal, J.; Irfan, M.; Sulaiman, M.I.; Khan, M.A.; Rauf, A.; Bari, I.; Abdullah, M.; Muhammad, F.; Nowakowski, G.; et al. A Novel Design and Development of a Strip-Fed Circularly Polarized Rectangular Dielectric Resonator Antenna for 5G NR Sub-6 GHz Band Applications. Sensors 2022, 22, 5531. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.; Altaf, A.; Abdullah, M.; Muhammad, F.; Shoaib, N.; Anjum, M.; Damaševičius, R.; Blažauskas, T. Eight Element Side Edged Framed MIMO Antenna Array for Future 5G Smart Phones. Micromachines 2020, 11, 956. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, F.; Zhang, G.; Li, Q. Broadband dual-polarized antennas with high port isolation for portable devices. In Proceedings of the 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26–29 July 2014. [Google Scholar]
- Li, Y.; Yu, B.; Shen, H.; Zhu, L.; Yang, G. An 8-port planar UWB MIMO antenna for future 5G micro wireless access point applications. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, 1–4 August 2017. [Google Scholar]
- Shoaib, S.; Shoaib, I.; Shoaib, N.; Chen, X.; Parini, C.G. MIMO antennas for mobile handsets. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 799–802. [Google Scholar] [CrossRef]
- Ban, Y.-L.; Li, C.; Sim, C.-Y.-D.; Wu, G.; Wong, K.-L. 4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications. IEEE Access 2016, 4, 2981–2988. [Google Scholar] [CrossRef]
- Saxena, S.; Kanaujia, B.; Dwari, S.; Kumar, S.; Tiwari, R. MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electron. Lett. 2018, 54, 478–480. [Google Scholar] [CrossRef]
- Soltani, S.; Lotfi, P.; Murch, R.D. A Dual-Band Multiport MIMO Slot Antenna for WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 529–532. [Google Scholar] [CrossRef]
- Kiem, N.K.; Dinh, D.N.; Viet, H.T.; Dao-Ngoc, C. A novel design of dual-feed single-element antenna for 4G MIMO terminals. In Proceedings of the Progress in Electromagnetics Research Symposium, Kuala Lumpur, Malaysia, 27 March 2012. [Google Scholar]
- Caimi, F.M.; Mongomery, M. Dual Feed, Single Element Antenna for WiMAX MIMO Application. Int. J. Antennas Propag. 2008, 2008, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shin, W.H.; Kibria, S.; Islam, M.T. Single element MIMO antenna for LTE application with iMAT. In Proceedings of the 2014 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Johor Bahru, Malaysia, 8–10 December 2014. [Google Scholar]
- Moradikordalivand, A.; Leow, C.Y.; Rahman, T.A.; Ebrahimi, S.; Chua, T.H. Wideband MIMO antenna system with dual polarization for WiFi and LTE applications. Int. J. Microw. Wirel. Technol. 2015, 8, 643–650. [Google Scholar] [CrossRef]
- Moradikordalivand, A.; Rahman, T.A.; Leow, C.Y.; Ebrahimi, S. Dual-polarized MIMO antenna system for WiFi and LTE wireless access point applications. Int. J. Commun. Syst. 2014, 30, e2898. [Google Scholar] [CrossRef]
- Nawaz, H.; Tekin, I. Dual port disc monopole antenna for wide-band MIMO-based wireless applications. Microw. Opt. Technol. Lett. 2017, 59, 2942–2949. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, H.; Tekin, I. Dual port single patch antenna with high interport isolation for 2.4 GHz in-band full duplex wireless applications. Microw. Opt. Technol. Lett. 2016, 58, 1756–1759. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Qin, H. Compact ACS-fed UWB antenna for diversity applications. Electron. Lett. 2014, 50, 1336–1338. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhang, F.; Tian, W.P.; Luo, Y.L. ACS-fed UWB-MIMO antenna with shared radiator. Electron. Lett. 2015, 51, 1301–1302. [Google Scholar] [CrossRef]
- Khan, M.S.; Capobianco, A.-D.; Iftikhar, A.; Asif, S.; Braaten, B.D. A compact dual polarized ultrawideband multiple-input- multiple-output antenna. Microw. Opt. Technol. Lett. 2015, 58, 163–166. [Google Scholar] [CrossRef]
- Khan, M.S.; Capobianco, A.; Iftikhar, A.; Shubair, R.M.; Anagnostou, D.E.; Braaten, B.D. Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines. IET Microw. Antennas Propag. 2017, 11, 997–1002. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K.S. Miniature Scalp-Implantable Antennas for Telemetry in the MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis. IEEE Trans. Antennas Propag. 2012, 60, 3568–3575. [Google Scholar] [CrossRef]
- Patre, S.R.; Singh, S.P. Shared radiator MIMO antenna for broadband applications. IET Microw. Antennas Propag. 2018, 12, 1153–1159. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, J.; Zhao, L.; Yin, Y. A dual-feed MIMO antenna pair with one shared radiator and two isolated ports for fifth generation mobile communication band. Int. J. RF Microw. Comput. Eng. 2017, 27, e21146. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Cai, Y.; Yin, Y. Dual-feed MIMO antennas with one shared radiator for future 5G MIMO systems. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017. [Google Scholar]
- Chattha, H.T.; Nasir, M.; Abbasi, Q.H.; Huang, Y.; AlJa’Afreh, S.S. Compact Low-Profile Dual-Port Single Wideband Planar Inverted-F MIMO Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1673–1675. [Google Scholar] [CrossRef]
- Srivastava, G.; Kanuijia, B.; Paulus, R. UWB MIMO antenna with common radiator. Int. J. Microw. Wirel. Technol. 2017, 9, 573–580. [Google Scholar] [CrossRef]
- Srivastava, G.; Kanuijia, B.K. Compact dual band-notched UWB mimo antenna with shared radiator. Microw. Opt. Technol. Lett. 2015, 57, 2886–2891. [Google Scholar] [CrossRef]
- Mao, C.-X.; Chu, Q.-X. Compact Coradiator UWB-MIMO Antenna With Dual Polarization. IEEE Trans. Antennas Propag. 2014, 62, 4474–4480. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Zhang, F.; Tian, W.-P. Compact 4-port ACS-fed UWB-MIMO antenna with shared radiators. Prog. Electromagn. Res. Lett. 2015, 55, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Malviya, L.; Chouhan, S. Multi-cut four-port shared radiator with stepped ground and diversity effects for WLAN application. Int. J. Microw. Wirel. Technol. 2019, 11, 1044–1053. [Google Scholar] [CrossRef]
- Chouhan, S.; Malviya, L. Four-port shared rectangular radiator with defected ground for wireless application. Int. J. Commun. Syst. 2020, 33, e4356. [Google Scholar] [CrossRef]
- MoradiKordalivand, A.; Rahman, T.A.; Khalily, M. Common Elements Wideband MIMO Antenna System for WiFi/LTE Access-Point Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1601–1604. [Google Scholar] [CrossRef]
- Chouhan, S.; Panda, D.K.; Kushwah, V.S. Modified circular common element four-port multiple-input-multiple-output antenna using diagonal parasitic element. Int. J. RF Microw. Comput. Eng. 2018, 29, e21527. [Google Scholar] [CrossRef]
- Li, W.A.; Tu, Z.H.; Liu, Y.Y. High isolation, dual-polarized & dual-band single-layer differential MIMO antenna for WiMAX application. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016. [Google Scholar]
- Yussuf, A.A.; Paker, S. Design of wideband MIMO antenna for wireless applications. In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017. [Google Scholar]
- Sun, D.; Wang, P.; Gao, P. Single radiator four-port MIMO antenna for WLAN and WIMAX applications with high isolation. In Proceedings of the 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), Beijing, China, 28–31 October 2017. [Google Scholar]
Acronyms | Meanings |
---|---|
SISO | Single Input Single Output |
MIMO | Multiple Input Multiple Output |
TARC | Total Active Reflection Coefficient |
ECC | Envelop Correlation Coefficient |
DG | Diversity Gain |
DGS | Defected Ground Structure |
DMN | Decoupling and matching network |
CDRN | Coupled Resonator Decoupling Network |
CSRR | Complementary Split Ring Resonators |
ACS | Asymmetric Coplanar Strip |
CPW | Co Planar Waveguide |
CE | Common Element |
PIFA | Planar Inverted-F antenna |
iMAT | Isolated Mode Antenna Technology |
EBG | Electromagnetic Bandgap |
MEG | Mean Effective Gain |
WiFi | Wireless Fidelity |
UWB | Ultra-Wide Band |
LTE | Long-Term Evolution |
WiMax | Worldwide Interoperability for Microwave Access |
References | Frequency (GHz) | Size/Material (mm2) | Isolation Technique | Isolation (dB) | ECC | Gain (dBi) | No. of Ports/Application |
---|---|---|---|---|---|---|---|
[60] | 2.3–2.6 | 48 × 33.8/FR4 | Slots/Ground slot | −16 | 0.1 | 1.2 | 2/WLAN (2.4 GHz) |
[61] | 2.3–2.9 | 105 × 125/FR4 | CSPE rings | −15 | 0.15 | 5 | 2/WiFi (2.4 GHz) and LTE (2.6 GHz) |
[62] | 1.2–1.55; 2.3–2.7 | 110 × 130/FR4 | CSPE rings | −15 | 0.15 | 3.3–5.6 | 2/WiFi (2.4 GHz), WiMAX (2.3 and 2.5 GHz), and LTE (1.5, 2.6 GHz) |
[63] | 2–6 | 64 × 64 mm/RT Duroid 5880 | Ground plane circular slot | −15 | 0.02 | 3.2–6.1 | 2/MIMO applications |
[66] | 3.1–10.6 | 26 × 26/FR4 | I and U-shaped stub | −15 | 0.02 | 2.2, 3.5, 2 | 2/Ultra-Wide Band |
[65] | 2.6–11 | 28.5 × 28.5/FR4 | Rectangular stub | −15 | 0.01 | 1.5–3.7 | 2/Ultra-Wide Band |
[67] | 3–11 | 27 × 27/Rogers TMM4 | Slot | −15 | 0.01 | 3 | 2/Ultra-Wide Band |
[68] | 3.1–10.6 | 22 × 24.3/Rogers TMM4 | Slots, open shut stub | −15 | 0.02 | 2–5.5 | 2/Ultra-Wide Band |
[70] | 2.4–12.75 | 39 × 39/FR4 | Stub, meandered line | −15 | 0.02 | 4.92 | 2/Ultra-Wide Band |
[71] | 3.35–3.65 | 90 × 50/FR4 | Positioning shorting strips | −20 | 0.1 | 3.5 | 2/MIMO applications |
[72] | 3.4–3.7 | 130 × 50/FR4 | 3 shorting strips | −25 | 0.017 | 4 | 2/MIMO applications |
[73] | 2.1–2.9 | 45 × 100/FR4 | Slot at ground plane | −14 | 0.005 | 6.4 | 2/2.45-GHz WLAN band and WiMAX band (2.5–2.7 GHz) |
[74] | 3–12 | 45 × 45 | Slot | −17 | 0.01 | −4 to 2 | 2/Ultra-Wide Band |
[75] | 3–12 | 41 × 41 | Slot | −14 | 0.01 | 2 | 2/ Ultra-Wide Band |
References | Frequency (GHz) | Size (mm2) | Isolation Technique | Isolation (dB) | ECC | Gain (dBi) | Number of Ports/Application |
---|---|---|---|---|---|---|---|
[76] | 3–11 | 48 × 48 | T shaped slot | −17 | 0.02 | 2–5 | 4/Ultra-Wide Band |
[77] | 3.1–10.6 | 36 × 36 | Stub at ground plane | −15 | 0.02 | 1.5–4 | 4/Ultra-Wide Band |
[78] | 4.96–5.5 | 75 × 75 | Defected patch and ground | −12 | 0.03 | 2.4–5.5 | 4/WLAN (5.2) |
[79] | 4.4–6.4 | 75 × 75 | Defected patch and ground | −13 | 0.04 | 3–6.1 | 4/Sub 6 GHz applications |
[80] | 1.8–2.9 | 120 × 140 | Slots at ground, DGS | −15 | 0.07 | 6 | 4/LTE (Wireless Access Point), WiFi (2.4) |
[81] | 2.34–2.56 | 72 × 72 | Diagonal parasitic element | −12 | 0.01 | 2 | 4/WiFi (2.4) |
[82] | 3.5, 5.5 | 45 × 45 | Slot technique | −35 | 0.02 | 2–5 | 4/WiMAX (3.5,5.5) |
[83] | 2–3 | 108 × 108 | Slot technique | −12 | 0.02 | 5.9–6.2 | 4/LTE (2.1/2.3/2.6 GHz), Wi-Fi (2.4) |
[84] | 4.5–7 | 95 × 95 | Ground stub | −20 | 0.01 | 5 | 4/WLAN (5.2,5.8), WiMAX (5.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheriff, N.; Kamal Abdul Rahim, S.; Tariq Chattha, H.; Kim Geok, T. Multiport Single Element Mimo Antenna Systems: A Review. Sensors 2023, 23, 747. https://doi.org/10.3390/s23020747
Sheriff N, Kamal Abdul Rahim S, Tariq Chattha H, Kim Geok T. Multiport Single Element Mimo Antenna Systems: A Review. Sensors. 2023; 23(2):747. https://doi.org/10.3390/s23020747
Chicago/Turabian StyleSheriff, Nathirulla, Sharul Kamal Abdul Rahim, Hassan Tariq Chattha, and Tan Kim Geok. 2023. "Multiport Single Element Mimo Antenna Systems: A Review" Sensors 23, no. 2: 747. https://doi.org/10.3390/s23020747
APA StyleSheriff, N., Kamal Abdul Rahim, S., Tariq Chattha, H., & Kim Geok, T. (2023). Multiport Single Element Mimo Antenna Systems: A Review. Sensors, 23(2), 747. https://doi.org/10.3390/s23020747