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Abstract: In this manuscript, a compact in size yet geometrically simple Ultra-Wideband (UWB)
antenna is demonstrated. The flexible-by-nature substrate ROGERS 5880, having a thickness of
0.254 mm, is utilized to design the proposed work. The antenna configuration is an excerpt of a
traditional rectangular monopole antenna resonating at 5 GHz. Initially, a pair of triangular slots are
employed to extend the impedance bandwidth of the antenna. In addition, a semi-circular-shaped,
short-ended stub is connected at the upper edges of the patch to further increase the operational
bandwidth. After optimization, the proposed antenna offers UWB ranging from 2.73–9.68 GHz,
covering almost the entire spectrum allocated globally for UWB applications. Further, the antenna
offers a compact size of 15 × 20 mm2 that can easily be integrated into small, flexible electronics.
The flexibility analysis is done by bending the antenna on both the x and y axes. The antenna offers
performance stability in terms of return loss, radiation pattern, and gain for both conformal and
non-conformal conditions. Furthermore, the strong comparison between simulated and measured
results for both rigid and bent cases of the antenna, along with the performance comparison with the
state-of-the-art, makes it a potential candidate for present and future compact-sized flexible devices.

Keywords: compact devices; UWB antenna; flexible electronics

1. Introduction

The UWB (ultra-wideband) radio demonstrates features such as broad bandwidth, low
power spectrum levels, high data-rate transmission, good phase linearity, and auspicious
radiation performance [1]. As a result, the UWB technology has promising prospects in
diverse applications, such as the Internet of Things (IoT), surveillance systems, wireless
sensor networks, and medical applications [2,3]. Since the year 2002, researchers have
intensified their efforts in this area after the allocation of the frequency range 3.1–10.6 GHz
for unlicensed UWB indoor wireless communication by the United States Federal Commu-
nication Commission (FCC) [4]. Whereas, the Electronic Communication Committee (ECC)
has designated the 6–8.5 GHz band spectrum for UWB applications [5].

In addition, with the progression of wireless communication standards, an enormous
number of devices and gadgets are required to be connected to the internet. The assortment
of interconnected devices accelerated the idea of designing flexible and robust antennas
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capable of being mounted on curved or wearable devices [6–8]. Moreover, various conduc-
tive and substrate materials have been investigated to be employed as flexible substrates,
such as Kapton, paper, polyethylene terephthalate (PET), polydimethylsiloxane (PDMS),
polyamide, and textile fabric [9–13]. Flexible antennas are desired to have acceptable
radiation characteristics in conformal and rigid configurations.

Recently, numerous approaches have been reported in the literature for attaining
the UWB characteristics [5–7] and [14–16]. However, very few UWB antennas have been
presented with flexible substrates [17–22]. For instance, the reported work in [17] is made
up of a co-planar waveguide (CPW)-fed circular monopole antenna designed using a liquid
crystalline polymer (LCP)-based substrate. The antenna offers a wideband of 2.5–11 GHz
along with an average gain of 2 dB and an overall size of 40 × 22 × 0.1 mm3. On the
other hand, an inkjet-printed flexible Multiple-Input, Multiple-Output (MIMO) antenna
is presented in [18]. It has a relatively compact size of 22 × 31 × 0.125 mm3 and offers a
wide bandwidth ranging from 3.43–10.1 GHz, accompanied by an average gain of 1.7 dBi.
Similarly, in [19], a flexible antenna having physical dimensions of 38 × 22 × 0.1 mm3 is
proposed for wearable applications. Although the antenna offers a wideband of 2.8 GHz
(5.8–8.6 GHz), this work cannot be used for UWB applications requiring bandwidth rang-
ing from 3.1 to 10 GHz. Another intriguing report conducted in [20] describes a photo
paper-based inkjet-printed antenna for IoT applications. The antennas offer a wideband
over 3.2–15 GHz, having an average gain of 4.87 dB along with an overall dimension of
33.1 × 32.7 × 0.254 mm3.

Further, in [21], a flexible antenna is designed on a polyimide substrate for UWB appli-
cations. The polyimide substrate-based antenna is designed after the surface modification
by utilizing an in situ self-metallization technique. The antenna offers an ultra-wide band-
width of 1.35–16.4 GHz as well as a high realized gain of >2.8 dB in the operational region.
Lastly, a nanocomposite material-based organic antenna is presented for UWB and flexible
applications [22]. The antenna comprises 48 × 34.9 × 0.13 mm3 and has an operational
impedance bandwidth of 2–7 GHz, along with mismatched performance for unbent and
bent conditions. Thus, it can be concluded from the aforementioned decision that the
UWB antennas proposed in [17–22] exhibit larger dimensions. Furthermore, the reported
work in [21,22] involves costly substrates and complex fabrication methodologies. As the
state-of-the-art systems require compact antennas, it would therefore be advantageous to
employ a more compact UWB antenna with conformal capabilities for diverse services to
comply with the commercial and functional requirements.

Therefore, this work offers the design of a miniaturized UWB antenna realized
on a flexible substrate. The overall substrate dimensions of the proposed design are
20 × 15 × 0.254 mm3

, which is relatively compact compared to the state-of-the-art. The
proposed structure exhibits adequate radiation characteristics for both rigid and conformal
arrangements. Therefore, the suitability of the proposed antenna is ascertained for both
rigid and conformal electronic devices. The forthcoming parts of the paper are split as
follows: Section 2 describes the methodology used to design the proposed antenna, while
Section 3 discusses the performance parameters of the proposed antenna. Finally, Section 4
concludes the manuscript, which is accompanied by references.

2. Methodology of the Proposed Antenna and Methodology
2.1. UWB Antenna

Figure 1 depicts the layout of the proposed antenna. The radiating structure is placed at
the top of the flexible material ROGERS 5880, which has an electric permittivity of 2.2 along
with a loss tangent of 0.0009. The radiator is fed using the CPW feeding technique, owing to
the advantage of its uniplanar structure, which increases its potential for use with electronic
circuits [23]. Furthermore, because of the similar structure, CPW feed aids in achieving
a compact antenna size as well as ease of fabrication [24]. The antenna radiator consists
of a rectangular-shaped quarter-wave monopole whose both sides are truncated using
triangular-shaped slots. Afterwards, a semi-circular-shaped short stub is inserted at the top
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of the radiator, which helps in achieving an ultra-wideband. The working principle of the
antenna is explained in the forthcoming section, along with the results of various design
techniques utilized to achieve the proposed UWB antenna.
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Figure 1. Geometry of the proposed antenna: (a) front view; (b) side view L = 20 mm; W = 15 mm;
CL = 5.5 mm; CW = 6 mm; g = 0.5 mm; F = 2 mm; D = 2 mm; H = 0.254 mm; PL = 5 mm; Pw = 13 mm;
Ls = 2.5 mm; R = 4.5 mm; s = 1.5 mm; θ = 90◦.

2.2. Antenna Design Methodology

Figure 2 portrays the geometrical structure of various antennas utilized to design the
proposed work. The design methodology consists of three major steps.
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Figure 2. Different antennas are utilized to achieve the proposed UWB antenna design.

Step-1: The design of a compacts size conventional quarter-wave monopole antenna.
Step-2: Band enhancement of the quarter-wave monopole antenna by truncating the

sides of the radiator.
Step-3: Further operational band enhancement of the truncated monopole antenna

by loading the short-ended stub. Initially, a CPW-fed, rectangular-haped quarter-wave
monopole antenna is designed. The length (PL) of the radiator for any desired resonance
(f 0) can be estimated by utilizing Equations (1) and (2), as proven in [25]:
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PL =
c

4 f 0√εe f f
(1)

Here εeff is the effective permittivity of the substrate, which is given as:

εe f f ≈
εr + 1

2
+

εr + 1
2

(1 + 12(
Pw

H
))
−0.5

(2)

Here, εr is the permittivity of the substrate, PW is the width of the radiator, and H is the
thickness of the substrate.

Besides, for broadband antenna, the lower cut-off frequency (FL) of the monopole
antenna can be estimated by the following expression provided in [26]:

Fl =
7.2

(l + r + p)× k
(3)

for proposed antenna, the parameters in the above equations are:

l =
Pw

2
r =

PL
4π

p = Dk =
√

εe f f

After putting the parameters into Equation (3), the equations become:

Fl =
7.2

( Pw
2 + PL

4π + D)×√εe f f
(4)

Equation (4) gives the lower cut-off frequency of 4.19 GHz, which is remarkably
close to the simulated results having a lower cut-off frequency of 4.23 GHz, as depicted
in Figure 3. Furthermore, Equation (4) also shows that the lower cut-off frequency of a
monopole antenna can be adjusted by varying the length and width of the patch along
with the space between the radiator and CPW ground, denoted by D.
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However, due to the size limitation of the antenna, further variation was not possible,
and the optimized antenna offers a broadband of 4.23–6.64 GHz, as illustrated in Figure 3.
In order to broaden the bandwidth of the radiator even further, truncating the corners of the
radiator is utilized. Various techniques, including etching slots [27], inserting vias [28], and
loading open-ended stubs [29], are widely studied to achieve wide bandwidth. However,
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etching slots requires a bigger radiator, inserting vias requires a ground plane at the back
of the radiator, and open-ended stubs require more space. Therefore, instead of utilizing
conventional techniques, the truncated corner technique is exploited. Furthermore, rather
than truncating the corners of the radiator as utilized in [8,10,28], the sides of the radiator
are truncated by using a triangular-shaped structure, as depicted in Figure 2. The variation
in the shape of the radiator due to the etched slot causes the flow of current to redistribute
itself across the surface of the radiator, and with optimization, it results in the generation of
a wide band ranging from 3.8–7.35 GHz, as depicted in Figure 3.

In a decisive step, a semi-circular-shaped stub was added at the top-corner of the
radiator. The loading of the stub introduces additional impedance that can be approximated
by the following relationship [30]:

ZSC = j ZO tan (βl) (5)

Here, ZO is the input impedance of 50 Ω, β is the per-unit change in length and can be
computed as β = 2π/λ, l is the physical length of the stub and can be computed by using
the arc length (LA) formula of LA = π/180 × θ × R, and j is the unit imaginary number.

The addition of extra impedance due to the insertion of the stub provides a good
match with the transmission line and results in more current flow through the surface of
the antenna, which consequently increases the impedance bandwidth of the antenna, as
depicted in Figure 3. From Figure 4, it can be seen that with each modification, the more
current induced in the radiator causes the resonance at the selected frequency, thereby
eventually increasing the bandwidth of the proposed antenna. The final antenna after
optimization has a wide |S11| > −10 dB impedance bandwidth at 6.95 GHz ranging from
2.73–9.68 GHz, as illustrated in Figure 3.
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2.3. Optimization and Design Procedure

The generic value of various parameters, including the length and width of the
monopole antenna, along with CPW-feeding parameters as well as the impedance of the
stub, can be estimated by various equations. However, due to the presence of various
materials and connector losses, these values must be optimized to achieve the desired
results. In the literature, various optimization techniques were used. However, due to its
ease of use and lustiness, the CST Genetic Algorithm (GA) is utilized. Figure 5 depicts the
working flow chart of the GA. The detailed description and working methodology of the
GA are fully explained in [31].

The design methodology of the proposed flexible UWB antenna is shown in Figure 6.
The antenna can be summarized as the following three steps:
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Step-1: Initially, a quarter-wave monopole antenna is designed using the equations
provided in the literature. Afterwards, the length, width, and gap between CPW ground
and the radiator are optimized using GA to achieve the maximum possible bandwidth
without affecting the overall size of the antenna.
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Step-2: Later, the etching slot technique is utilized to achieve wideband behavior,
where a simple structure is employed to avoid any structural complexity. Then, the length
and angle of the slot are optimized to achieve wideband behavior. It is important to note
that the length and width of the radiator, as well as the gap between the radiator and CPW
ground, remain constant as of step 1.

Step-3: Finally, a shorted stub is loaded at the top edges of the antenna to improve the
impedance matching of the antenna. The resultant antenna offers UWB behavior while
covering almost 95% of the band spectrum allocated globally for UWB applications. In this
step, the thickness and internal radius of the stub are optimized initially, along with a slight
optimization of the angle and length of the slot.

By following the aforementioned steps 1, 2, and 3, a compact-sized antenna with
incredibly low structural complexity as well as UWB bandwidth can be designed. A
detailed theoretical analysis and mathematical equation validate the proposed work’s
scientific contribution.

3. Performance Parameters of the Antenna
3.1. Reflection Coefficient

In order to substantiate the theoretically proven results, a prototype of the antenna
was fabricated using a standard chemical etching process. A gold-plated SMA connector
having an impedance of 50 Ω is utilized for excitation of the antenna, as depicted in
Figure 7. The reflection coefficient of the proposed UWB antenna is measured using an
E5063A Vector Network Analyzer (VNA) by KEYSIGHT Technologies, with a maximum
frequency range of up to 18 GHz. Figure 7 provides the comparison between theoretical
and measured results; it can be observed that the measured results are in good agreement
with the simulated results. The measured results offer an UWB of 7.05 GHz, which is
140% of the initial central frequency of 5 GHz. The proposed work, as shown in Figure 7,
provides |S11| > −10 dB impedance bandwidth ranges from 2.70–9.75 GHz.
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3.2. Conformal Analysis

In working effectively with the flexible electronics, the antenna should offer a stable
result in both conformal and non-conformal conditions. The antenna is bent in both the
X and Y axes for this purpose, as shown in Figures 8 and 9, respectively. The bending
radius for both simulation and measurements is chosen to be 10 mm. Figure 9 depicts
the comparison between the simulated and measured results of antennas under bending
conditions. It can be observed from Figure 9a that when the antenna is bent along the
X-axis, the return loss of the antenna gets further improved as compared to the antenna
without any bending. Furthermore, the bandwidth remains identical to the rigid case.
On the other hand, when the antenna is bent along the Y-axis, as shown in Figure 9b, a
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slight improvement in bandwidth as well as return loss is observed, similar to the results
observed in non-conformal conditions. Thus, it can be concluded that the antenna offers
almost identical results in both scenarios, which shows the performance stability of the
proposed work. Furthermore, the strong agreement between simulated and measured
results also highlights the performance stability of the antenna in terms of return loss.
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3.3. Far-Field Analysis
3.3.1. Measurement Setup

The fabricated prototype is further utilized to measure the far-field parameters of
the proposed work. In order to this, the antenna was placed inside the anechoic chamber
in front of the reference Horn antenna, which has a broadband of up to 12 GHz. The
measurement setup, along with a close snap of the proposed work, is depicted in Figure 10.
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3.3.2. Radiation Pattern

Figure 11a–c depict the radiation pattern of the proposed antenna at the selected
frequencies of 3.5 GHz, 6.8 GHz, and 9 GHz, respectively. In all the selected frequencies, the
antenna provides an omnidirectional radiation pattern in the h-plane, while in the e-plane,
the antenna provides a monopole-like bidirectional radiation pattern. It can also be seen
that as the frequency increases, the radiation pattern becomes slightly distorted, owing to
the fact that the antenna size grows relatively large. Furthermore, the measured results
offer a strong agreement with the simulated results over all frequencies, as depicted in
Figure 11.

3.3.3. Radiation Pattern under Conformability

The prototype is then used to measure the radiation pattern under bending conditions.
The radiation is measured at the selected frequencies of 3.5 GHz, 6.8 GHz, and 9 GHz while
bending the antenna along the x- and y-axes, as shown in Figure 12. It can be observed
that at all selected frequencies, the antenna offers a nearly identical radiation pattern as
compared to the antenna under normal conditions. A little deviation from the original
pattern is due to conformability in the radiating structure. Moreover, the simulated and
measured results also show strong agreement with each other, stating the performance
stability of the proposed antenna in terms of radiation pattern.

3.3.4. Gain of UWB Antenna

The gain of the proposed antenna is also measured for both conformal and non-
conformal conditions. It can be observed from Figure 13 that the antenna offers a gain of
2.5 dB in operational bandwidth. Moreover, it can also be observed that for conformal
conditions, a slight increase in gain is achieved. It is due to a slight deviation in the
radiation pattern. Furthermore, a strong agreement is observed between the theoretical
and measured values of the gain.
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3.4. Group Delay

The time-domain analyses are another crucial factor while designing the UWB antenna,
as they are useful to understand the propagation through the antenna. The group delay of
any UWB can be calculated by using change in phase with respect to change in frequency
and can be estimated by using the following relation provided in [32].

Group Delay = –
1

2π

dθ

d f
(6)
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In order to work efficiently, the UWB antenna should possess a constant group delay,
ideally. However, due to the presence of various losses in the materials used for designing
the antenna, a little deviation is acceptable. The proposed antenna offers a group delay
range of 0.4–0.6 nS with an average value of 0.5 nS over the entire bandwidth, as shown in
Figure 14.
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3.5. Comparison with State-of-the-Art

Table 1 presents the comparison of the proposed antenna with the state-of-the-art. It
can be observed from Table 1 that the antenna reported in [13–22] offers a bigger size as
compared to the proposed work, while the antenna reported in [13–19] also offers structural
complexity. Moreover, the antenna reported in [14–19,22] exhibits low gain as compared to
the presented work. Therefore, it can be concluded that the proposed work over-performs
the related work by offering a good combination of compact size, wideband, moderate
gain, low structural complexity, and strong comparisons among simulated and measured
results in both rigid and bending conditions.
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Table 1. Comparison with State-of-the-Art.

Ref. no. Size
(mm3) Bandwidth (GHz) Gain (dB) Structural

Complexity Flexibility

[13] 59.8 × 59.8 × 3.4 2–3 >2.5 High No
[14] 39 × 39 × 1.6 2–13 >0.5 High No
[15] 80 × 67 × 3.4 3.68–10.1 >0.9 High Yes
[16] 28.1 × 17.1 × 1.4 5–14 >2 Moderate No
[17] 40 × 22 × 0.1 2.5–11 >2 Moderate Yes
[18] 33 × 22 × 0.125 4–10 >1 High Yes
[19] 38 × 22 × 0.1 4–11 >0.3 Moderate Yes
[20] 33.1 × 32.7 × 0.254 4–15 >2.5 Low Yes
[21] 34 × 32.6 × 0.05 2–10 >2.8 Low Yes
[22] 48 × 34.9 × 0.05 2–8 >−2.1 Low Yes

Proposed Work 20 × 15 × 0.254 2.73–9.68 >2.5 Low Yes

4. Conclusions

This article presents the design of a compact-sized UWB antenna extracted from
a conventional rectangular monopole by etching a pair of slots and a loading stub. The
antenna is designed using ROGERS 5880, a flexible material with an extremely low dielectric
loss of 0.0009, a thickness of 0.254 mm, and a dielectric constant of 2.2. Additionally, by
means of two triangular slots along with a semi-circular-shaped short-ended stub, a narrow
band antenna is converted to a UWB antenna without increasing the structural complexity.
The antenna covers the band spectrum ranging from 2.73–9.68 GHz, has a minimum gain
of >2.5 dBi, and has an omni-directional radiation pattern. Furthermore, when the antenna
is bent along the x and y axes, its performance remains identical to that of the unbent
antenna. Along with that, the strong comparison between simulated and measured results
for both conformal and non-conformal scenarios shows the performance stability of the
proposed UWB antenna. Moreover, the comparison with the state of the art shows that the
presented work outperforms the related work. Thus, owing to the advantage of the CPW-
feeding technique providing ease of integration with other electronics circuits and its size,
compactness, wideband, and stable performance for both non-conforming and conforming
scenarios, the proposed work is a strong potential candidate for wireless networks and
small flexible as well as rigid devices requiring UWB antenna.
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