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Abstract: An intelligent transportation system (ITS) aims to improve traffic efficiency by integrating
innovative sensing, control, and communications technologies. The industrial Internet of things (IIoT)
and Industrial Revolution 4.0 recently merged to design the industrial Internet of things–intelligent
transportation system (IIoT-ITS). IIoT sensing technologies play a significant role in acquiring raw
data. The application continuously performs the complex task of managing traffic flows effectively
based on several parameters, including the number of vehicles in the system, their location, and
time. Traffic density estimation (TDE) is another important derived parameter desirable to keep
track of the dynamic state of traffic volume. The expanding number of vehicles based on wireless
connectivity provides new potential to predict traffic density more accurately and in real time as
previously used methodologies. We explore the topic of assessing traffic density by using only a few
simple metrics, such as the number of surrounding vehicles and disseminating beacons to roadside
units and vice versa. This research paper investigates TDE techniques and presents a novel Markov
model-based TDE technique for ITS. Finally, an OMNET++-based approach with an implementation
of a significant modification of a traffic model combined with mathematical modeling of the Markov
model is presented. It is intended for the study of real-world traffic traces, the identification of model
parameters, and the development of simulated traffic.

Keywords: industrial Internet of things; fourth industrial revolution; intelligent transportation
system; traffic density estimation; traffic efficiency; Markov model; connected vehicle; vehicle to
everything; dedicated short-range communication; long-term evaluation

1. Introduction

Transportation plays a vital role in the daily lives of people. According to a predic-
tion [1], by 2030 the amount of traffic in the world is going to increase by 60%. Significant
research has been done in the area of intelligent transportation systems in recent years.
By deploying advanced data communication technologies, ITS integrates information,
communications, and other technologies and applies them in the field of transportation to
develop an integrated system of people, roads, and vehicles. It is capable of establishing
a huge, fully operational, real-time, accurate, and efficient transportation management
system. Traffic flow, traffic density estimates, and traffic volume are the three main data
investigation components in ITS. An intelligent transportation system needs real-time
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information, such as journey time, traffic density, and other factors, in order to make ef-
fective control decisions and provide reliable information to users. Figure 1 illustrates the
three primary input data that ITS needs: traffic volume, traffic flow, and traffic density.
Although the intelligent transportation technologies for various communication systems
vary, all of them enable information to be sent based on the vehicle’s data in terms of
various data-gathering aspects from the various sources, i.e., traffic flow, traffic volume,
and traffic density methods, as shown in Figure 1. When people must spend a lot of time
on the road due to traffic congestion, everyone’s lives are impacted. Researchers have been
working on categorizing and evaluating traffic circumstances to find solutions to these
traffic problems. Traditional traffic-management techniques, such as controlling traffic with
wireless sensors, vehicle speed guns, roadside radars, and infrared counters, are ineffective
at controlling congestion. The traffic density estimate, in contrast to traditional traffic
systems, offers useful information in ITS, such as traffic control, traffic condition, and early
prediction, to ease the problem of traffic congestion. Researchers proposed a framework
based on these constraints, i.e., vehicles, people, and their external environments connected
with associated sensors [2]. There are various simulation tools available for the processing
and analysis of these attributes. Modern simulation tools were recommended by research
work along with their features. The safety parameters of various commercially available
simulation frameworks were discussed by the authors and are also covered in Table 1
of this paper. The authors concluded that a safety microsimulation model is required in
heterogeneous traffic circumstances, especially in developing nations after discussing the
tools’ advantages and disadvantages [3]. In intelligent transportation systems for traffic
management and control, traffic density estimation is used as a form of automated mea-
surement. ITS employs those metrics for the route planning, smart road transportation,
proactive traffic regulation, street traffic control, network traffic synchronization, routing,
and distribution. For the generation of early warning and autonomous signaling systems,
precise measurements of traffic density are required. Intelligent transportation systems use
three major classifications: microscopic, mesoscopic, and macroscopic. All these categories
are further connected by two continuous and discrete approaches. Mesoscopic models
combine both macroscopic and microscopic aspects, i.e., macroscopic and microscopic
models. Data for these models are collected via one of three methods, as shown in the
Figure 1.

Intelligent 
Transportation 

System

Traffic Volume

Traffic Density

Traffic Flow

Figure 1. Data-collection aspects of intelligent transportation system.
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Table 1. Assessment of Simulation tools of TDE.

Type Reference Tools Features Language Communication

Microscopic

[4] AIMSUN Precise signs, complicated traffic, signage, 3D
animation, and telematics

C++ V2I & V2V

[5] PARAMICS Route processes, Three-dimensional animation,
junctions, and overloaded networks

C V2I & V2V

[6] VISSIM Three-dimensional animation, slope, transporta-
tion processes.

C V2I & V2V

[7] MITSIM Lab ATIS and ATMS. C++ V2I & V2V
[8] CORSIM Actuated signals, weaving sections, variable mes-

sage signs, 2D animation, highways
C++ V2I & V2V

Macroscopic

[9] SATURN Individual junctions, for highway models C V2I & V2V
[10] KRONOS Development of lines and congestion dissemina-

tion on and off the path.
C V2V

[11] TRANSYT Phase split, and cycle length of the traffic signals C++ V2X
[12] KWaves Throughput, bottlenecks, queues, ramp meter-

ing, incident management
C++ V2I

Mesoscopic

[13] CORFLO Surface streets, freeways, freeway corridor C V2I & V2V
[14] Micmac Predicts the flow density, speed is used C++ V2X
[15] Hystra Based on traffic flow theory V2I
[16] Integration Ground roads, highways, road allocations, smart

transport.
C++ V2I & V2X

[17] DynaMIT Dynamic network state estimation, a number of
ET scenarios

C++ V2I & V2X

1.1. Traffic Flow

Traffic flow is the intersection between roadside units, travelers, and vehicles. This
information will impact the intelligent transportation system. Road networks become
intelligent when they can predict traffic flow over time, and this resonates with how we
live our daily lives. This information attracts researchers from a wide range of domains,
including science, statistics, engineering, and machine learning.

1.2. Traffic Density

Due to its inclusion in microscopic models, traffic density is a measurement that is
frequently utilized in ITS. To improve the effectiveness of intelligent transportation systems,
the computation of traffic density is a crucial component of predictions used for warnings
of systems, roadside networks, and people. The capacity of the driver to choose routes is
enhanced by this knowledge. Consequently, a variety of strategies are employed in TDE,
as shown in Table 2. By using these methods, we evaluated the aforementioned dimension
as shown in Figure 2. The procedures used in those methods were also described in Table 3,
along with connected urban and highway scenarios, data-collection strategies, and the
algorithms they had implemented for vehicles, which are more concentrated in urban areas
with a higher population density than in highway areas with a dense population.

Table 2. Traffic density estimation techniques.

Reference Year Publisher Calibration of TDE Methods Major Parameters for Calibration

[2] 2020 IEEE Kernel density estimation and
hotspot analysis

Vehicle sensors

[3] 2017 ELSEVIER Comparison on simulation ap-
proach

Road location
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Table 2. Cont.

Reference Year Publisher Calibration of TDE Methods Major Parameters for Calibration

[18] 2019 IEEE Asymmetric cell transmission
model

Loop detector

[19] 2019 IEEE Kalman filtering technique GPS & LiDAR
[20] 2019 IEEE CNN model-based image

recognition
Camera & speed measurement

[21] 2019 IEEE Artificial neural network Region of interest (ROI) & traffic video
[22] 2019 ELSEVIER Mathematical model Real traffic video
[23] 2019 MDPI Mesoscopic traffic model Inflow and outflow of Cell Transmis-

sion Model
[24] 2019 ELSEVIER Hybrid observer (HO)-based

exponentially weighted mov-
ing average-generalize likeli-
hood ratio (EWMA-GLR)

exponentially weighted moving aver-
age (EWMA) scheme

[25] 2019 ELSEVIER Single-shot detection (SSD)
and mobile net-SSD

Number of images

[26] 2019 IEEE Jour-
nal

Single-state noncontinuum
macroscopic model with
Kalman filtering

EWMA scheme

[27] 2019 ELSEVIER Interacting multiple model
(IMM) filtering approach with
a cell transmission model

GPS and in vehicle sensors

[28] 2019 IEEE Jour-
nal

Convex optimization tech-
nique

Traffic sensors

[29] 2018 IEEE jour-
nal

Real-time android application Real-time live video

[30] 2015 IEEE jour-
nal

Onboard camera with linear
parabolic lane mode

Onboard vehicular camera

[31] 2013 ELSEVIER Macroscopic approach K nearest neighbor (KNN)
[32] 2017 Turkish

Journal
Kernel density estimation
(KDE)

Speed center and the variance

[33] 2016 IEEE jour-
nal

Block based holistic approach Vehicle in blocks, blocks of interest

[34] 2016 IEEE jour-
nal

Visible infrared imaging au-
diometer suite (VIIRS) sensor

Vessel detection

[35] 2016 ELSEVIER Contiguous feature vector
frames

Omnidirectional microphone

On Ground In Ground 

Magnetic Loop
Director 

Vibration
Sensor 

Infrared
Sensor 

Ultra Sonic
Sensor 

TDE Techniques 

Laser Sensor Magnetic
Sensor 

Mathematical
Methods 

Surveillance
Camera Video Camera 

Statistical
Methods 

Regression
Analysis 
Kalman
Filtering

Techniques 

Machine
Learning,

KNN & ANN
Techniques 

Figure 2. Taxonomy of Traffic density estimation techniques.
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Table 3. Assessment of TDE methods.

Reference Method Scenario Procedure Algorithm Approach

[24] Sensor’s data Highway Live
time

GLR Static

[25] Vehicle length for heterogeneity Urban VISSIM Kalman
Filter

Dynamic

[26] Convex optimization Highway SDPNAL+ Lipschitz Dynamic
[27] Vehicle flow Urban Live

time
ROI Static

[28] Vehicles data Urban Live
time

Kernel
density

Static

[29] Vehicle counting Urban Live
time

Block vari-
ance

Static

[30] Images Urban Live
time

eSNN Dynamic

[31] Images Urban Live
time

CNN Dynamic

[32] Speed measurements Highway Aimsun Kalman fil-
ter

Dynamic

[33] Link count data Urban Live
time

DBN Dynamic

[34] Measurements from a vehicle Highway Live
time

Point of ob-
servations

Dynamic

[35] Counting the vehicle number Simulation Live
time

PON Static

[36] Vehicle trajectory data Urban VISSIM Bayesian
network

Static

[37] Vehicle trajectories Urban Live
time

Kalman–Bucy Static

[26] Loop detectors Urban Live
video

Image pro-
cessing

Dynamic

[38] Images Urban Live
time

KNN+ANN Dynamic

[25] Vehicles count Highway Live
time

Single-
shot
Detection

Dynamic

[39] Vehicles count Highway Live
time

Smartphone
GPS track-
ing

Dynamic

[40] Infrared sensors Urban Live
time

KNN Dynamic

[41] MATLAB Highway Live
time

HMBLBP Dynamic

[4] Connected vehicle technology (CVT) statis-
tics with (AI)

Urban Live
time

SPUI and
TUDI

Dynamic

Figure 3 illustrates how these methods for estimating traffic density are based on three
different proportions: conventional methods, mathematical models, and machine learning
models. It shows how various TDE methods are distributed. The TDE approaches, which
were based on the method used to estimate traffic density, are further explained in the
Figure 3. However, these methods were created to estimate traffic density for a number of
purposes and applications. Applications that employ density estimation techniques fall
into three categories: conventional, mathematical, and machine learning methods.
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Conventional 
methods

Mathematical model 
(Theoritical)

ML Techniques 
(Implemented)

 

Hybrid Infrastructure 

Infrastructure free Infrastructure based 

Figure 3. Distribution of TDE Techniques.

1.3. Traffic Volume

Traffic volume is a way by which the volume of traffic or number of cars traveling on a
road section at a specific period of time can be found. There are numerous volumes studied
in traffic engineering, including daily volume, hourly volume, and peak hour volume.
Additionally, the volume of a day or hour might change significantly based on the day of
the week or the hour of the day.

1.4. Research Questions

The following is how the research questions for the studies are put together.

1. What are the dimensions used for identifying traffic density estimations?
2. What evaluation tools are available for analyzing suggested methods?
3. How do TDE algorithms analyze various traffic behaviors to process the road network?
4. How to choose a suitable approach to investigate an efficient traffic analysis technique?

There are several ways by which to estimate traffic; however the techniques employed
nowadays are more useful and frequently involve ML-recognized algorithms, which are
typically used for real-time estimations. The Background section of Tables 1–3 includes a
full explanation of the answers to the aforementioned questions.

We present the concept of a Markov approach for estimating traffic density in the road
model and mathematical explanation, which illustrates the behavior of a single vehicle
and depicts the traffic on the entire road network. We use the microscopic traffic simulator
SUMO to build a traffic network with stochastic traffic demand and real values for traffic
density in order to assess the effectiveness of the Markov traffic model. The SUMO-
generated traffic demand is provided to the Markov traffic model, and the link state will
change to the mode with the highest transition probability on each iteration. Because traffic
conditions might fluctuate from day to day, it is highly convenient to estimate future traffic
conditions based on initial traffic conditions. Due to the simplicity of this model, once it
has been expanded, the public can use it to investigate traffic estimation on their local road
network. The counts of each type of vehicle accessing a road segment are also shown as
nodes 0, 1, 2, 3, and 4. The study’s main goal was to create an effective traffic analysis
model that could be used to simulate traffic in a system of roads. To depict the traffic
system, mathematical traffic flow models are also typically utilized. They are mathematical
descriptions of the complicated traffic systems used to characterize and predict traffic
behavior in the future. This research aims to develop a Markov-based mathematical
method for estimating density in mixed traffic conditions.

1.5. Motivation and Contribution

Vehicles increased traffic in cities enormously. These produce traffic bottlenecks, which
cause air pollution, personal health issues, lost productive labor time, and economic losses.
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Because of this, and considering the inconvenience that traffic causes, managing traffic
with intelligent systems and technology is necessary. As traffic density on a route is an
excellent indicator, quick and reliable real-time estimation of traffic density is critical for
traffic control. This research is being carried out by employing intelligent technologies
to estimate traffic density. By utilizing the current traffic state as well as mathematical
modeling based on the Markov process to predict the future traffic state while taking into
consideration a predetermined road structure with a minimum of 0–4 vehicles and a length
of 1 km that is connected to a distinctive roadside unit. In contrast to statistical analysis,
these systems use artificial intelligence to determine traffic density. These are equipped
with traffic data and used to estimate the traffic in real time. In this research, different types
of conventional methods are compared, and a novel framework is proposed to examine the
usefulness, appropriateness, and robustness of the proposed framework, which is analyzed
through simulations.

The structure of this essay is as follows: The backdrop of the research findings is
presented in Section 2. In Section 3, a model for estimating traffic densities by using
mathematical modeling was proposed. In Section 4, model simulations are carried out. We
established a vehicle tracking in Section 5, and the results of such tracking are shown in
Section 6. Section 7 presents the findings and related discussion. Future research directions
are presented in Section 8 as the paper’s conclusion.

2. Related Work

Numerous academics have made good progress in the past in increasing traffic control
and analysis observations for traffic density analysis. For estimating traffic density, magnet
loop detectors, and monitoring cameras are used. These traditional methods include wire-
less sensors, speed cannons for vehicles, roadside radars, and infrared counters. Magnetic
loop detectors require a lot of hardwiring technology-based physical work. In addition, its
setup and maintenance are highly expensive. Therefore, these technologies are inappropri-
ate for use in large-scale and real-time applications. There are several approaches that can
be employed to use the data gathered by cameras or sensors. Vision-based traffic monitor-
ing mechanisms choose the images and videos to collate data. Studies of data extraction
focused on traffic state estimation and modelling make use of stationary sources. To in-
crease the functionality of traffic density estimation systems, many studies are discussed.
For estimating traffic densities, three basic categories are typically utilized. By detecting
each vehicle, such as a bus, bicycle, car, and truck, the authors of [18] proposed these
approaches based on loop detectors and sensors for building the sensor’s structure. In [19],
the authors presented a detection system based on a radar probe with the integration of
proposed algorithms. Studies in [20–22] described a method for traffic density estimation
that focuses on traffic surveillance cameras and gathered real-world information in the form
of photographs. This approach improves traffic density prediction methods because they
can track vehicle classification and identification with greater specificity. For calculating
the traffic density by a fixed traffic detector, further methods are also used [23]. Because
there are primarily two major kinds of traffic density, as shown in Figure 2, several on-
the-ground procedures are also employed. The literature review revealed that different
sensors, approaches, procedures, and input data are used by researchers for various ITS
applications. Sensor technologies play a significant role in the data-collection process that
takes place during vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communica-
tion. The sensors provide traffic-related data such as speed, volume, density, individual
vehicle classification, and much more. Typically, sensors are placed adjacent to or above
the route of interest, and in certain instances, a single sensor can be utilized for many lanes.
Installation and upkeep of these sensors are simplified. Off-road sensors are mobile sensors
that can be utilized on GPS-equipped vehicles. Installations of cameras and various sensors
along the roadway can detect the presence of automobiles, and a global positioning system
(GPS) can monitor the vehicle throughout its trip. Moreover, vehicle detection is based on
image and video processing by employing both static and dynamic cameras. Traditional
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traffic monitoring techniques include invasive sensors such as inductive loops, pneumatic
tubes, and piezoelectric sensors. However, these devices are expensive and difficult to
maintain, as road surfaces should be removed in order to place them, and installation
disrupts traffic. Based on the viability of implementations and regions, sensors are selected.
Each sensor, as indicated in Figure 2, operates in a distinct manner and corresponds to a
different detecting method, as shown in Figure 2.

These magnetic loop detectors allow the detection of vehicles in heterogeneous, less-
lane traffic. In [19], the authors proposed a loop sensor detector system for all-size vehicles.
Their proposed solution utilizes available track capacity to meet the requirements for
sensing heterogeneous and near-linear traffic circulation. Road vibration sensors are used
to accurately calculate parameters like speed, direction, and vehicle type with particular
relevance due to their energy potential through piezoelectric films. In [26], the authors
work on piezoelectric acceleration sensors to evaluate the amplitudes and frequency ranges,
in which vibrations occur according to established measurement principles in microelec-
tromechanical system (MEMS) accelerometers. A substantial amount of information about
traffic situations is collected from magnetic sensors. Many studies have explored the use of
magnetic sensors and other types of traffic information for vehicle counting [27]. Magnetic
sensors’ characteristics include low cost, energy efficiency, small size, wireless connectivity,
and meteorological independence. The traffic density estimations are also obtainable, in
addition to the on-ground techniques. On-ground methods are used mainly, as they are
the future of urban traffic estimation. Vehicle data is often compiled by using high-pole
cameras. Sensors are essential for measuring the route’s traffic density. For gathering
traffic information, various types of sensors are used by the authors in [28]. Multiple
sensors capture the energy generated by vehicles and the road surface and transform it
into electrical impulses by using infrared radiation. For traffic prediction and differen-
tiation of traffic congestion levels, the authors employed the 14 on-road sensors named
(D1–D14) at multiple spots. In [29], the authors discussed the use of surveillance cameras
for traffic data collection, which uses more advanced sensors, such as surveillance cameras.
For deriving the traffic information from video sources, these devices use computer vision
techniques. The number of vehicles is simultaneously detected and counted. Traffic density
is measured by tracking and displaying the number of vehicular nodes in the road camera
image at almost the same time. Many cities have low-cost closed-circuit television (CCTV)
surveillance systems (CCTV). To date, only a few studies have attempted to automate the
processing of surveillance video data for traffic analysis. They are rapidly expanding and
usually include a range of cameras with varying resolutions and mounting points. In [35],
the authors proposed a method for estimating traffic flow for counting and categorizing
vehicles based on their moving directions. They divide the problem into three subtasks to
achieve this goal: vehicle identification, vehicle tracking, and vehicle path estimation. In
the related work mentioned above, the authors discussed and implemented traffic density
with different perspectives. The authors employed a conventional method for estimating
the traffic density by using underground loop detectors [18,26]. The new techniques for esti-
mation of traffic density were found in the literature by using the deep learning method [5].
These techniques are used to estimate traffic density and weather conditions to forecast
traffic conditions. Surveillance cameras were used successfully in 2009 to estimate traffic
density in Istanbul, Turkey [22]. Several other methods for estimation include the Highway
Capital Manual (HCM), Kalman filtering, variance blocks, and kernel density [2,19,26,32].
However, those are not implemented due to the basis of statistical theories.

• There are shortcomings in the sensor-based estimation methods because of the sensor’s
range limits. By increasing the range of these sensors, some of these shortcomings are
removed on a small scale [2].

• Another method used for traffic estimation is based on vehicle trajectory detection [37].
However, this method has limitations due to vehicle background obstacles, such as traffic
signals, buildings, shadows, etc. These limitations are reduced by implementing the light
detection and ranging (LIDAR), radar, ultrasonic, and infrared (IR) sensors [26].
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• Image- and video-based detection methods are also used for detecting vehicles to
achieve traffic density estimation. However, there are also limitations in the form of
blur images and noises in the background. Many authors proposed using methods
like receiver operating characteristic (ROC) analysis to overcome these limitations [42].
Researchers have been working on traffic density features and have differentiated
three main categories: connected autonomous vehicles (CAV), human vehicles (HV),
and a combination of both, i.e., hybrid vehicles. These categories are available for the
enhancement of traffic density indicators in ITS.

The Kalman filtering (KF) and kernel density estimation methodology is likely the most
extensively used technique for traffic density estimation. The authors of [2,3,18,20,26–28,32]
have worked on this technique by using the typical data-collection techniques of loop
detectors, LIDAR, and vehicle sensors. Magnetic loop detectors and other hardwire-specific
technologies need a considerable amount of physical effort. Additionally, it is exceedingly
expensive to install and maintain. This is why this type of technology cannot be utilized on
a wide scale or in real time. Computer vision and AI approaches are the future of traffic
monitoring in urban areas. The authors of [20,21,23,25] estimated traffic by using computer
vision algorithms. In [27–35], the authors counted automobiles by using traffic cameras
and live video feeds.

The estimation of traffic parameters for a number of different methodological ap-
proaches is applied for the calculation of traffic density. In addition, research was con-
ducted into the urban and highway-based estimating systems, as well as the relevant design
strategies for TDE. The authors of [25–31] worked on urban scenarios, whereas the authors
of [24,25,32,34,39,41] presented estimations based on the highway scenario. In reference,
Live data was utilized by the authors in the sources in order to carry out the distributed
state observers of TDE.

Traffic models are microsimulation models that are based on the representation of the
behavior of each driver regarding many features’ car following, gap acceptance, and lane
choice rules.

Tables 1–3 show the different available approaches focusing on traffic density esti-
mation methods and achieving related sustainability characteristics for transportation
sys-tems. These include methodologies that address V2V, V2I, and vehicle-to-everything
(V2X) communication in urban and highway areas.

Traffic density is somewhat correlated with neural network techniques, and artificial
neural networks (ANNs) are a subset of artificial intelligence that may address complex
problems in dynamic environments by providing clear and concise recommendations.
In recent years, artificial intelligence (AI) has gained prominence as a viable solution to
resource-constrained sensor networks’ complexity, scalability, and decision accuracy con-
straints. AI has been applied in a variety of applications, including MIMO networks, time
series prediction, image processing, and WSNs. Authors of [43] proposed an AI-based
(MIMO) strategy with adaptive neural network transportation systems, as well as en-
ergy saving in ITS systems for vehicle and infrastructure management. Relative work is
also done by the authors of paper [44], who presented a neural network-based AI-based
energy-efficient routing protocol for an intelligent transportation system, and they tried to
overcome the problems of an intelligent transportation system by adding quick communica-
tion between clusters and by combining DAI with self-organizing maps (SOM). This study
provides new methods for improving energy efficiency. It also reduces the overall network’s
energy consumption and computational burden. To increase the network’s lifespan, their
proposed strategy prioritizes nodes with remaining energy above a predetermined thresh-
old value. Considering that security is the primary concern in vehicles’ communication,
some effort has been done to improve vehicle security, such as proposing a lightweight,
blockchain-based safe architecture for IoVs that offers strong authentication and communi-
cation security [45]. To address the problems of cross-trusted authority authentication in
the Internet of vehicles (IoV), the authors of [46] proposed an authentication framework
using blockchain technology. Their analysis is employed to reduce the execution times and
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improves in understanding the impact of feature selection [47]. In intelligent transportation
systems, the conventional cooperative ITS(C-ITS), is another term, and as compared to V2X
it employs the same messaging protocols, but they use a separate radio communications
technology, and the real-world application is the same for both standards for V2X and
C-ITS. V2x employs the DSRC, while C-ITS employs a separate communication system.
While merging the two, C-V2X is still in the final stages of testing. V2X is sensor-based,
whereas DSRC and C-V2X are rooted in separate technology, resulting in fundamentally
different operational techniques. DSRC is a wifi-derived protocol that is optimized for
affordability and simplicity, and it allows dispersed operation by default. C-V2X, which
evolved from LTE. In this research, we have used DSRC-based communication.

3. Proposed Model

The development of the IIoT and the use of ITS necessitate a series of procedures for
architectural communication. This model depicts the V2X architecture in its entirety. Each
vehicle has an onboard unit (OBU) equipped with wireless communication capabilities.
The OBU, in particular, provides the interfaces required to estimate vehicle density by
using data obtained via node to infrastructure communications. Infrastructure equipment,
such as RSUs, is necessary to implement the V2I component of our system. Vehicles will
benefit from RSUs in particular by receiving updated services. Additionally, the location of
RSUs enables the cars to communicate with one another. A block diagram of the proposed
model is shown in Figure 4. In this schematic block diagram, we have two communication
modes i.e., V2I and V2V. That is the reason we have two blocks of vehicle in the diagram.
Figure 4 depicts the vehicles’ behavior by using a flowchart. The data collected from the
actuators and sensors is sent to the vehicle, and the vehicle transfers this information to
the RSU for further processing and to other cars within the range. Through V2I and V2V
communication, vehicles will transmit and receive messages or beacons with the same
event ID from the roadside unit and neighboring vehicles.

Actuator Mobile Phone Probe

Control Unit

Sensors

RSU

Vehicle

Vehicle

Figure 4. Schematic block diagram of proposed model.

Figure 5 shows the proposed ITS system’s components: transportation management
centers (i.e., control units (CU), field equipment (e.g., radio towers, wifi connectivity,
and mobile equipment connected to vehicle movement), vehicles equipped with ITS equip-



Sensors 2023, 23, 768 11 of 24

ment (e.g., buses, commuter trains, and cars all represent logistics in industrial 4.0), and trav-
eler equipment (e.g., mobile devices) that meets the stakeholder needs. The phones transmit
their location data to the mobile phone network regularly. As the car moves, the mobile
phone signal acts as a probe. The probe data is provided by the onboard mobile unit,
which is connected to the sensors and actuators. Roadside units (RSU) collect data from
each vehicle, including traffic congestion and the vehicle’s location. This information
will be sent by the RSU to the control unit, which calculates the estimation. A RSU is a
transceiver for dedicated short-range communications (DSRC) positioned across a road.
This model enables V2V and V2I communication, as well as the collection and exchange
of data between vehicles and roadside infrastructure. Vehicles, on the other hand, can be
aware of the number of vehicles in their vicinity, because although RSUs can supplement
their information on traffic distribution with density information given by vehicles.

 
RSU

 
RSU

 
RSU

CU

Device Device

OBU

OBU

OBU

OBU

Device

Device

Interconnectivity of IoT 
 devices with vehicles

Actuator

Sensor

Interconnectivity of IoT 
 devices with vehicles
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Actuator

Figure 5. Proposed model with V2I communication.

Markov-Based Mathematical Modeling

Markov is a mathematical model for understanding the process of creating evaluation
state sequences at random. Currently, Markov acts as a very robust and heuristic for match-
ing state sequences that are consistent with the randomness, uncertainty, and complexity
of actual transportation systems. This is owing to the increasing expansion of big data
and machine learning. The Markov is an illustration of a discrete-time stochastic process.
In such processes, the probability of every future event depends only on the current state
and is independent of the states that came before. Markov chains are used in a wide range
of scenarios because they can be built to model various real-world processes. For their
useful properties such as states, i.e., state transitions. It consists of a set of states and
the conditional probabilities of their transitions from one state to another state. Markov
provides a long-run probability for traffic estimation. In a Markov model, the system’s
future behavior is based only on the present. Therefore, it is highly appropriate for us to
predict the traffic condition with Markov. Many authors worked on Markov for the future
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prediction as [1,47–50]. This is due to the fact that the Markov model predicts that the
conditional probability does not change over the passage of time. This model is the only
stationary vehicle distribution on the road network. The model’s significance is that it can
estimate the probability of a state being in a given traffic congestion state depends only on
the current state. The model provided successfully calculates the probabilities of a specific
road section being in a given state of traffic congestion for traffic density. As benchmarks,
some stochastic process models have been proposed. The authors of paper [48] suggested
an analytical method for estimating traffic delays at unsignalized intersections with Markov
process. Coupled HMMs were deployed by the authors of [1] to simulate freeway traffic
and estimate the traffic speed.

A hidden Markov model based method also used to address the density estimation on
a multilane road segment in [49,50]. In another study, the authors overcome the limitations
of adaptive K-means clustering and use the pattern by using regression models. In this
study, the Markov model was employed to identify traffic patterns to predict the conges-
tion [51,52]. We proposed the Markov approach because it does not require a lot of data,
and it can predict the future state by using only the data from the current state. Whenever
one event’s occurrence has no effect on the probability of the other event occurring, two
events are said to be independent. This model’s aim is to predict when and where there
will be heavy traffic in a traffic network. The model’s reliance is on specific traffic segments
rather than specific vehicles or traffic flow. Suppose that the probability of the transition for
the state i to the state j is the transition probability from the state i at the time n to state j at
the time n + 1 for every pair of states i and j is represented as. Xi is the observed variable
for present and future states and describes the system’s dynamic behavior.

Pn, i, j = Pr( X( n + 1) = j|X( n) = 1) (1)

Here, the Markov states with respect to time can be stated as follows:

X( t1) → X( t2) → X( t3) → X( t4) (2)

Equation (2) represents the current and future states. The movement of time t1 to
time t2, is only dependent on the last previous state, i.e., only the current connected state.
Therefore, the state equation for traffic density for projected vs. actual traffic conditions
also provides the real time information, as shown in Equation (3).

TD( i, j) = X( t) + X( t + 1) X( t + 2) (3)

We designed a scenario that calculates the traffic density with its location and mo-
bility as well as traffic flow. Due to the mobility path loss model that is also used in it,
in Equation (4), a communication link is defined for one vehicle. We have

TD( pl) =

{
1, pl ≤ p0
0, pl ≥ p0

(4)

where TD(pl) represents the probability of connection between the cars, and pl is the
path loss from the measured data. Path loss can be calculated based on the distance
between the vehicle and the roadside unit, p0 is a benchmark for path loss. If pl is less
than p0, connections are established successfully; otherwise, connections are unsuccessful.
The relationship between TDavg and traffic flow TD f is shown in Equation (5) for 1km of
road length. We have

TDavg(1 km) = TD f

(
1− TDmin

TDmax

)
(5)

where TDavg is the average speed of traffic, TD f is the flow of traffic, and TDmax is threshold
density, which is assuming 25 vehicles per km. To develop the Markov-based traffic density
equation, we assumed that the flow (volume) of traffic on the road is 25 vehicles per unit
time. This assumption enabled the development of the model to calculate traffic density in
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terms of the Markov approach. The minimal value, or TDmin, is the least possible value.
The density of estimation TDavg is subject to Bernoulli distribution as shown in Equation (6):

TDavg = 1− P
(

TD f

(
1− TDmin

TDmax

) )
. (6)

The mutual exclusion of a few vehicle types is also done in this modeling; we have
excluded bikes from the traffic density calculation from the range of 1 km as shown in the
Equation (7):

TDb
avg = P

(
bikb|TDb

avg

)
=

( 1− TDmin) − bikb
1− TDmax

(7)

TDb
avg is the mutually exclusive event of the bike, and is the probability of the bike

over TDb
avg’.

The probability of TD with discrete time Markov chain with interval indexes is t =
0, 1, 2, 3, n. Consequently, the Markov property is shown in Equation (8):

P( TD( tn) ) = xn|X( tn−1) = Xn−1 (8)

The multistep transition probability of the Markov chain model is shown in Equation (9):∫
P( Xn+2|Xn+1) )P( Xn+1|Xn) )dXn+1 (9)

According to the Markov chain property for the finite state is shown in Equation (10):

π = πp (10)

Finally, calculating the traffic density using a Markov chain model can be calculated
by using Equation (11).

TDavg = TD f × π (11)

Equations (1)–(3) and (8)–(10) are the general description of Markov property and
Equations (4)–(7) are derived for traffic density.

4. Model Simulation

OMNET (Available at https://omnetpp.org, accessed on 30 October 2022) is used in a
V2I environment in conjunction with the simulation of urban mobility (SUMO), available at
https://www.eclipse.org/sumo, accessed on 30 October 2022) to establish communication.
The map is selected initially, and is followed by the number of vehicles as well as the route.
The network is imported from the OpenStreetMap (OSM) database. This map covers an
approximate area. This dataset is exported to SUMO and then imported into Omnet++
to the Cologne map. The display and storage of map data is supported by a simple and
powerful idea. We used the road traffic simulator SUMO to generate vehicular traces,
and then we examine the connectedness of the vehicular network. The network is then
populated with random traffic. We assume the conception of a “node”, by considering any
vehicle as the general vehicle in which communication passes from RSU to node, node to
RSU, and from one node to another node. However, associating vehicle detection with a
sequence of consecutive frames is achievable. Vehicles start moving immediately and can
stop by any traffic light triggered at a particular position from where the RSU transmits a
message to vehicles regarding the traffic jam.

According to the proposed model in Section 3, various IoT devices are interconnected
with each other in a simulation environment, as shown in Figure 6a–c, vehicles communi-
cate messages to other vehicles shown in Figure 6b, as well as to RSU Figure 6c. The RSU
can send a message to all vehicles in his zone as shown in Figure 6a. Based on RSU analysis,
Signals are transferred to the control unit for data transmission. The control unit receives
information from different RSUs and sends it to other RSUs in its region, e.g., RSU to node,

https://omnetpp.org
https://www.eclipse.org/sumo
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node to node, node to RSU, and RSU to CU as mentioned in Figure 6a–c. These Figure 6a–c
are based on the vehicle’s ability to interact with the infrastructure and conversely. Com-
munication takes place between vehicles dependent on whether they are within or beyond
the coverage area of which roadside equipment. RSUs based on LTE are considered fixed
units, whereas cars are considered dynamic modules. In these figures, each vehicle can
communicate with RSU throughout its given traveling time.

 

(a)
 

(b)

 

(c)

Figure 6. Communication modes. (a) Communication from RSU to node. (b) Communication from
node to node. (c) Communication from node to RSU.
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Figure 7 shows the imported map interface with SUMO for vehicles’ routes. A map
can be generated to create an environment simulating road traffic in a real-world route by
using the OpenStreetMap (OSM) (available at https://www.openstreetmap.org, accessed
on 30 October 2022) is a collaborative initiative that allows anyone to contribute to the
creation of a free map of the world. The data is made available under the terms of the Open
Data Commons Open Database License (ODbL) (available at https://opendatacommons.
org/licenses/odbl, accessed on 30 October 2022). A simple yet powerful concept underpins
the display and storage of map data. We started with the OSM map from Porto (Porto is
the second largest city in Portugal), and created a graph which used the same region of
interest as the dataset filtered. The nodes in the graph are specific nodes from the OSM file.
Only certain sorts of way nodes could be collected after we ran a filter on the OSM dataset,
because only needed nodes that could be reached by vehicle.

 

Figure 7. Imported map interface with SUMO for vehicles’ routes.

Figure 8 shows the simulation scenario environment in OMNET++ with results. OM-
NET++ is used in order to simulate mentioned scenario in realistic wireless communication
scheme. SUMO and OMNET++ is integrated into the framework veins. Initially, traffic-
related vehicle information (such as start time and location, stop time and position, origin,
destination, maps, etc.) is generated in SUMO, then imported to OMNET++. In the network
simulator, all vehicles are considered nodes. Veins modify the scenario of the automobile in
OMNE++ if any modifications are made to SUMO and vice versa.

https://www.openstreetmap.org
https://opendatacommons.org/licenses/odbl
https://opendatacommons.org/licenses/odbl
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Figure 8. Simulation scenario on OMNET++.

Table 4 shows the events during the specified time duration with Beacon ID and
packet ID used in OMNET as packet recognition. There are five nodes (vehicles) used in
this simulation. Various nodes of communication are employed. For the proof of concept,
we create our setup with five nodes, the limitation of our technique is that we have only
employed a small number of nodes; in future work, we can use more nodes. On each
node, an application is running to generate packets at regular intervals. The reason for
the minimal number of nodes is that more nodes will send more acknowledgments to the
infrastructure and to the other nodes, whereas a higher number of nodes will take more
time and there will be more waiting to conduct and transfer the data to the control unit and
send it in order to avoid collisions for the proposed implementation. We have considered
five nodes from a 250-s time for two roadside units. If we consider more vehicles, we would
have to add more road length with the more RSUs for a specified communication range and
other components as well. There is no fixed point for nodes. We can increase the number
of nodes by increasing all parameters. The parameters associated with the characteristics
are the primary concerns of the performance analysis. In this scenario experiment, these
parameters are used, and they are displayed in Table 5. Each experiment set’s simulation
time is 250 s for the five nodes. Many vehicles and road attributes, including the list of
lanes in the scenario, the form of the lane, the edge ID holding a specific lane ID, the length
of the lane, the maximum speed allowed by the lane, and the mean speed allowed by the
lane, can be accessed or updated by using TraCI.

Table 4. Results of Markov based TDE.

Event Count Time Duration RSU Beacon ID Packet ID Car ID Communication Type

1–82 0–84 6 446, 447 1 RSU to Node

85–474 84.000001
–88.36263944067

12–13,18–19
24–25,30–31
36–37,42–43

520–523
531–541
560–569
578–579

1,14,20
26,32,38

Node to Node
Node to RSU
RSU to Node

475–637 89–250 6,17 447,463 1 RSU to CU
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Table 5. Simulation parameters.

Parameters Values

Simulation time 250 s
Number of nodes 05
Beacon interval 1 s
Packet length 80 bits
Bit Rate 6 Mbps
Power level 68 dBm
Antenna distance with Node to RSU 1.895 m

5. Vehicle Tracking

Tracking of vehicles is obtained by considering the speed, position, and direction in a
highway scenario. SUMO is used to implement and track vehicles. We have considered
some parameters for tracking, i.e., vehicle position, and speed fluctuations of each vehicle;
it also simulates the acceleration of each vehicle. At the same time, the number of beacons
is sent to the RSU from each node when traveled within the RSU range with a fixed time
interval. The parameters associated with the characteristics are the primary concerns of
the performance analysis. In this scenario experiment, these parameters are used, and they
are displayed in Table 5. Each experiment set’s simulation time is 250 s for the five nodes.
Many vehicle and road attributes, including the list of lanes in the scenario, the form of
the lane, the edge ID holding a specific lane ID, the length of the lane, the maximum
speed allowed by the lane, and the mean speed allowed by the lane, can be accessed or
updated by using TraCI. TraCIScenarioManager and TraCIMobility modules of veins has
the ability to run traffic simulation. To implement vehicle tracking additional commands in
TraCICommandInterface.cc, TraCIMobili-ty.h files are used. Following are the commands
used in simulation.

Begin
TraCICommandInter f ace()
VART RACKV EHICLEvariableId;
TraCIBu f f erbu f = conn.Query(CMDSETGUIV ARIABLE, TraCIBu f f er(), variableId,
nodeId)
ASSERT(bu f .eo f ())
End

Begin
commandTrackVehicle()
getcommandInter f ace.setVehicleTracking.getExternalId())
End

We investigate the tracking of five vehicles on a real road network, as shown in
Figure 9a–e as (node/flow 0.1–0.4). Specific items can be chosen to track associated param-
eters, such as a vehicle’s current route, position, or speed. Each vehicle is tracked in its
own time by articulating it in circles independently. The individual circle on the vehicle is
constantly tracking along the journey.
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(a)
 

(b)

 

(c)
 

(d)

 

(e)

Figure 9. Tracked vehicles in SUMO. (a) Tracked vehicle 0 in SUMO as node 0.0. (b) Tracked vehicle
1 in SUMO as node 0.1. (c) Tracked vehicle 2 in SUMO as node 0.2. (d) Tracked vehicle 3 in SUMO as
node 0.3. (e) Tracked vehicle 4 in SUMO as node 0.4.

6. Tracking Results

In this evaluation, number of tracked vehicles calculated from the number of messages
transferred between vehicles to the road side units. All the five vehicles are routed through
the same route. In order to achieve the highest tracking accuracy, we selected the maximum
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continuous tracking time as a measure. The tracker first builds a traffic lane for beacons
that shows throughout the scan. Then, by following intervals, it allocates beacons to the
established routes and may initiate new tracks. The high peak tracking duration percentages
are utilized as a tracking accuracy metric. The tracking system automatically builds a set
of tracks for beacons that appear throughout the scan. Then, in following time steps, it
distributes beacons to the established tracks and initiate new tracks. Vehicles are classed into
a variety of groups based on their speed vectors. As a result of the tracking, it simulates the
acceleration, vehicle position, and speed fluctuations of each vehicle. Because we consider
monitoring and tracking on each vehicle, the tracked vehicle maintains a steady speed on
the highway. The vehicle’s speed is the primary parameter that governs its dynamics.

The graph in Figure 10a–e depicts the relation between individual vehicle speed and
time. The speed of the tracked vehicle reduces substantially as tracking increases. On either
side, the value of speed is low, so there is a high likelihood of successful tracking as shown
in the figures.

 

(a)
 

(b)

 
(c)

 

(d)

 
(e)

Figure 10. Speed graphs of Vehicles. (a) Vehicle 0 Speed; (b) Vehicle 1 Speed; (c) Vehicle 2 Speed;
(d) Vehicle 3 Speed; (e) Vehicle 4 Speed.
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Table 6 illustrates the differences in the number of vehicles generated for the highway
scenario. The three methods further achieve a stable output for the mean vehicle acceler-
ation with a standard deviation. VACaMobil [53] is used to create the network with the
necessary number of vehicles. It also includes the specific min and max number of vehicles
by using the standard deviation feature, as these vehicles are the primary simulation ob-
jects and have numerous attributes, such as the current speed, position, and acceleration.
Table 6 values represent the average number of vehicles, their standard deviation, and their
continuation over the simulation time.

Table 6. Traffic Contribution.

Vehicle Attributes Count Acceleration Standard Deviation Mean

0 2414.847688 0.68132993 0.03416567
0.1 2411.824329 0.66303203 0.036483

VACaMobil 0.2 2407.159224 0.67172648 0.03862666
0.3 2402.288222 0.74833056 0.0398694
0.4 2396.139437 0.6548475 0.03405378

7. Results and Discussion

In this work, we investigate the modeling of traffic density by using the Markov model
approach. Moreover, we successfully implemented our model in the SUMO simulation
environment by using Omnet++ with the vein’s framework (available at https://veins.car2x.
org/download/, accessed on 30 October 2022) that is linked and evaluated for the model’s
functionality. Moreover, it enables the implementation of dynamic broadcast propagation
techniques, thereby enhancing the communication capacities of vehicle networks. The proposed
architecture makes it possible to use effective ways to reduce traffic congestion because it makes
easy for cars to act quickly. Moreover, this makes it possible to use model-based broadcast
propagation techniques, which improves the ability of vehicle networks to communicate with
cellular. The number of cars in this implementation moving in a range of one roadside units’
network that is represented in Figure 8. Figure 6a–c shows the numbers of nodes (cars) enters
the simulation environment one by one. The simulation is set up with a fixed number of
five cars, and it finishes when the simulation time reaches the given 250 s, as seen in the
Figures 11 and 12, which show the number of beacons sent vs. simulation time and number
of vehicles vs. simulation time, respectively. These figures depict the amount of time spent
in execution that was required to complete the 200-s simulation. We allowed the simulation
of the allocated amount of time to run, during which we monitored the number of packets
or events that were generated in the designated area, as well as the relationship between the
rate of time spent running the simulation and the total number of nodes. Once the beacon has
entered the region, all of the nodes in the immediate vicinity will restart sending beacons at a
rate of once every second for the duration of the simulation. An arrangement of this aims to
establish whether or not the simulation framework is able to continue operating despite the
presence of the produced traffic. In this simulation scenario, vehicles travel on premeditated
roads determined by SUMO (the model treats all nodes identically) and vehicles that move at
unpredictable speeds. The node moves from one spot to another with variable speed and
in the same direction as all other nodes. Each entity has a mobility submodule that is in
charge of node movement. The movement direction is determined by the various road
directions of the node’s beginning place. VACaMobil compares the current number of cars
in the simulation to the goal number of vehicles at each step of the mobility simulation.
Depending on whether it is larger or lower than the target value, VACaMobil either waits
for the number of vehicles to reduce toward the target value or, in the last case, the second
scenario involves gradually adding more vehicles to the mobility simulation, raising the
current value until the desired value is obtained. Output of the simulation contains several
statistics for each car such as sent packets, received broadcasted packets, lost packets, speed,

https://veins.car2x.org/download/
https://veins.car2x.org/download/
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position, etc. Implementation of techniques follows the proposed frameworks due to the
global nature of the problem for developed and underdeveloped countries. The results
allow us to conclude that the implemented model is more suitable for simulating global
network traffic simulation for estimating the traffic density on local ones. If the simulation
is supposed to be used to evaluate such characteristics of a real network, then it is worth
using models with an approximation not only of self-similar behavior, but also at least
one-dimensional distribution.
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Figure 11. Number of beacons sent vs. simulation time.
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Figure 12. Number of vehicles vs. simulation time.

8. Conclusions

This paper presented a comprehensive investigation for traffic density estimation
techniques in the context of sustainable characteristics of intelligent transportation systems.
The new approach is also introduced by constructing a Markov-based efficient model on
OMNET++. The proposed and implemented model results are discussed in Table 5, and
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a critical number of vehicles equipped with V2X communication is required to significantly
improve traffic efficiency. Moreover, the illustration is shown in the form of graphs as
mentioned in Figures 9a–e, and Tables 4 and 6 of the proposed model was successfully
implemented with the V2X communication. The results from this research are utilized to
gain a better understanding of how well information may be propagated over V2X in any
conditions, as well as the properties of communication devices (in terms of communication
range), which may be employed to accomplish specific system performance. This study’s
model can simply be extended to help or predict the distance between successive roadside
stations, vehicles, and obstacles. In this study, we also explain the “Markov traffic”-based
mathematical model that is developed by using the graph theory and Markov modeling.
The objective was to develop a method capable of estimation the steady state of traffic
distribution over an urban traffic road network. This model is helpful in improving
the urban traffic road architecture, which is one of its intended applications. As shown
by our results, we are able to formulate an accurate estimation of the traffic density by
tracking the vehicle velocity, acceleration, mean speed, and location of each and every
vehicle. This model incorporates the factor that it produces a steady-state headways
distribution observed in practice. Moreover, it is a microsimulation model that can mimic
the transient-state statistics of road traffic. Implementation of this proposed model is
in software to evaluate the approach. We have performed simulations by using both,
i.e., the model and the proposed estimation method. Future research will focus on a
comprehensive evaluation of the effects of each parameter on traffic efficiency. This study
could concentrate on increasing the accuracy and effectiveness of the proposed model by
optimizing the parameters and selecting a more effective imputed technique for corrupted
data, among other things.
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