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Abstract: Due to the influence of poor lighting conditions and the limitations of existing imaging
equipment, captured low-illumination images produce noise, artifacts, darkening, and other un-
pleasant visual problems. Such problems will have an adverse impact on the following high-level
image understanding tasks. To overcome this, a two-stage network is proposed in this paper for
better restoring low-illumination images. Specifically, instead of manipulating the raw input directly,
our network first decomposes the low-illumination image into three different maps (i.e., reflectance,
illumination, and feature) via a Decom-Net. During the decomposition process, only reflectance
and illumination are further denoised to suppress the effect of noise, while the feature is preserved
to reduce the loss of image details. Subsequently, the illumination is deeply adjusted via another
well-designed subnetwork called Enhance-Net. Finally, the three restored maps are fused together to
generate the final enhanced output. The entire proposed network is optimized in a zero-shot fashion
using a newly introduced loss function. Experimental results demonstrate that the proposed network
achieves better performance in terms of both objective evaluation and visual quality.

Keywords: low-illumination image enhancement; zero-shot learning; Retinex theory; image feature

1. Introduction

In the field of image processing, low-illumination image restoration is one of the most
important branches and can be used in a wide range of advanced vision tasks such as
military, surveillance, and security [1,2]. However, due to the limitations in recording equip-
ment and environmental factors, images and videos, especially when captured at night,
are severely degraded and large amounts of information can be lost in high-level visual
processing tasks [3,4]. Although a longer exposure time improves the image brightness
to some extent, it has few practical applications [5]. The aim of low-light image enhance-
ment is to highlight useful features of an image while weakening or eliminating noise and
improving contrast to produce better visual perception for human eyes [6,7]. Researchers
have proposed a large number of low-light image enhancement algorithms, and they can
be roughly divided into conventional enhancement methods and deep-learning-based
methods [8,9].

Conventional ones are mainly developed on the basis of image histograms [10] and
Retinex theory [11]. Based on histogram equalization (HE), Zhu et al. [12] proposed local
histogram equalization, which uses a sliding window to chunk the image, resulting in
significant local detail enhancement compared to original HE. Since then, sliding window
overlap algorithms, sliding window partial overlap algorithms, and so on have emerged
successively. Retinex theory decomposes the image into a light map and a reflectance map.
Earlier algorithms used the reflection map as an image enhancement effect, and the method
would amplify the noise in the image, which would affect the final result. Researchers have
made many improvements to address the problem of image noise, including the single
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scale Retinex algorithm (SSR) [13], multi-scale Retinex algorithm (MSR) [14], multi-scale
Retinex algorithm with image recovery (MSRCR) [15], multi-scale Retinex algorithm based
on HSV space, etc.

Deep learning has achieved good performance in the field of low-illumination image
enhancement because of its powerful feature representation and non-linear mapping
capabilities. Lore et al. [16] were the first to implement low-light image enhancement
(LLNet) using a deep learning approach, which proposes a deep autoencoder to identify
signal features from low-light images, capable of adaptively enhancing image brightness
without oversaturation. The increase in the image datasets in terms of quality as well as
in quantity has given rise to many Retinex-based deep learning methods that enable low-
light image enhancement by better estimating the reflectance component and enhancing
the luminance of illuminated images. Some of the Retinex-based deep learning methods
incorporate BM3D or channel attention mechanisms as a way of reducing image noise and
extracting image features to achieve better visual results [17]. Subsequent methods have
been improved in terms of targeting the limitations of the dataset, as well as overfitting
and real-time problems, improving the application of deep learning methods in the field of
low-illumination image enhancement.

Deep-learning-based approaches are the main trend in this research direction [18].
Although some of the low-light image enhancement algorithms based on deep learning
have achieved remarkable results, there are still several problems to be solved. Firstly,
existing methods mostly use fully supervised learning, although the illumination estimation
under such a framework is inherently ill-posed. Secondly, the enhancement effect of fully
supervised learning methods is heavily influenced by their training datasets, and thus
there are some common problems such as loss of image details, noise amplification, and
color distortion in the enhancement effect. Therefore, we propose a low-illumination
enhancement algorithm that requires only a single low-illumination image input in this
paper, and our contributions are summarized as follows:

• We propose a two-stage low-illumination image restoration network, in which a
pre-decomposition submodule is incorporated to divide the original image into illu-
mination, reflectance, and feature. Moreover, the whole network is optimized in a
zero-shot way instead of using supervised learning.

• To guide the decomposition network focusing on the dark area of the image, a new
loss function is proposed for our network. The loss function can also obtain relatively
clearer texture features in the dark area, and avoid the problem of overexposure or
underexposure in the others areas.

• Experiments show that our method achieves better performance on the benchmark
datasets. Compared with recent methods based on decomposition theory, the proposed
method can visually better retain the detailed features of images and avoid the problem
of overexposure. There is a significant improvement in PSNR and SSIM (reference
evaluation indices), and NIQE and LOE (no-reference evaluation indices).

The rest of this paper is organized as follows: In Section 2, we review representa-
tive Retinex-model-based and deep-learning-based methods for low-illumination image
enhancement. In Section 3, the model proposed in this paper is presented. The fourth
section introduces the loss function in detail. Section 5 gives the experimental results and
evaluation. The sixth part summarizes the whole paper.

2. Related Work
2.1. Retinex-Model-Based Approach

The Retinex-model-based approach enhances low-illumination images by the idea
of decomposition. The principle of Retinex theory, first proposed by Land and widely
used in image processing, can be expressed as S = R ∗ I, where ∗ denotes elemental
multiplication. S is the original image, R is the reflection map, and I is the illumination
map. The brightness and contrast of the image are improved by retaining the reflectance
properties while adjusting the intensity of the light map. Jobson et al. [11] proposed the
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single scale Retinex algorithm (SSR), which uses the construction of a Gaussian surround
function to filter each of the three-color channels of the image as the estimated light
component, and obtains the output after subtracting the logarithmically processed original
image from the light map. The multi-scale Retinex algorithm (MSR) [19] adds the number
of Gaussian surround functions to the SSR and can be seen as a weighted summation of
multiple SSRs that do not pass the scale. The adaptive multi-scale Retinex algorithm based
on the HSV color channel first transforms the image spatially, estimating the image light
component in luminance space before transferring back to RGB space [20].

2.2. Learning-Based Approach

In recent years, low-light image enhancement methods based on deep learning have
become popular and have made good progress. Starting in 2017, a deep-encoder-based
method was first proposed, which uses a variant of the stacked sparse denoising self-
encoder to identify features from shimmering images, adaptively enhance and denoise
them, and simultaneously highlight and denoise the images [16]. Shen et al. [21] proposed
a multi-scale Retinex combined with a CNN model that learns the end-to-end mapping
between low-light and bright images directly, with the network structure containing a
residual structure that makes full use of the information in each convolutional layer and
the relevant parameters set by backpropagation. Wang et al. [22] proposed the GLADNet
network structure, which first performs global illumination estimation of low-illumination
images and then reorganizes the details using the global part of the generated illumination
in connection with the original input, and the connection to the input image complements
the details. The aforementioned fully supervised learning methods have achieved good
results in self-illuminating image enhancement, but such methods require image pairs that
often need to be manually adjusted for parameters. There is still a certain gap between the
manually adjusted images and the real images, which limits the generalizability of fully
supervised learning methods in real environments.

Compared to fully supervised learning methods, unsupervised and zero-shot learning
methods have become more popular in recent years as they effectively avoid reliance on
datasets by constructing loss functions and constraining the images themselves to achieve
enhancement. Jiang et al. [23] first proposed the unsupervised learning method called
EnlightenGAN. EnlightenGAN is the first method to successfully introduce unpaired
training into low-light image enhancement. The method creates a mapping between
unpaired low-light and normal-light image domains to enable unsupervised training.
Fu et al. [24] proposed the low-illumination enhancement network (LE-GAN) using an
identity invariant loss and attention module, which enhances the feature extraction of
images using an illumination-aware attention module to improve visual quality while
achieving noise reduction and detail enhancement. In addition, identity-invariant loss
can solve the overexposure problem. Zhang et al. [25] trained a small CNN network
(ExCNet), where the network does not need to be trained in advance and then tested. It can
estimate the best-fit s-curve directly for a given backlit image. With its s-curve, the backlit
image can be recovered accordingly. These unsupervised learning methods have improved
considerably in terms of generalization ability, but there is still much to be achieved in
terms of image brightness, contrast, and color bias.

Compared with the above methods, the proposed method integrates image smoothing
into the decomposition network to extract the global features of the image and avoid the
loss of image details caused by the smoothing operation. This method can accurately
estimate the reflectance map, illumination map, and feature map of the image. Moreover,
this method does not need pairwise image pairs for training, which ensures its ability to
generalize to the illumination environment.

3. Methodology

In order to better preserve image details and improve image brightness at the same
time, as shown in Figure 1, the method in this paper is divided into two parts: decompo-
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sition and enhancement. In the decomposition part, the image is first decomposed into
illumination map, reflection map, and feature map. Then the illumination map is separately
enhanced, and finally the final effect is obtained by adaptive fusion. The remainder of this
section describes both modules in detail.
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Figure 1. The framework of the proposed model.

3.1. Decom-Net

Our Decom-Net is inspired by the Retinex theory. However, the original RetinexNet
proposed by Chen et al. [17] erases many detailed features of the image when noise re-
duction is applied to the image. In response, we propose a three-branch convolutional
decomposition network, shown in Figure 2, with three branches for estimating the illumi-
nation map, the reflectance map, and the feature map, respectively. It features a pooling
layer in the decomposition process, which allows the illumination and reflectance maps
to be denoised during the decomposition process. The Sigmoid function is chosen for the
activation functions of the illumination and reflectance maps to ensure that the output
is between 0 and 1. The activation function for the feature map is chosen as the tanh
function. The output of tanh is between −1 and 1, which has faster model convergence.
The decomposition of the image is carried out when the number of iterations has been
reached and the loss function has reached its minimum value.

3.2. Enhance-Net

The main purpose of the Enhance-Net is to adjust the brightness of the illumination, as
shown in Figure 3. The input of the module is the illumination map output by the Decom-
Net. The module is composed of eight convolutional layers, which can effectively obtain
the illumination information of the illumination map. In order to make up for the possible
loss of the effective information of the illumination map during the process, the input layer
is finally spliced to the last layer, and the output is the adjusted illumination map.
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4. Loss Function

We decompose low-illumination image S into three parts: illumination map I, re-
flectance map R, and feature map F.

S = (R + F) ∗ I (1)
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To better configure the network weights, we set up a loss function to guide the current
network to generate a more accurate branching section. This loss function is as follows:

L = Lrecon + λ1Ls + λ2Lt (2)

where Lrecon is the reconstruction loss function, Ls is the smoothness loss, and Lt is the
feature estimation loss. λ1 and λ2 are the weight factors.

4.1. Reconstruction Loss

In Retinex theory, the channel maxima of R, G, and B are usually used as an initial
estimate of illumination, and the reflectance image is obtained by pixel segmentation
between the original image and the illumination map. Moreover, we assume that the
three-color channels have the same illumination. Here, we follow the idea of Retinex theory
as a constraint on reflectance and illumination. The reconstruction losses in this paper are
as follows:

Lrecon = ‖S− S̃‖1 + ‖I − Ĩ‖1 + ‖R− R̃‖1 (3)

where S represents the input image, S̃ is the reconstructed image, I is the decomposed
illumination map, and Ĩ is the color channel maximum. R is the decomposed reflectance
map, R̃ = S/I, and L1-norm is used to bootstrap all loss functions in this paper.

4.2. Smoothness Loss

In this paper, in terms of noise, the reflectance and illumination maps should be
properly denoised to avoid the amplified noise on the enhancement effect. The loss function
is as follows:

Ls =
1

HWC

H

∑
i=1

W

∑
w=1

C

∑
c=1

(
‖∆xS̃‖+ ‖∆yS̃‖

)
(4)

where H, W, and C, respectively, represent the height, width, and channel of the image.

4.3. Feature Estimation Loss

In a low-illumination image enhancement task, it is inevitable to lose some detail
features. In the RetinexNet and other methods, smoothing reduces the sharpness of the
image itself, and the image becomes blurred. Therefore, it is necessary to extract the image
features separately in the network using the smoothing operation. In this paper, weighted
guide image features are extracted according to the estimated illumination map. The loss
function is as follows:

Lt = ‖S·F‖F +

[
‖β·(αxR)2‖1 + ‖β·

(
αyR

)2‖1

]
λ2

(5)

where ‖ ‖F represents the Frobenius norm of the matrix, β is the illumination guidance
weight, and its expression is as follows:

β = normalize
[

I·(αxR)2·
(
αyR

)2
]−1

(6)

where normalize denotes min-max normalization.

5. Experimental Results and Analysis

In all experiments, we empirically set λ1 = 0.5 and λ2 = 5000. All experiments in
this article were conducted in the same configuration environment, the training envi-
ronment configuration: Intel I7-8700 CPU, 32 GB RAM, and NVIDIA GeForce RTX2080
Ti GPU. PyTorch framework, PyCharm software in 32 GB environment, and Anaconda
Python 3.7 interpreter built the network framework. For the sake of fairness, two low-light
image datasets, LOL [17] and 5 K [26], were selected for comparison. The methods selected
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for comparison include HE [10], Retinex [19], ExCNet [25], RRDNet [27], LightenNet [28],
Zero-DCE [29], DSLR [30], and LLNet [16], and the results of all comparison methods are
reproduced from their official code.

5.1. Subjective Evaluation

We show the enhancement effects of various algorithms in Figures 4–7, and enlarge
some of the details to better carry out subjective visual evaluation. Figures 4 and 5 belong
to the LOL dataset. In Figure 4, HE significantly improves the image brightness by pulling
up the contrast, but the overall image distortion is serious. Retinex has the best visual
brightness improvement effect in Figure 4, but the clothing color is distorted and obvious
noise can be seen in the enlarged image. Compared with the previous two methods,
ExCNet avoids the impact of color distortion, but the detail is lost severely and the image is
white as a whole. RRDNet performed well on the original brighter images but performed
relatively poorly on the darker images, where the brightness boost was not significant,
making it difficult to achieve good visual effects. The LightenNet method showed average
brightness improvement in the comparison method, but the image showed a white blocky
phenomenon. Although Zero-DCE can retain the detail features of the image well, the
brightness enhancement is not obvious, and the color contrast of the image is significantly
reduced. The enhancement effect of DSLR produces obvious stacked block phenomenon,
the whole wardrobe part appears as a block effect, and there are artifacts. For LLNet, it can
be seen from the hanger and the enlarged part that details are seriously lost, and the image
enhancement effect is blurred as a whole. Compared with other methods, the brightness
improvement effect of the proposed method may not be the most ideal, but it effectively
avoids other problems, such as color distortion, detail loss and artifact phenomenon, etc.,
and the brightness of the enhanced effect is improved as a whole without overexposure
or underexposure phenomena. Figures 6 and 7 are from the 5 K dataset. In Figure 6, the
Retinex method has the highest visual brightness, but the overall image is overexposed and
the visible details are seriously lost. The enhancement effect of the HE method is overall
white. RRDNet, as with DSLR, has a low brightness boost, which has a big impact on
visual effects.
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5.2. Objective Evaluation

In addition to subjective visual evaluation, recognized image quality metrics for
quantitative comparisons are used to illustrate the effectiveness of the algorithms in this
paper. Many image quality evaluation metrics have been proposed in various image
processing fields, of which PSNR [31] is the most widely used objective evaluation metric.
PSNR stands for Peak Signal to Noise Ratio and is measured in dB, with larger values
indicating less distortion. SSIM [32] is a measure of the similarity between two images.
SSIM uses two images, one processed and the other real, to measure the similarity of the
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two images in terms of brightness, contrast, and structure, respectively. The value of SSIM
is between 0 and 1, and the closer to 1 the higher the similarity. Both of these metrics
have references, and for non-paired datasets, there are also non-reference metrics, such as
NIQE [33], which tests the test images by extracting features from the natural landscape to
more closely match the human eye’s visual perception. The LOE [34] reflects the natural
holding power of the image, with smaller values indicating a better brightness order and a
more natural look.

PSNR is used to evaluate the differences between images. It is widely used in image
quality evaluation of low-level image processing tasks such as image de-fogging, image
noise reduction, and image enhancement. The PSNR formula can be expressed as:

PSNR = 10× log
MaxValue2

MSE
(7)

where MSE is the mean square error between images, and MaxValue is the maximum pixel
value of two images. The formula of MSE can be expressed as:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

[g(x, y)− ĝ(x, y)]2 (8)

where H stands for image height and W stands for image width, and g(x, y) and ĝ(x, y)
stand for the original image and enhanced image, respectively.

SSIM is used to highlight the brightness, contrast, and structural similarity between
two images, and the value range is 0–1; the closer the value is to 1, the more similar the two
images are. Assuming that x and y are two input images, the formula is:

SSIM = [l(x, y)]α[C(x, y)]β[S(x, y)]γ (9)

where l(x, y) is brightness comparison, C(x, y) is contrast comparison, and S(x, y) is struc-
tural comparison. α, β, γ are greater than 0, and are used to adjust the three-part specific
gravity. l(x, y), C(x, y), and S(x, y) have the following formulas, respectively:

l(x, y) =
2µxµy + c1

µx2 + µy2 + c1
, C(x, y) =

2σxy + c2

σx2 + σy2 + c2
, S(x, y) =

σxy + c3

σxσy + c3
(10)

where µx and µy, respectively, represent the average values of the two images, σx and σy
represent the standard deviations of the two images. σxy represents the covariance of the
two images. The function of c1, c2, and c3 is to avoid the denominator being 0.

LOE is the sequential difference of brightness of an image, and the illumination change
of an image is evaluated by evaluating the sequential change process of the brightness
of the image in the neighborhood. LOE reflects the natural retention ability of the image.
A smaller value indicates that the image has a better luminance order and looks more
natural. The formula is:

LOE =
1

M× N

M

∑
i=1

N

∑
j=1

RD(i, j) (11)

where RD(i, j) is the difference in the relative brightness order between the original image
and the enhanced image.

NIQE is based on a set of “quality-aware” features and fits them into the MVG model.
The quality perception features are derived from a simple but highly regularized NSS
model. Then, the NIQE index of a given test image is expressed as the distance between the
MVG model of NSS features extracted from the test image and the MVG model of quality
perception features extracted from the natural image corpus. The NIQE formula is:

NIQE = D(v1, v2, m1, m2) =

√
((v1 − v2)

T
(

m1 + m2

2

)−1

(v1 − v2)) (12)
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where v1, v2, m1, and m2 represent the mean vector and covariance matrix of the natural
MVG model and distorted image MVG model, respectively.

We evaluated the results of the proposed method and eight other representative
methods on the PSNR, SSIM, NIQE, and LOE indicators on the LOL and 5 K datasets. It
can be seen from Tables 1 and 2 that no method can obtain the optimal value among all the
image quality detection indicators. However, in the LOL dataset test, our method has the
best performance on the PSNR index, and the second SSIM index is also better than most
methods. In the test of the 5 K dataset, the optimal value of the LOE index was obtained,
followed by NIQE, which also obtained the second place. Tables 1 and 2 more strongly
illustrate the effectiveness and applicability of the proposed approach.

Table 1. The LOL dataset (paired dataset) was quantitatively evaluated according to PSNR and SSIM.
The best results are shown in bold, the second is italic, and the third is underlined.

Method PSNR↑ SSIM↑
Input 5.10 0.19

HE [10] 15.23 0.59
Retinex [19] 10.92 0.37
ExCNet [25] 14.32 0.75
RRDNet [27] 8.72 0.60

LightenNet [28] 7.87 0.52
Zero-DCE [29] 11.98 0.76

DSLR [30] 10.78 0.67
LLNet [16] 14.00 0.78

Ours 17.84 0.74

Table 2. The 5 K dataset (unpaired dataset) was quantitatively evaluated according to NIQE and LOE.
The best results are shown in bold, the second is italic, and the third is underlined.

Method NIQE↓ LOE↓
Input 28.12 0

HE [10] 30.76 254.87
Retinex [19] 23.33 291.14
ExCNet [25] 17.96 316.85
RRDNet [27] 18.47 251.37

LightenNet [28] 20.97 305.50
Zero-DCE [29] 21.50 351.37

DSLR [30] 18.40 272.58
LLNet [16] 26.35 302.76

Ours 18.02 249.25

6. Conclusions

In this paper, we propose a two-stage zero-shot low-illumination image enhancement
network. Considering the mixed noise in low-illumination images and the loss of stylistic
features by general methods, the model adopts a smoothing operation in the decompo-
sition network to reduce image noise and obtain image texture feature images, which
can effectively avoid the above two problems. Comparative experiments show that the
proposed method is more consistent with human perception in the subjective visual angle,
and performs well in the comparison of objective evaluation indicators.
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