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Abstract: Nowadays, robotic technology for gait training is becoming a common tool in rehabilita-
tion hospitals. However, its effectiveness is still controversial. Traditional control strategies do not
adequately integrate human intention and interaction and little is known regarding the impact of
exoskeleton control strategies on muscle coordination, physical effort, and user acceptance. In this
article, we benchmarked three types of exoskeleton control strategies in a sample of seven healthy volun-
teers: trajectory assistance (TC), compliant assistance (AC), and compliant assistance with EMG-Onset
stepping control (OC), which allows the user to decide when to take a step during the walking cycle.
This exploratory study was conducted within the EUROBENCH project facility. Experimental proce-
dures and data analysis were conducted following EUROBENCH’s protocols. Specifically, exoskeleton
kinematics, muscle activation, heart and breathing rates, skin conductance, as well as user-perceived
effort were analyzed. Our results show that the OC controller showed robust performance in detecting
stepping intention even using a corrupt EMG acquisition channel. The AC and OC controllers resulted
in similar kinematic alterations compared to the TC controller. Muscle synergies remained similar to
the synergies found in the literature, although some changes in muscle contribution were found, as well
as an overall increase in agonist-antagonist co-contraction. The OC condition led to the decreased mean
duration of activation of synergies. These differences were not reflected in the overall physiological
impact of walking or subjective perception. We conclude that, although the AC and OC walking
conditions allowed the users to modulate their walking pattern, the application of these two controllers
did not translate into significant changes in the overall physiological cost of walking nor the perceived
experience of use. Nonetheless, results suggest that both AC and OC controllers are potentially interest-
ing approaches that can be explored as gait rehabilitation tools. Furthermore, the INTENTION project
is, to our knowledge, the first study to benchmark the effects on human–exoskeleton interaction of three
different exoskeleton controllers, including a new EMG-based controller designed by us and never
tested in previous studies, which has made it possible to provide valuable third-party feedback on the
use of the EUROBENCH facility and testbed, enriching the apprenticeship of the project consortium
and contributing to the scientific community.

Keywords: exoskeleton; human–robot interaction; electromyography; EMG control; exoskeleton
control; benchmarking

1. Introduction

We are witnessing an exciting era in which robotic technology for gait training is
becoming a common tool in rehabilitation hospitals around the world. Advances in

Sensors 2023, 23, 791. https://doi.org/10.3390/s23020791 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020791
https://doi.org/10.3390/s23020791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4351-3749
https://orcid.org/0000-0003-0139-1261
https://orcid.org/0000-0002-8195-8346
https://orcid.org/0000-0003-0228-6447
https://orcid.org/0000-0002-2353-2902
https://orcid.org/0000-0001-9243-2166
https://orcid.org/0000-0001-9561-7764
https://orcid.org/0000-0001-6215-2593
https://doi.org/10.3390/s23020791
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020791?type=check_update&version=1


Sensors 2023, 23, 791 2 of 22

computing, materials, sensors, interfaces and manufacturing processes, along with the
incorporation of basic knowledge of the neuro-physiological principles involved in motor
recovery into intelligent controllers, are enabling better robotic rehabilitation services.
Nevertheless, there is still no consensus on whether or not robot-assisted gait training
benefits patients more than conventional therapy [1,2]. Moreover, the effectiveness of
locomotor therapy is limited regardless of the training approach [3]. The use of ambulatory
robotic exoskeletons, compared to robotic static gait trainers, may provide the patient with
a more realistic and physiological gait condition, thereby increasing active participation in
the therapy while providing task-consistent sensory and visual feedback.

However, the outcomes attained with ambulatory exoskeletons are still controversial.
Published studies and reviews show considerable differences among protocols, targeted
populations and variables analyzed, in addition to the specific differences among exoskele-
tons (number of joints, type of actuators and controllers, among others) [3,4]. Recent
research claims that robot-assisted walking arises from the interaction between the human
body, driven by the central neural system (CNS) through the muscles, neural loops, reflex
mechanisms and the mechanical structure of each exoskeleton, driven by the controller
through the joint actuators and sensors [5]. Although there is a growing body of knowledge
that addresses the interplay between the neural and robotic structures in terms of user–
robot interaction and further adaptation [6,7], there is still no consensus on the specific
adaptation mechanisms, as well as what is the role of user preference on the performance
of the human–exoskeleton system [8].

Further investigation of some of these physiological mechanisms, as well as involving
user preferences within the control loop, would allow better identification of the patients
who can benefit the most from robotic therapy, how to shape and customize the exoskeleton
structure and control the functional needs of the patient, as well as designing a personalized
exercise program to conduct with the exoskeleton, in order to maximize motor learning
and, ultimately, recovery [9,10].

Along with the number and configuration of the joints, the main exoskeleton charac-
teristic that affects human–robot interaction is how the robotic joints deliver torque to the
human ones through the physical interface. Movement reference and joint actuator control
are the two major areas of research. Several control algorithms for joint trajectory tracking
have been proposed in the literature: from the simplest proportional-integrative-derivative
(PID) control family, [11] to more sophisticated algorithms such as fuzzy control [12],
robust variable structure control [13] and sliding mode variable structure control [14]
have been used for lower limb exoskeleton robots [15]. A common feature of these algo-
rithms is that they do not consider the wearer in the system besides limb inertia in some
cases [16]. Exoskeleton–limb contact stiffness and user movement (either voluntary or
reflex) greatly affect human–robot performance [17]. Therefore, a smooth and efficient
movement might be achieved by focusing on the human–robot interaction instead of on
the accuracy of the trajectory tracking, to achieve smooth and efficient movement [18].
Several control strategies have also been proposed that focus on the human–robot physical
interaction: computed torque control [12] and different versions of impedance/admittance
controllers [16]. However, despite the variety of control approaches investigated in the
literature, the learning mechanisms of the user in response to robotic assistance are yet to
be clearly established [19].

In order to improve human–robot interaction, muscle electromyography (EMG) has
also been investigated as a predictor of human intention during walking [20,21], applied as a
trigger for controlling prostheses and exoskeletons [22–26]. EMG signals show characteristic
patterns of activation associated with each activated muscle in terms of onset timings, burst
duration and levels of activation [27,28].

In addition, an analysis of combined muscle activation in terms of the number and
characteristics of synergies has been proposed to provide a reliable representation of a
person’s motor deficits and the degree of adaptability of their motor patterns [29]. It has
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been shown that the use of ambulatory exoskeletons does not alter muscle coordination,
independently of the level of assistance [10,30,31].

EMG-based control algorithms may offer improved performance in terms of: (1) accuracy
of movement selection, (2) intuitiveness and (3) response time of the control system [32].
Movement accuracy is relevant for achieving precise execution of a user’s intended task;
an intuitive interface relieves the struggle of the user on the use of the control system; and,
finally, the response time is important for avoiding any possible delay perceived by the
user, which may hinder proprioceptive mechanisms. The patterns differ between healthy
and pathological gait conditions and therefore can be used to assess improvements in
muscle function, motor control and neuromuscular adaptations following rehabilitation
interventions [33].

The main goal of this study was to compare the effects on human–exoskeleton
interaction as well as user perception of the three main types of control strategies de-
scribed above: joint trajectory tracking, joint mechanical admittance control and EMG-
triggered control. We hypothesized that the EMG-Onset-triggered controller would im-
prove human–exoskeleton interaction in terms of muscle coordination, physiological effort
and walking experience compared to the admittance and trajectory controllers.

This exploratory study was conducted within the benchmarking initiative of the EU-
ROBENCH European project, which developed the first unified benchmarking framework
for robotic systems in Europe [34], comprised of a testing facility located at the Center for
Clinical Neuroscience of Hospital Los Madroños (Brunete, Madrid, Spain) in Madrid (Spain), as
well as a comprehensive set of testbeds with dedicated experimental protocols and perfor-
mance indicators (PIs) [35] (hereinafter only testbeds). These results will allow companies
and/or researchers to test the performance of their robots at any stage of development. In
this work, we are therefore users of EUROBENCH’s project results. As shown in detail
in Section 2, we designed our experimental protocol with the two testbeds most suitable
for our objective, which are the EXPERIENCE [36,37] and PEPATO [38] testbeds: the EX-
PERIENCE testbed aims at evaluating the user’s physiological response and subjective
experience during exoskeleton-assisted walking on a treadmill, while the PEPATO testbed
aims at analyzing muscle coordination during exoskeleton-assisted gait. More details are
provided in Section 2.

Therefore, the objectives of this work are twofold: (1) to compare the effects on
human–exoskeleton interaction as well as user perception of the three main types of control
strategies: joint trajectory tracking, joint mechanical admittance control and EMG-triggered
control and (2) to provide third-party experience concerning the use of the EUROBENCH
facility and testbeds, for both the project consortium and the scientific community.

2. Materials and Methods

As explained in Section 2.4, each protocol requires conducting exoskeleton-assisted
walking tasks while wearing specific sensors to measure physiological data. Since the
sensors required by each testbed do not interfere with each other, we combined both
protocols in one single walking experiment. All instruments and methods applied in the
experimental protocol are described in the following subsections.

2.1. Participants

Seven healthy volunteers (2 females and 5 males; 28 ± 7.14 years old; height of
172.28 ± 11.67 cm; weight of 66 ± 12.91 kg) participated in this study. Inclusion criteria
included age between 18 and 70 years, ability to follow instructions, and understanding
and signing the informed consent. Exclusion criteria included presence of any implanted
electronic device; presence of ulcers or bedsores; occurrence of problems in lower limb
joints in the past 3 months; history of previous surgeries in lower limbs in the past 6 months;
presence of any pathology that affects movement; any other pathology such as cardiological,
respiratory, renal, hepatic, oncologic or the like; taking oral anticoagulants; pregnancy; and
not signing the informed consent form.
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Participants were recruited through a call for participation sent by email to colleagues
and by a notice posted in the facilities of Hospital Los Madroños (Madrid, Spain).

All participants were informed about the procedures and possible adverse effects
and signed the informed consent form to participate. Both EXPERIENCE and PEPATO
experimental protocols were approved by the Spanish National Research Council (CSIC)
on 22 June 2021.

2.2. Instrumentation
2.2.1. Exoskeleton

The exoskeleton used in this experiment was the Exo-H3 (Technaid S.L., Arganda
del Rey, Spain). Exo-H3 has six actuators comprised of DC motors and harmonic gears
at the hip, knee, and ankle joints (of both sides). Exo-H3 can connect to external devices
via either CAN bus, Bluetooth, or WiFi, streaming exoskeleton’s parameters such as joint
angles, interaction forces at foot, leg, and thigh exoskeleton sections, as well as foot–ground
contact, at 100 Hz [39]. Each joint features both a trajectory and an impedance controller,
which can be selected by the user. Joint angle references are fed to the controller from a
walking kinematics database stored in memory. In this experiment, walking initiation/halt
and velocity change was commanded for the exoskeleton through the CAN bus.

2.2.2. Physiological Sensors

Following the requirements of the EXPERIENCE and PEPATO testbeds
(see Sections 2.5.2 and 2.5.3), electromyography (EMG), electrocardiographic (ECG), breath-
ing rate (BR), as well as galvanic skin response (GSR) were recorded during walking trials.
The devices used to record each of these measures were the following:

• EMG signal. A customized embedded processing unit that included an EMG am-
plifier and a voltage-controlled electrical stimulator (EAST, OT Bioelettronica, Turin,
Italy) [40]. Surface electrodes Ambu® WhiteSensor™ (Ambu®, Ballerup, Denmark).

• ECG signal and BR. A Zephyr BioHarness™ (Medtronic plc, Minneapolis, MN, USA)
sensor was used. It is comprised of a fabric strap that incorporates the textile-type
ECG electrodes and the breathing sensor. An electronic module placed at the strap
acquires, converts and sends the ECG and BR data through Bluetooth.

• GSR signal. A Shimmer GSR+ Module (Shimmer, Dublin, Ireland) was used. It
measures skin conductance between two electrodes attached to two fingers of one
hand and converts and sends the GSR through Bluetooth data.

2.2.3. Treadmill

Walking trials were performed over an instrumented treadmill (N-Mill, ForceLink
B.V., Culemborg, The Netherlands) adapted from the C-Mill system from Motek (Motek,
DIH Group, Houten, The Netherlands) with a belt speed that can be adjusted in steps of
0.01 m/s through the D-Flow software (Motek, DIH Group, Amsterdam, The Netherlands).

2.3. Control Strategies
2.3.1. Trajectory Controller (TC)

The Exo-H3 features a PID position controller for each joint, which tracks joint trajec-
tories from a walking kinematics database stored in memory at 100 Hz. After receiving the
command encoding initiation, the system starts tracking the walking trajectory repeatedly,
generating walking movement, until a command encoding stop is received. Figure 1 shows
a conceptual diagram of the control scheme.
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Figure 1. Conceptual diagram of the Exo-H3 trajectory control.

2.3.2. Admittance Controller (AC)

The admittance controller available in the Exo-H3 was designed to increase actuation
compliance, allowing for slight trajectory error. The magnitude of the error can be set
externally through a constant value α, which corresponds to the percentage of movement
error allowed by the controller for all the joints. Specifically, the controller compares the
actual joint angle θ to the deviation defined by α, providing actuation proportional to the
magnitude of the deviation. Figure 2 shows a conceptual diagram of the admittance control
scheme. For the purposes of this work, α was set to 30% for all experiments. This value was
obtained following a trial-error procedure in which we aimed at allowing tracking error
yet having guidance towards the kinematic pattern. The value was in line with what was
previously reported for the Exo-H3 exoskeleton in stroke survivors [41].

Figure 2. Conceptual diagram of the Exo-H3 admittance control.

2.3.3. EMG-Onset Controller (OC)

The EMG-Onset controller was independently designed to enable the user to trigger
each step of the exoskeleton (Figure 3). This controller was adapted from the AC controller,
where walking steps are continuously repeated to trigger the beginning of each step
based on EMG activity from lower limb muscles (Soleus (Sol) and Rectus Femoris (ReFe),
bilaterally). Right Sol and left ReFe are responsible for triggering the right step, whereas left
Sol and right ReFe trigger the left step.

Figure 3. Conceptual diagram of EMG onset-based control loop designed for this experiment and
implemented with Exo-H3.

Specifically, the OC algorithm was developed upon two threshold-based methods:
the single threshold (ST) and the double threshold (DT).They are based on the choice
of a parameter level or threshold, which will serve as the boundary between the EMG
signal amplitudes corresponding to muscle at rest (baseline) and contracting. The specific
value (or values in the case of DT) of the threshold is calculated based on the amplitude
characteristics of the EMG signal at baseline: the ST method [42–44] compares the raw
signals to an amplitude threshold set from the mean power of the background noise. The
main advantage of this method is that it allows one to directly use the raw EMG signal
without processing, yet it is very sensitive to the choice of threshold.
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On the other hand, the DT method [45–48] combines two different thresholds: ampli-
tude (like the ST) and time, which gives robustness against false positives and improves
detection accuracy. Nevertheless, due to the oscillating, high-frequency, nature of the EMG
signal, the time threshold requires filtering the signal in order to work properly.

Given its reduced detection latency, the ST method was selected as onset detection,
while the DT method was selected as offset (end of contraction) detection, where it was
necessary to prioritize the robustness of the algorithm against false positives versus the
decrease in latency at the time of offset detection. ST and DT methods were automatically
applied on Sol and ReFe from both legs, to trigger each walking step commanded by the
Exo-H3. The step is triggered when the onset method detects muscle onset in one muscle
or the other. This redundancy can prevent the false negatives and increase the safety of
the controller.

2.4. Experimental Protocol

EXPERIENCE and PEPATO protocols were used to compare the effects on human–
exoskeleton interaction, as well as user perception, of the different control strategies de-
scribed in Section 2.3. The EXPERIENCE protocol [36,37] aims at providing a benchmark-
ing methodology for measuring both the user’s subjective perspective of the use of the
exoskeleton by a newly developed multi-factor questionnaire and also to derive psycho-
physiological indicators based on physiological data gathered during an exoskeleton-
assisted walking test. EXPERIENCE testbed requires measuring ECG, GSR and the BR
while walking.

In addition, the testbed requires each volunteer to sit for 4 min prior to walking trials
(in this study, three different walking trials, each one to test the effects of each different
controller) in order to have ECG, GSR and BR baseline data. Then, the exoskeleton-assisted
walking begins, lasting 4 min while recording ECG, GSR and BR. After each walking trial,
the user stops and sits back and is provided with the questionnaire, which was answered
regarding the walking condition undergone. The EXPERIENCE protocol also includes
custom-written software that processes and calculates performance indicators (PIs) based
on the ECG, GSR and BR data, as well as on the user response to the questionnaires. More
details on the specific PIs are provided in Section 2.5.

The PEPATO protocol [38] consists of custom-made software to evaluate the spinal
locomotor output based on multi-muscle activity patterns, providing PIs of muscle coordi-
nation based on EMG signals recorded during exoskeleton-assisted walking. This requires
measuring EMG of Soleus (Sol), Tibialis Anterior (TiAn), Rectus Femoris (ReFe), Vastus
Lateralis (VaLa), Gastrocnemius Medialis (GaMe) and Biceps Femoris (long head, BiFe)
muscles, as well as foot–ground contact of one leg. We used the EAST device described
in Section 2.2 for measuring the EMG signals and extracted foot–ground contact from
the exoskeleton data. PEPATO protocol does not provide the time or walking velocity
constraints, so we used those suggested by the EXPERIENCE protocol. Details on the
specific PIs of PEPATO are provided in Section 2.5.

2.4.1. Experimental Setup

Figure 4 shows a schematic of the experimental setup that allowed us to combine both
testbeds for measuring the data needed for each gait trial.

We used a PC/104 computer to synchronize exoskeleton data (joint angles, gait events)
with EMG data from the EAST device. The exoskeleton was connected via CAN to PC/104,
whereas the EAST was connected through a USB port to PC/104. We developed custom
software written in Python that allowed us to manage data acquisition, storage and vi-
sualization, as well as to command the exoskeleton (walking initiation/halt and velocity,
for TC and AC controllers, step trigger for the OC controller). In addition, the software
also included the OC algorithm and a procedure for tuning the detection algorithm for
each participant.
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Figure 4. Experimental setup.

Figure 5 shows the front view (on the right) and the rear view (on the left), from two
different subjects while they walked with Exo-H3.

Figure 5. Pictures of two different subjects while they walked with Exo-H3. Most of the experimental
setup is represented in the two pictures.
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2.4.2. Study Design

In order to compare the effects of the three controllers (TC, AC and OC), we designed
a cross-sectional, single-assessment, randomized experiment (Figure 6) in which data
required for EXPERIENCE and PEPATO testbed were collected prior, during and after
three walking trials. Each walking trial consisted of walking on a treadmill for 4 min with
Exo-H3, using each of the three different controllers. The order of the walking trials was
randomized for each participant.

Figure 6. Schematics of the experimental protocol followed for each participant.

For each participant, the experimental session started with the placement of GSR, BR,
and ECG sensors on the chest and non-dominant hand. Then, the exoskeleton was placed
on the user’s legs and adjusted for its specific leg length. EMG electrodes were then placed
and the volunteer stood up and held a pair of crutches to check EMG quality. This was
carried out by asking each participant to flex and extend each joint (ankle and knee) while
visually inspecting EMG signals in real-time. After completing the instrumentation, the OC
algorithm tuning procedure was conducted. To tune the algorithm, the user had to walk a
minimum of two steps with the exoskeleton in passive mode—i.e., with the motor drivers
disengaged—overcoming actuator resistance. During the procedure, the EMG signal of the
ReFe and Sol muscles of both legs was acquired, visually evaluated and processed to define
the most adequate onset thresholds. Specifically, the detection of the start of each step was
estimated with the ReFe of the leg that starts the step or the contralateral Sol muscle.

After this, each participant sat back and rested with eyes closed for 4 minutes while
GSR, BR and ECG data were recorded. These values served as a baseline to calculate
physiological PIs. This was done before carrying out each of the three different walking
trials in randomized order. Each walking trial (except OC) started with a familiarization
period of 2 minutes. This allowed the user to get used to the changes imposed by each
controller and also to set a comfortable walking speed. Regarding the OC walking trial,
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we had to define the specific threshold for each muscle (ReFe and Sol) before starting the
familiarization period (see Section 2.3.3). After the 2 min familiarization period, there was
a period of 4 minutes when each participant walked using each of the different controllers.
Physiological (EMG, ECG, GSR, and BR), kinematic (joint angles from Exo-H3), and kinetic
(foot–ground contact) data were recorded synchronously throughout the duration of each
walking trial. After that, there was a 4 min resting period. Finally, at the end of each walking
trial, each volunteer sat back in a chair and answered the EXPERIENCE questionnaire
related to each condition tested. At the end of the session, participants also answered
additional questions related to the general experience.

2.5. Data Analysis
2.5.1. Exoskeleton

Exoskeleton joint angles (hip, knee and ankle from both sides) and foot–ground contact
were sampled at 100 Hz. Joint angles for each walking step were normalized from 0 to
100% of the walking cycle, based on foot–ground contact forces. Maximum, minimum and
range of motion (ROM) of each step were obtained and averaged across walking conditions
(with each of the three controllers) and subjects.

2.5.2. EXPERIENCE Testbed

As described in Section 2.4, EXPERIENCE aims at measuring both the user’s subjective
perspective of the use of the exoskeleton through questionnaires and psycho-physiological
indicators based on physiological data—ECG, GSR, and BR. The PIs can yield a maximum
value of seven points, which are calculated from the answers to the questionnaire provided
by the testbed (extracted from [36,37]):

• Usability: This is defined as the extent to which the exoskeleton can be used by the
users to achieve specified goals with effectiveness, efficiency, and satisfaction in this
specified context of use. High value of this PI indicates that the robot is highly usable.

• Acceptability: This relates to how the users perceive robots when interacting directly
with them and how much you would be willing to introduce one into your everyday
life. High value of this PI indicates that the robot is highly acceptable. This PI
is comprised of four related constructs: attitude towards technology, self-efficacy,
motivation, comfort, safety, and acceptability.

• Perceptibility: This evaluates the effects and influences that walking with the exoskele-
ton has on the user’s emotions, perceptions and quality of life. High value of this
PI indicates that the robot positively influences emotion, perception and quality of
life. The constructs associated with this PI are: embodiment and ownership, agency,
emotion and attachment, health and quality of life.

• Functionality: This measures the perception of the characteristics of the exoskeleton
in terms of ease of learning, the flexibility of interaction, reliability and workload.
High value of this PI indicates positive features of the robot in terms of analyzed
aspects. The constructs associated with this PI are: learnability, flexibility, robustness
and reliability, workload, and functionality.

In addition, the PIs obtained from the physiological data were the following:

• Stress: This is defined as a state of mental or emotional strain caused by adverse
circumstances. High value of this PI indicates that using the robot is stressful.

• Energy expenditure: This is defined as the amount of energy that is needed to carry
out physical functions. High value of this PI indicates that using the robot requires
high effort.

• Attention: This refers to the degree to which the user is consciously and continuously
involved in the task. High value of this PI indicates that the robot use requires
high attention.
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• Physical Fatigue: This is defined as a type of distress generally conditioned by the
exhaustion of one’s muscles due to the execution of a task. High value of this PI
indicates that using the robot induces fatigue.

ECG was recorded at 250 Hz while GSR and BR were sampled at 25Hz. All PIs
were calculated using the software available at the EUROBENCH facility at Hospital Los
Madroños. Further details on the processing method and algorithms are available in [36,37].
The resulting PIs were averaged across walking conditions.

2.5.3. PEPATO Testbed

As described in Section 2.4, PEPATO provides custom-made software for evaluating
the spinal locomotor output based on multi-muscle activity patterns, providing PI of muscle
coordination based on the EMG of eight muscles.

Nevertheless, the main activity of the knee flexor and extensor muscles is still captured
by the measures of the VaLa, ReFE and BiFe. The PIs calculated with PEPATO software
from the EMG are the following (extracted from [38]):

• EMG reconstruction quality.
• Full width at half maximum (FWMH): Estimated duration of basic patterns.
• Center of activity (CoA) of the basic patterns.

2.5.4. Electromyography

EMG data were recorded at 2,000 Hz and low-pass filtered offline by a second-order
Butterworth filter with a cut-off frequency of 6 Hz. The average EMG envelope of the four
muscles used for the OC controller was obtained for each controller and normalized from 0
to 100% of the walking cycle. Average onset detection times of each step were obtained
and averaged across subjects.

The number of onset detection per muscle was also obtained to highlight the impor-
tance of the muscles chosen in the actual control of the exoskeleton using the OC controller.

2.5.5. Statistical Analysis

Non-parametric Friedman and post-hoc Wilcoxon tests with Bonferroni correction
were used to test differences between walking conditions, and therefore between exoskele-
ton controllers. The non-parametric Friedman test is a non-parametric statistical test used
to detect differences between different groups (in this case the three different controllers); it
is preferable to use it when the same parameters are measured under different conditions
on the same subject. The post-hoc Wilcoxon test is a non-parametric statistical hypothesis
test used either to test the location of a population based on a sample of data or to compare
the locations of two populations using two matched samples and the use of the Bonferroni
correction can counteract the multiple comparisons problems. p-value was set to 0.05.

3. Results
3.1. Exoskeleton Kinematics

Figure 7 shows the average of the time-normalized joint angles for the ankle, knee and
hip of both legs for all participants. It can be observed that knee and ankle angles for the
TC condition were different than the angles obtained for AC and OC conditions.

Table 1 shows the average maximum, minimum and range of motion values of joint
angles for the three walking conditions. We found statistical differences between TC and
AC for all the variables and between TC and OC for all but the hip maximum. These
results indicate that the users modified their walking pattern in both AC and OC conditions
compared to TC conditions.
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Figure 7. Average ankle, knee and hip joint angles when walking with TC (continuous), AC (dashed)
and OC (dotted) controllers.

Table 1. (Max) and (Min) angle and (ROM), of ankle, knee and hip joints for each tested controller.
Positive values indicate knee flexion, hip flexion and ankle dorsiflexion. 1 statistical difference
between TC and AC controllers; 2 statistical difference between TC and OC controllers; 3 statistical
difference between AC and OC controllers.

Controller

Mean SD Median Max Min

TC

Ankle
Max 1,2 19.40 0.32 19.43 19.56 19.31
Min 1,2,3 −12.97 0.12 −12.97 −12.92 −13.01
ROM 1,2 32.40 0.40 32.40 32.57 32.23

Knee
Max 1,2 60.45 0.89 60.55 60.64 60.46
Min 1,2,3 −0.03 0.14 −0.03 0.01 −0.07
ROM 1,2 60.48 0.87 60.58 60.63 60.53

Hip
Max 1,2 27.20 1.81 27.11 27.12 27.10
Min 1,2,3 −13.53 0.80 −13.54 −13.48 −13.60
ROM 1,2 60.48 0.87 60.58 60.63 60.53

AC

Ankle
Max 1,2 14.65 1.68 14.86 14.93 14.79
Min 1,2,3 −2.92 3.32 −3.41 −3.22 −3.60
ROM 1,2 17.58 4.97 18.28 18.54 18.01

Knee
Max 1,2 49.02 4.11 49.56 49.56 49.56
Min 1,2,3 2.67 1.90 2.44 2.69 2.18
ROM 1,2 46.35 5.48 47.13 47.38 46.87

Hip
Max 1,2 24.68 2.60 24.52 24.73 24.31
Min 1,2,3 −11.26 2.07 −11.77 −11.13 −12.40
ROM 1,2 35.94 3.32 36.30 37.15 35.45
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Table 1. Cont.

Controller

Mean SD Median Max Min

OC

Ankle
Max 1,2 14.04 1.49 14.17 15.62 13.72
Min 1,2,3 −1.45 2.26 3.69 3.85 3.52
ROM 1,2 44.17 4.04 44.63 44.69 44.56

Knee
Max 1,2 47.91 2.67 48.31 48.54 48.08
Min 1,2,3 3.74 2.62 3.69 3.85 3.52
ROM 1,2 44.17 4.04 44.63 44.69 44.56

Hip
Max 1,2 25.06 2.61 24.47 24.76 24.19
Min 1,2,3 −11.00 1.77 −11.28 −10.91 −11.65
ROM 1,2 36.06 2.95 35.76 35.85 35.68

3.2. EMG-Onset Controller

As described in Section 2.3.3, the EMG-Onset algorithm is fed with the EMG from the
Sol and ReFe muscles from both legs in order to estimate the step initiation and therefore
trigger the exoskeleton step movement. Figure 8 shows the step-normalized and averaged
EMG envelopes of these four muscles for the three walking conditions. Note that right Sol
and left ReFe were used to trigger the right step, whereas the other muscles triggered the
left, as previously explained.

Figure 8. Normalized and cycle-averaged EMG envelopes of Sol and ReFe muscles.

Higher EMG activation was observed in both Sol for the OC walking condition com-
pared to the TC and AC walking conditions. With respect to the ReFe muscles, the TC
walking condition resulted in increased muscle activation compared to AC and OC condi-
tions. These results suggest that the EMG-Onset algorithm required the user to increase
the muscle activation of the Sol while decreasing the ReFe activation in order to trigger
the steps.
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Figure 9 shows the group-averaged EMG of the Sol and ReFe muscles for the OC
walking condition along with the average onset detection for all steps and subjects. It
is noticeable that no detection was obtained using the EMG from the left ReFe for any
of the subjects and steps. Therefore, the proposed EMG-Onset algorithm shows robust
performance due to a corrupt or even no EMG signal. In this case, it is shown how it was
possible to successfully trigger the right step from the right Sol EMG signal.

Figure 9. Average onset detection for the right and left Sol and ReFe.

The % gait cycle when onset onset detection obtained along a gait cycle is shown
in Table 2 and is also illustrated by Figure 9. For the left step, right Sol activation was
detected around 12 % of the gait and was never detected by the left ReFe. For the right
step, both left Sol and right ReFe detected the beginning of muscle activation, around 60%
of the gait.

Table 2. The % gait cycle when onset of muscle activation was detected for each muscle.

Right Step Left Step

Right ReFe Left Sol Left ReFe Right Sol
59.24 ± 4.35% 61.74 ± 5.22% No Detection 12.18 ± 5.92%

The average values of onset detection for each muscle are shown in Table 3. Consid-
ering every onset detection for all subjects and trials, we can observe that the right Sol
was the most used muscle, being responsible for almost half of the controller’s total onsets.
Moreover, all the onset detections used to trigger the right step were achieved from the
Right Sol. This could be due to the quality of the left ReFe, which presented noisy EMG and
did not accomplish detecting EMG onset. Nevertheless, the PEPATO scenario PIs allow us
to better understand the effects on muscle activation and coordination, as shown below.
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Table 3. Average onset detection percentage in the four control muscles.

Right Step Left Step

Right ReFe Left Sol Left ReFe Right Sol
17.4% 32.85% 0.00% 49.74%

3.3. Muscle Synergies (PIs Obtained from PEPATO Testbed Software)

With the six EMG muscles measured (previously defined in Section 2.4), we calculated
the muscle synergies and their FWMH and CoA using the software provided by the
PEPATO testbed. We configured the software to calculate four muscle synergies because
it has been already reported that four synergies are enough to explain most of the EMG
variability of the main lower limb muscles during gait [10,49,50]. Figure 10 shows the
average synergy vectors obtained from the PEPATO testbed software for the three walking
conditions in Table 4, which shows the FWMH (left) and CoA (right) for the four synergies.

The EMG reconstruction quality with four synergies (Table 4) was above 90% for all
walking conditions. No statistical differences were found across walking conditions for all
muscles within the four synergies.

• Synergy 1 is mainly comprised of an ankle plantarflexion (GaMe) and knee extension
activity (VaLa and ReFe muscles) with certain antagonist dorsiflexion activity (TiAn)
for the TC walking condition. This activity is maintained for the AC walking condition
and changes towards a knee antagonist co-contraction (BiFe vs VaLa and ReFe muscles)
and increased ankle plantarflexion activity (increased contribution of the Sol muscle).
The average mean duration of this synergy remains for the TC and AC walking
conditions but shows a non-significant decrease for the OC (Table 4).

• Synergy 2 is mainly comprised of ankle dorsiflexion (TiAn) and knee extension (VaLa
and ReFe muscles) for the TC walking condition. Similarly to Synergy 1, this activ-
ity mostly remains for the AC walking condition and changes in the OC walking
condition towards ankle plantarflexion (increase in GaMe and Sol, reduction in TiAn
contributions) and knee flexion (increased BiFe, reduction in VaLa and ReFe contri-
butions). Similarly, the average mean duration synergy 2 remains for the TC and
AC walking conditions, showing a significant decrease for the OC walking condition
(Table 4).

• Synergy 3 shows a marked ankle plantarflexion (GaMe and Sol muscles) and knee
flexion activity (BiFe muscle) for the TC walking condition. Similarly to Synergies 1
and 2, this activity remains with slight variations for the AC walking condition, but
changes to a marked knee extension activity (decrease in the BiFe and increase in the
VaLa and ReFe contributions), while ankle activity remains unchanged although a
lesser contribution of the Sol muscle is observed. The average mean duration of this
synergy remains for the TC and AC walking conditions but shows a non-significant
decrease for the OC.

• Synergy 4 shows, for the TC walking condition, a noticeable ankle plantarflexion ac-
tivity (GaMe and Sol muscles and a small TiAn contribution), whereas the knee shows
an agonist–antagonist co-contraction (BiFe and ReFe muscles). Again, this activity
remains with slight variations for the AC walking condition, whereas the OC walking
condition shifts towards ankle dorsiflexion (increase in the TiAn contribution, decreas-
ing in the GaMe and Sol muscles) with an increase in knee extension activity (VaLa
muscle), although the contribution of the BiFe to co-contraction remains. Similarly,
the average mean duration synergy 4 remains for the TC and AC walking conditions,
showing a significant decrease for the OC walking condition (Table 4).

No significant variations in the CoA for the four synergies were found (Table 4).
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(a) Synergy 1 (b) Synergy 2

(c) Synergy 3 (d) Synergy 4

Figure 10. Average muscle synergies (right leg).

Table 4. PIs provided by PEPATO testbed. See Section 2.5.3 for the description of each PI. Data are
averaged across walking conditions. FWHM and CoA are expressed as % gait cycle. 3 statistical
difference between AC and OC controllers.

PEPATO PI

EMG Reconst. Quality FWHM 1 FWHM 2 3 FWHM 3 FWHM 4 3 CoA 1 CoA 2 CoA 3 CoA 4

TC

Mean 0.95 16.07 18.57 22.21 14.79 16.74 31.49 57.61 57.25
SD 0.03 8.12 15.54 13.95 12.98 11.06 9.09 29.55 39.98

Median 0.94 14.00 14.50 23.00 13.00 15.34 30.23 69.18 76.50
Max 0.987 32.50 50.50 44.00 35.00 30.02 48.76 97.39 94.49
Min 0.90 6.50 6.00 6.50 0.00 3.39 16.37 6.79 0.07

AC

Mean 0.94 15.07 18.21 19.50 26.86 31.40 46.44 59.18 51.27
SD 0.05 11.87 6.81 16.27 12.80 36.21 24.04 17.45 37.91

Median 0.95 16.50 19.50 26.50 24.50 18.51 37.96 64.70 59.82
Max 0.98 29.00 29.00 40.50 43.00 99.78 94.59 80.07 96.19
Min 0.84 0.00 6.50 0.00 6.50 3.79 22.17 31.61 7.60

OC

Mean 0.95 6.29 6.29 7.14 5.29 25.66 36.38 55.49 67.26
SD 0.03 12.89 4.94 7.81 6.64 31.35 21.41 18.45 29.50

Median 0.95 0.00 5.00 3.00 1.00 20.26 46.55 54.06 73.56
Max 0.99 35.00 16.00 18.00 17.50 88.89 59.14 87.24 92.34
Min 0.90 0.00 1.00 0.00 0.50 0.01 5.51 33.95 7.74

As shown in Table 4, the OC walking condition resulted in less mean activation—
FWHM—and delay—CoA—for all identified synergies, although not all walking condi-
tions and variables were found to be statistically significant. Taken together, OC walking
conditions resulted in a noticeable alteration of muscle coordination.

3.4. Subjective Perception (PIs Obtained from EXPERIENCE Testbed Software)

Table 5 shows the PIs obtained from the EXPERIENCE software averaged across
subjects for the TC, AC and OC walking conditions. The PIs Acceptability, Functionality
and Usability were rated above 4 out of 7, indicating that the users reported the exoskeleton
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and the associated walking condition as positive, comfortable and safe, easy to use and robust,
and highly usable, respectively, according to the PI definitions provided in [36,37]. Regarding
Perceptibility, the average value was below half of the scale, indicating that the users
perceived the exoskeleton and the associated walking conditions as slightly negative
emotion in terms of embodiment, agency and attachment [36,37]. No statistical differences
were found across conditions; therefore, in terms of the user-perceived experience of use,
users do not report differences across conditions.

Table 5. Average and SD of questionnaire-related PIs for all subjects and walking conditions. The PI
can provide values between 0 and 7 [36,37].

EXPERIENCE PI

Acceptability Funcionality Perceptibility Usability

TC

Mean 4.63 3.97 2.85 4.38
SD 0.35 0.65 0.30 0.35

Median 4.60 4.06 3.37 4.23
Max 5.40 4.67 4.69 4.75
Min 3.87 3.09 0.00 4.17

AC

Mean 4.63 3.96 2.84 4.40
SD 0.36 0.52 0.33 0.46

Median 4.63 4.06 3.36 4.17
Max 4.63 4.83 4.63 5.00
Min 4.63 2.89 0.00 4.03

OC

Mean 4.63 3.95 2.81 4.43
SD 0.36 0.56 0.40 0.47

Median 4.60 4.03 3.39 4.20
Max 5.40 4.83 4.49 4.96
Min 3.87 2.91 0.00 4.13

Regarding the physiological-related PIs, the EXPERIENCE testbed provided an up-
dated value of each PI for each walking minute. Figure 11 shows the four PIs for each
condition, averaged across subjects, for four minutes of the walking trial.

Figure 11. Average scores of Attention, Energy expenditure, Fatigue and Stress PIs for TC, AC and
OC controllers. Scores of each PI were updated for each minute of trial.

No statistical differences were found for the Attention PI although OC walking con-
dition required, on average, less attention than TC and AC conditions. With respect to
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Fatigue, also no statistical differences were found between walking conditions and across
1-min time intervals; all three walking conditions seemed to begin and end with a similar
value of Fatigue but with little differences in the middle of the experiment. With respect to
Energy expenditure, we found statistical differences between the first and fourth minute of
the experiment (p < 0.05) for both the AC and TC walking conditions, in which a decrease
in this PI can be observed. Despite the differences between walking conditions at the first
and fourth minutes of the walking trial, no statistical differences were found for the whole
trial. Lastly, Stress showed no statistical differences between walking conditions and across
1-min time intervals.

4. Discussion

This study focused on comparing the effects on human–exoskeleton interaction as well
as user perception of three widely used exoskeleton control strategies—joint trajectory track-
ing (TC), joint mechanical admittance control (AC) and EMG-triggered control (OC)—while
providing a third-party user-experience of the EUROBENCH testbeds, protocols and bench-
marks. Our hypothesis was that the OC controller would improve human–exoskeleton
interaction, in terms of muscle activation and coordination, and also reduce physiological
effort while providing a better walking experience compared to the TC and AC assistance
controllers. To test this hypothesis, we selected amongst the EUROBENCH available
testbeds and protocols, the EXPERIENCE and PEPATO ones, which were combined and
adapted to our objectives.

Overall, the admittance-based controllers—AC and OC—allowed the users to modify
their walking kinematics, reducing the joint ROM (Figure 7 and Table 1), while also delaying
the maximum and minimum of the curves. These results are consistent with other studies
in which able volunteers walked at lower speeds using an exoskeleton when compared to
self-paced slow walking speed (with no exoskeleton) [31,51,52]. The OC control strategy,
while allowing the user to trigger each step individually, did not result in relevant kinematic
alterations when compared to AC.

Regarding the synergy analysis obtained from the PEPATO software, we obtained an
EMG reconstruction quality above 90% for all walking conditions, which indicates that four
synergies were enough to account for the EMG variability for the three walking conditions.
However, no statistical differences were found across walking conditions in any of the
muscles within the four synergies. We hypothesize that a bigger sample size could have
reached statistically significant differences in some of the synergy parameters, based on the
trends observed.

We used a prototype EMG recorder (Section 2.2.2) designed initially for upper limb
tremor assessment. This device uses pre-gelled single-use disposable EMG electrodes
connected by cables to a connection board that is plugged into the device. This configuration
might have a good performance for the target application—upper limb EMG monitoring
in quasi-static configuration—but showed to be not adequate for EMG monitoring of
walking with the exoskeleton. Firstly, walking is a dynamic task that produces constant
movement and friction between cables, which might induce electronic noise coming from
this constant cable movement and contact. Note that, although the electronic noise arising
from that phenomenon can be relatively low, the cables translate a raw EMG signal which
is also a very low-potential signal. In addition, the exoskeleton motors, drivers and power
cables also produce considerable electronic noise within the cables. In order to minimize
these effects, an EMG system that integrates measuring, filtering and analog-to-digital
conversion close to the measuring point would be beneficial for obtaining high-quality and
good signal-to-noise EMG signals.

The four synergies showed a similar composition for TC and AC walking conditions
and showed a shift, not statistically significant, in the OC walking condition. With respect
to TC and AC walking conditions, we found that synergies 1, 3 and 4 showed ankle
plantarflexion activity and synergy 2 ankle dorsiflexion, whereas the knee extension was
explained by the activity of synergies 1, 2 and 3. Synergy 4 showed knee flexion activity
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accompanied by some antagonist (extension) co-contraction from the ReFe muscle. These
results align with what has been described in the literature. For example, Barroso et al. [50]
also calculated four synergies, finding that ankle plantarflexion activity was described by
synergies 1, 3 and 4, ankle dorsiflexion by synergy 3, knee extension by synergy 2 and
flexion by synergy 4, with antagonist co-contraction of the VaLa muscle. Furthermore,
Zhang et al. [53] investigated the effects on muscle synergies due to exoskeleton-assisted
walking compared with free walking. Their results during free walking are slightly different,
but also showed ankle plantarflexion activity in synergies 2 and 3, ankle dorsiflexion in
synergy 1 and knee flexion in synergies 2 and 4 with considerable antagonist co-contraction
in the latter (ReFe and VaLa muscles). Exoskeleton-assisted walking did not modify the
synergies although some significant changes in the balance of the muscle groups were
observed, i.e., changes in muscle activation while the overall effect of the synergy in the
joint movement remained the same. However, synergy 4 showed an increment in the
agonist–antagonist activation of the knee muscles. We also found this agonist–antagonist
effect in the knee joint in synergy 4.

All four synergies decreased the FWMH duration (expressed as % of the gait cycle,
Table 4) compared to the other two walking conditions. These results are consistent with a
greater effort made by the user on the ankle plantarflexion and dorsiflexion movements
in order to activate the onset algorithm. Note that estimation of the walking intention
relied on the EMG from the Sol of the ipsilateral leg and the ReFe of the contralateral (i.e.,
loading) leg. Given the noisy quality of the EMG signals, the user had to increase muscle
activation beyond what was natural to him/her to initiate the step in order to increase the
EMG amplitude and to be successfully detected by the threshold algorithms. After the step
detection, the user would decrease the overall muscle activation toward the level needed to
complete the step. Note that the FWHM is a measure of the duration of the peak activation
(i.e., the smaller the FWHM value, the higher the ability of the user to contract the muscle).

Regarding onset detection, we can see in Figure 9 that the right step was triggered, on
average, in around 12% of the gait cycle, and the left step was triggered with both right
ReFe and left Sol in around 60% and 62% of the gait cycle, respectively. The percentage of
gait cycle timings obtained for both steps are in accordance with the values found in the
literature [54].

Results also show that to start the left step, the algorithm detected, in all cases, muscle
onset in the right Sol, not using the left ReFe as a trigger of the exoskeleton in any step.
Despite the filtering stage, the signal from the ReFe muscle remained too noisy for the
algorithm to work properly. Although the cables and electrodes were carefully revised, as
well as the EMG readings, this problem could not be solved.

Differences observed in the kinematics and muscle activation were not reflected in
differences in the overall physiological impact of walking (Figure 11). Furthermore, the
group-averaged subjective perception did not differ across walking conditions (Table 5).
Therefore, although the AC and OC walking conditions allowed the user to modulate
their walking pattern and to adapt to the exoskeleton actions, these were not flexible
enough to actually reflect a change either in the overall physiological cost of walking or
in the perceived experience of use. Furthermore, the item that received the lowest score
(Perceptibility, average 2.8 out of 7) indicates that the users experienced a low embodiment,
agency and emotions (as defined in Section 2.5.2) during all the walking experiments.

Along with the already discussed limitations on the EMG recordings, another limi-
tation of this study is its reduced sample size (n = 7 healthy subjects), which affects the
likelihood of obtaining statistical differences and thus the generalizability of the results.
However, the study allowed us to confirm the usefulness and limitations of our EMG-Onset
control versus conventional AC and OC control.

5. Conclusions

This is, to our knowledge, the first study to benchmark the effects on human–exoskeleton
interaction of three different exoskeleton controllers, including a new EMG-based controller
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designed by us and never tested in previous studies. Data collected will be very useful to
improve our controller towards its application in incomplete spinal cord injury patients.
Nevertheless, results indicate that, although no significant differences are observed, both
AC and OC controllers showed potential to be explored as a gait rehabilitation tool. Fur-
thermore, the INTENTION project was one of the first projects to perform experiments
in EUROBENCH’s facility, which allowed us to give valuable feedback on the use of the
testbeds and the overall facility, contributing to the improvement of the EURBENCH project
and to the scientific community.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Compliant assistance
BiFe Biceps Femoris
BR Breathing rate
CAN Controller Area Network
F CNS Central neural system
CoA Center of activity
DC Direct current
DT Double threshold
ECG Electrocardiographic
EMG Electromyography
FWMH Full width at half maximum
GaMe Gastrocnemius Medialis
GSR Galvanic skin response
PI Performance indicators
OC EMG-Onset control
PID Proportional–integral–derivative
ReFe Rectus Femoris
ROM Range of motion
sEMG Superficial EMG
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Sol Soleus
ST Single threshold
TC Trajectory assistance
TiAn Tibialis Anterior
VaLa Vastus Lateralis
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