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Abstract: To address the problems of large storage requirements, computational pressure, untimely
data supply of off-chip memory, and low computational efficiency during hardware deployment
due to the large number of convolutional neural network (CNN) parameters, we developed an
innovative hardware-friendly CNN pruning method called KRP, which prunes the convolutional
kernel on a row scale. A new retraining method based on LR tracking was used to obtain a CNN
model with both a high pruning rate and accuracy. Furthermore, we designed a high-performance
convolutional computation module on the FPGA platform to help deploy KRP pruning models. The
results of comparative experiments on CNNs such as VGG and ResNet showed that KRP has higher
accuracy than most pruning methods. At the same time, the KRP method, together with the GSNQ
quantization method developed in our previous study, forms a high-precision hardware-friendly
network compression framework that can achieve “lossless” CNN compression with a 27× reduction
in network model storage. The results of the comparative experiments on the FPGA showed that the
KRP pruning method not only requires much less storage space, but also helps to reduce the on-chip
hardware resource consumption by more than half and effectively improves the parallelism of the
model in FPGAs with a strong hardware-friendly feature. This study provides more ideas for the
application of CNNs in the field of edge computing.

Keywords: convolutional neural networks; hardware friendly; network compression; regular pruning;
LR tracking; high parallelism

1. Introduction

In recent years, convolutional neural networks have become the most important
intelligent algorithms in the field of computer vision [1–4], driving the implementation of
artificial intelligence applications and being widely used in edge computing scenarios such
as real-time target detection in cell phones, smart health devices, automobiles, drones, and
satellites [5–9]. However, with the increasing detection accuracy requirements, the size
of the network continuously expands with more and more parameters. For example, the
number of parameters of the VGG-16 network [1] is about 130 million, the model storage
is more than 500 Mb, and more than 30 billion calculations are required to complete one
image detection task of 224 × 224 pixels. The large number of parameters leads to the need
for off-chip memory, such as DDR, when deploying convolutional neural networks for
smart chips with small on-chip storage space. The performance bottleneck of the off-chip
memory is the data transfer delay, which can slow the data supply. During the operation of
a CNN, frequent readings of the parameters in the memory are required, and the mismatch
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between the rates of data reading and calculation can cause the computational module to
fail to achieve the expected efficiency and affect the system performance [10]. The huge
amount of computation also leads to the challenge of deploying algorithms in smart chips
with limited computational resources and I/O ports. Meeting the requirements regarding
low power consumption, high accuracy, and high computational efficiency is difficult in
edge applications.

Therefore, improvements in CNN algorithms are essential to reduce the number of
parameters and calculations. One approach is to directly design lightweight networks
having fewer parameters and calculations, such as MobileNet [11], which uses depth-wise
separable convolution instead of standard convolution and reduces the number of parame-
ters by 33× and calculations by 27× compared with those of VGG-16. However, during
the hardware deployment process, the computation of depth-wise separable convolution
requires a large amount of memory access, which leads to problems such as high energy
consumption and low efficiency. Another effective method is to directly prune the original
CNN models [12–20]. By pruning the weights or structure in network models, the number
of redundant parameters in the model can be reduced to reduce the amount of model
computation and storage. During the hardware deployment process, using standard con-
volution in the conventional CNN model can considerably reduce memory access through
mature data reuse technology [21,22]. At present, the mainstream CNN model pruning
methods are usually divided into three types: non-structured [12–15], structured [16–20,23],
and pattern [24–26] pruning, as shown in Figure 1.
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The object of non-structured pruning is weights. The number of weights is sufficient
to ensure a large amount of pruning without affecting the accuracy, and by randomly
pruning the weights [12], we can obtain a high pruning rate model with high accuracy.
Han et al. [12] first proposed the concept of nonstructured pruning to prune the AlexNet
model by 80% with only a 0.1% accuracy loss. Liu et al. [14] proposed a weight regenera-
tion retraining method, which resulted in the ResNet-50 pruning accuracy exceeding the
baseline model with an 80% pruning rate, showing that nonstructured pruning achieves an
excellent lightweight effect at the software level. However, for hardware deployment, the
role of CNN model pruning can only be reflected by skipping all zero calculations [27]. The
non-structured pruning method separates software from hardware and does not consider
the continuous transmission and computation characteristics of data flow in hardware.
The irregular weight distribution in the pruned model makes it difficult for hardware
to directly skip the zero calculations, and the pruned model needs to be recoded and
stored by compressed sparse rows (CSR), compressed sparse columns (CSC) [28], or some
other special methods [27,29,30] to help the hardware select the input feature data that
need to be computed according to the index to skip the zero calculation. Instead, these
encoding methods bring a large amount of extra storage and large number of extra in-
dexing operations, markedly reducing the computational efficiency and increasing the
deployment difficulty. Moreover, random pruning leads to a different number of weights
remaining in each convolutional kernel in the pruned model. In chips, such as FPGAs,
with a highly parallel architecture [31], this feature can make the workload unbalanced
between the computational modules of different channels, leading to the underuse of
hardware resources and failure to take advantage of the lightweight network after pruning.
Conversely, structured pruning is devoted to pruning with greater granularity, which is
mainly divided into filter pruning [17,18] and channel pruning [19,20,23], which directly
change the structure of CNN models by removing the filter and convolutional channels
with higher regularity. This not only reduces the number of parameters and calculations,
but also effectively reduces the generated intermediate feature map results, alleviates the
pressure on data storage and transmission in the chip, facilitates hardware deployment,
skips the zero calculations, and has good hardware adaptability. However, the structural
changes caused by large granularity pruning have a large impact on the network, and the
accuracy loss is difficult to recover, preventing high pruning accuracy at a high pruning rate.
Li et al. [17] found that structured pruning can usually only maintain accuracy without
descent at a pruning rate below 30% through a variety of experiments. Many subsequent
researchers [18,19] performed structured pruning by different methods aiming to further
increase the pruning rate, but they generally could only obtain a result of no decrease in
accuracy at a 40% pruning rate. Ding et al. [20] were able to increase this number to 50% by
introducing convolutional reparameterization methods, and their ResRep algorithm has
become the SOTA of structured pruning. However, for a network with a huge number of
parameters such as VGG, a pruning rate of 50% is still not enough.

To combine the advantages of both methods, pattern pruning was proposed [24–26].
Pattern pruning aims to find an intermediate sparse dimension to combine the high accu-
racy of small-grained pruning models with the high regularity of large-grained pruning
models. The object of pattern pruning is also the weights, but it selects some specific
convolutional kernel pruning patterns by analyzing the importance of each weight, and
pruning is performed strictly according to these patterns. Tan et al. [26] achieved lossless
pruning with a 60% pruning rate according to this approach. Actually, pattern pruning only
reduces the number of convolutional kernels’ pruning patterns for nonstructured pruning
and guarantees the same number of residual weights for each convolutional kernel, solving
the problem of unbalanced workload between computational modules of different channels
during hardware deployment. However, the weight distribution is still irregular, and the
number of indexes needed for storage is only relatively reduced. To skip the zero calcu-
lations, additional indexing and input feature data selection operations are still required,
which prevents the computational efficiency from being effectively improved. In other
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words, the current pruning algorithms cannot balance the software pruning performance
and hardware deployment performance of CNNs, which has certain limitations.

Furthermore, to recover the accuracy loss from pruning, many researchers have used a
classical pruning architecture with training, pruning, and retraining [12]. The conventional
traditional retraining method usually chooses to fix the final learning rate during the
original CNN training as the learning rate for the whole retraining phase [32]. During
network training, a small learning rate leads to slow algorithm convergence and a large
learning rate will make the algorithm scatter [33]. Smith [34] stated that a changing learning
rate is the most beneficial for CNN training. To further increase the pruning accuracy and
enhance the retraining effect, using a changing learning rate in the retraining process may
be a solution.

To address the above issues, in this study, we focused on software and hardware co-
optimization, considering a model pruning method with high sparsity, high accuracy, and
high computational efficiency for easy deployment based on the different characteristics of
the three pruning methods mentioned above. First, we developed a pruning method based
on the row scale of convolutional kernels, KRP. The KRP method prunes each convolutional
kernel according to the importance of each row, and each convolutional kernel retains only
one row weight while all the remaining weights are pruned. The pruning granularity of
KRP is between non-structured and structured pruning, and it is easy to obtain higher
accuracy than that of structured pruning at the same pruning rate. Meanwhile, the KRP
method has strong hardware adaptation capability. It ensures the same number of weights
remain in each convolutional kernel, like pattern pruning, to avoid the problem of an
unbalanced workload. The weight distribution of the convolutional kernels after row-scale
pruning has high regularity, which can directly skip all the zero calculations produced by
pruning by selecting the row from which the input feature data are entered during the
hardware deployment process. Second, we propose a retraining method based on learning
rate tracking to replace the conventional retraining approach in the retraining phase. This
method reinitializes the learning rates in the retraining phase to their values in the learning
rate schedule of the original CNN training process and corresponds the learning rates of the
remaining epochs to the values in the schedule to achieve the effect of LR tracking, which
can obtain higher training accuracy than conventional retraining in most cases. The whole
process is similar to the retraining method proposed in the lottery hypothesis [35,36], where
the unpruned weights are reinitialized to their original weights during the training process.
Eventually, we performed a 4-bit quantization of the KRP pruned model using the GSNQ
quantization proposed in our previous study [37] and designed a highly pipelined high-
performance convolutional computation module on the FPGA platform for the obtained
lightweight network to verify the hardware-friendliness of the KRP method. This module
directly skips all the zero calculations without excessive indexing, significantly saves
hardware resources, and improves computational efficiency. The results of our experiments
with hardware and software verify that the proposed pruning algorithm can effectively
achieve a balance between hardware and software performance, providing a hardware-
friendly CNN pruning model with high accuracy.

In summary, this study provides a reference for the lightweight deployment of con-
volutional neural networks in edge applications from both theoretical and experimental
aspects. The main work in this study was as follows:

1. In this study, we designed a CNN pruning method based on convolutional kernel
row-scale pruning. It is highly practical by combining the high pruning rate and
high accuracy features of non-structured pruning, high regularity and hardware-
friendly features of structured pruning, and same number of remaining weights in
each convolutional kernel of pattern pruning.

2. In this study, we developed a retraining method based on LR tracking, which sets
the retraining learning rate according to the variation in the original training learning
rate, which can more quickly achieve higher training accuracy than conventional
retraining methods.



Sensors 2023, 23, 824 5 of 22

3. In this study, we performed pruning experiments on the CIFAR10 classification
dataset [38] on four CNN models dedicated to CIFAR10, AlexNet [39], VGG-16 [1],
ResNet-56, and ResNet-110 [40], and compared the results with those of state-of-
the-art methods. We conducted comparison experiments on two commonly used
training learning rate variations [1,40,41] to verify the effectiveness and generality of
the proposed LR tracking retraining method.

4. In this study, we combined the KRP pruning method with our previously developed
GSNQ quantization algorithm to propose a hardware-friendly high-precision CNN
compression framework, which can match the original network performance while
compressing the network by 27×. We designed a highly pipelined convolutional
computation module on an FPGA platform based on this compression framework,
which can skip all the zero calculations without excessive indexing and significantly
reduce hardware resource consumption.

The remainder of this paper is organized as follows: Section 2 describes the proposed
KRP pruning and LR tracking retraining methods. Section 3 describes the experimental
details, and we analyze the experimental results. Section 4 provides a summary of the study.

2. Proposed Method
2.1. Convolutional Kernel Row-Scale Regular Pruning (KRP)

Nonstructured pruning and pattern pruning cannot efficiently skip all the zero cal-
culations during hardware deployment, and the random distribution of weights in the
convolution kernel caused by unstructured pruning can lead to poor use of the hardware
resources. In contrast, structured pruning with high regularity cannot achieve large-scale
pruning and match the performance of the original network. To balance the advantages
of these methods and obtain a hardware-friendly pruning CNN model with high sparsity,
high accuracy, and high regularity, we developed a regular pruning method, KRP, based
on the row scale of convolutional kernels, where only one row of weight is kept in each
convolutional kernel and all other rows are pruned. The KRP method is shown in Figure 2,
where the white indicates the pruned rows and the blue indicates the unpruned rows.
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The KRP method ensures that each convolutional kernel is transformed into a highly
regular sparse matrix with a regular arrangement of zero weights after pruning. In terms
of hardware deployment, all the zero calculations produced by pruning are skipped by
directly determining which row the input feature map data start to enter according to
the weight distribution, which can be efficiently processed by the hardware architecture
without too much additional data storage or data indexing. This reduces the amount
of storage while reducing the amount of computation and improving the computational
efficiency of the deployed CNN models with hardware-friendly features. In terms of
software level, the pruning granularity of the KRP pruning method is between that of
nonstructured pruning and structured pruning and can obtain higher pruning accuracy
more easily than structured pruning.

A common method for determining the pruning criteria, i.e., to choose which row in
the convolutional kernel should be pruned, is to judge the absolute value of the weights. In
many previous studies, researchers have usually assumed that the larger the absolute value
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of the weight, the more substantial its effect on CNN models; and the smaller the absolute
value of the weight, the less its effect on CNN models [12,42,43]. Based on this experience,
many non-structured pruning methods use pruning criteria that directly remove weights
with small absolute values [12–14]. Additionally, many researchers have explored the
feasibility of the absolute value criteria in structured pruning methods [17,19]. A common
evaluation criterion in structured pruning methods is to characterize the importance of a
filter or kernel by calculating the sum of the absolute values of all weights in the whole
filter or kernel (i.e., the L1 norm). A larger L1 norm indicates that this part has a stronger
impact on CNN models. This evaluation criterion is the most effective model pruning
criterion [13]. Therefore, the proposed convolutional kernel row-scale pruning method
(KRP) is also characterized using this type of evaluation criterion.

Assuming that there is a total of J convolution kernels in a CNN model, for the jth
convolution kernel Kj, with size H × H, we first cluster the weights in the convolution
kernel by rows to obtain the H group of weight sets, and each group contains H weights.
Then, we separately calculate the sum of the absolute values of all weights in each group of
the weight set:

Sh =
H

∑
i=1
|W(i)| 1 ≤ h ≤ H (1)

where Sh denotes the sum of the absolute values of all weights in the hth group of weight
sets in the kernel, and W(i) denotes the weights in the hth group of weight sets.

After calculating the absolute value of all the weight sets, we sort all the Sh in each
kernel, keep the row with the largest value of Sh, and set the weights in the other rows to
zero to obtain the pruned convolutional kernel. The whole process is shown in Figure 3,
where the red numbers indicate the largest values of Sh.
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For CNN models that contain both convolutional and fully connected layers, the
convolutional layers contain a large number of calculations, while the fully connected layer
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contains a large number of parameters. Taking the VGG-16 for the ImageNet dataset [44]
as an example, the fully connected layers contain 89% of the parameters in the entire
network model, while the convolutional layers contain only 11%. Conversely, the fully
connected layers contain only 1% of the MAC operations of the entire network model,
while the convolutional layer contains the remaining 99% [45]. This indicates that the
convolutional layers are suitable for computational acceleration, and the fully connected
layers have greater compression potential. Therefore, for all convolutional layers in CNN
models, we pruned them using the proposed KRP regular pruning method to facilitate
the acceleration of the CNN during hardware deployment. For all fully connected layers,
we use the flexible and random unstructured pruning method based on the importance of
weights [12], which has no excessive impact on computational efficiency and can obtain
higher pruning accuracy.

2.2. LR Tracking Retraining

Many advanced CNN pruning methods follow a standard pruning framework: train-
ing the original CNN model; pruning the CNN model according to different pruning
criteria; fine-tuning the pruning model by additional multiple retrainings with a low learn-
ing rate (LR) [32]. Because the accuracy of the CNN model is affected in the case of a large
number of modifications or reductions in the original CNN parameters, it needs to be
helped by means such as retraining to compensate for the accuracy loss. In this study, we
also followed this pruning framework by fine-tuning the pruning model with retraining to
restore network accuracy.

In the study of the lottery hypothesis [35], a high-performance subnetwork (which can
be the pruning CNN model) was found during the CNN initialization phase. By initializing
all the weights pruned off in the CNN models to their initial weights and then retraining,
high-precision pruning results can be obtained at a faster speed. This study provided a
new idea for the retraining of CNNs. Combined with the fact that a changing learning rate
is more effective than a fixed one, as mentioned by Smith [34], we developed a retraining
method based on LR tracking.

We trained an original CNN model for T epochs to obtain a pre-trained model,
recorded the learning rate schedule of this training process, and then pruned this model by
the KRP pruning method proposed in Section 2.1 to obtain a new pruned CNN model. At
this point, we set a retraining process of t epochs to recover the accuracy. We set the first
learning rate of the retraining process as the learning rate at the T–t epoch in the original
training learning rate schedule, and the subsequent retraining learning rate is directly set
according to the change in learning rate after the T–t epoch in the original training learning
rate schedule. This method is similar to tracking the learning rate of the original network
training, which can be called LR tracking retraining and is shown in Figure 4.
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The horizontal axis indicates the number of training epochs, the vertical axis indicates
the corresponding learning rate, r is the initial learning rate of the original network training,
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and the black line indicates the preset learning rate variation pattern. T indicates the
original network training epochs, t1 and t2 indicate two different settings for LR tracking
retraining epochs and the red line indicates the learning rate variation pattern during
LR tracking retraining. Figure 4b,c show that the LR tracking retraining is equivalent to
tracking the learning rate schedule of the original network training after regressing the
learning rate to the corresponding position.

A weight update phase occurs in the retraining process, and we need to restrict the
pruned weights to keep the value of 0 in this process. Therefore, in this study, we set a
mask matrix Mj for each convolution kernel, defined as:

Mj (a) =

{
0 Wj (a) ∈ Pj

1 other cases
(2)

where Wj (a) denotes the weight a in the jth kernel, and Pj denotes the set of pruned
weights in the jth kernel. This formula is used to construct a structure identical to the
original network by setting up a matrix containing only 0 s and 1 s, with 0 s denoting
pruned weights, and 1 s denoting unpruned weights. When the network is retrained and
the weights are updated, we use the stochastic gradient descent algorithm (SGD) and
restrict the update of weights using the constructed mask matrix structure. The specific
update method is as follows:

W ′j (a) = W j (a) − γ
∂E

∂(W j (a))
Mj(a) (3)

where γ denotes the training learning rate under the corresponding epoch, E denotes the
loss function, Wj (a) denotes weight a in the jth kernel, W ′j (a) denotes the new weight after
updating, and Mj(a) denotes the mask corresponding to weight a in Equation (2). When
Mj (a) = 1 (i.e., the corresponding weights are the unpruned weights), the weights are
updated normally during the retraining process; when Mj (a) = 0 (i.e., the corresponding
weights are the pruned weights), the weights are kept fixed during the retraining process
without updating. In the accuracy recovery phase, the pruned weights are kept unchanged,
and only the unpruned weights are retrained to compensate for the accuracy loss caused
by pruning. This is the same for the fully connected layers.

For CNNs where all convolutional kernels are 3 × 3, such as VGG-16, ResNet-18,
ResNet-56, ResNet-110, etc., the pruning rate of the KRP method is relatively low and
proposed method easily compensates for accuracy loss. Therefore, for these CNN models,
we used a one-time pruning method in this study to complete the pruning of the whole
CNN at once, and then retrained based on LR tracking to recover the accuracy, which
can significantly reduce the time cost of training. The whole KRP algorithm is shown in
Algorithm 1.

Algorithm 1 One-time KRP pruning process.

Input 1: The pre-trained CNN model: {W j : 1 ≤ j ≤ J}
Input 2: Learning rate schedule of the original CNN training process: {LR t : 1 ≤ t ≤ T}
1: for j ∈ [1, . . . , J] do
2: Determine the L1 norm of all rows by Equation (1)
3: Keep the row with the largest L1 norm, prune the other weights, and update Mj
4: end for
5: if there are FC layers
6: Set the pruning rate of FC layers for unstructured pruning and update Mj
7: Set the LR tracking retraining epoch and retraining learning rate to correspond to LRt
8: Update the weights with Equation (3)
Output: Row-scale regular pruning CNN model
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However, one-time pruning may not be suitable for CNNs containing a large number
of 5 × 5, 7 × 7, or 11 × 11 convolutional kernels (GoogleNet [46], AlexNet [39], etc.). The
accuracy loss with pruning by keeping only one row of weights in each kernel is too large
to be eliminated. Therefore, an incremental layer iteration pruning framework needed to
be introduced when necessary to complete pruning layer-by-layer, as shown in Figure 5.
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2.3. Hardware-Friendly CNN Compression Framework Based on Pruning and Quantization

In our previous study, we developed a hardware-friendly, high-accuracy, power-of-
two quantization method, GSNQ [37], which can produce 3-bit or 4-bit high-accuracy
quantization CNN models. Additionally, the power-of-two quantization achieves 0 on-chip
DSP resource occupation in FPGAs, which effectively improves the CNN computational
efficiency. We pruned the CNN model by the KRP method proposed in this study and
then performed 4-bit quantization of the pruned model using GSNQ. Both methods are
hardware-friendly, and the combination forms a hardware-friendly CNN model compres-
sion framework, which can achieve a compression rate of 26× to 27×. Figure 6 shows the
overall framework of this CNN compression framework, where the pruning part uses a
one-time pruning method, and the quantization part uses a grouped iterative method.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 22 
 

 

However, one-time pruning may not be suitable for CNNs containing a large number 
of 5 × 5, 7 × 7, or 11 × 11 convolutional kernels (GoogleNet [46], AlexNet [39], etc.). The 
accuracy loss with pruning by keeping only one row of weights in each kernel is too large 
to be eliminated. Therefore, an incremental layer iteration pruning framework needed to 
be introduced when necessary to complete pruning layer-by-layer, as shown in Figure 5. 

 
Figure 5. The incremental layer iteration pruning framework. 

2.3. Hardware-Friendly CNN Compression Framework Based on Pruning and Quantization 
In our previous study, we developed a hardware-friendly, high-accuracy, power-of-

two quantization method, GSNQ [37], which can produce 3-bit or 4-bit high-accuracy 
quantization CNN models. Additionally, the power-of-two quantization achieves 0 on-
chip DSP resource occupation in FPGAs, which effectively improves the CNN computa-
tional efficiency. We pruned the CNN model by the KRP method proposed in this study 
and then performed 4-bit quantization of the pruned model using GSNQ. Both methods 
are hardware-friendly, and the combination forms a hardware-friendly CNN model com-
pression framework, which can achieve a compression rate of 26× to 27×. Figure 6 shows 
the overall framework of this CNN compression framework, where the pruning part uses 
a one-time pruning method, and the quantization part uses a grouped iterative method. 

 
Figure 6. High-accuracy CNN compression framework. 

2.4. FPGA Design 
A highly pipelined shift-operation-based convolutional computation module de-

signed in our previous study [37] for the power-of-two quantization model is shown in 
Figure 7. 

Figure 6. High-accuracy CNN compression framework.

2.4. FPGA Design

A highly pipelined shift-operation-based convolutional computation module designed
in our previous study [37] for the power-of-two quantization model is shown in Figure 7.
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Figure 7. Convolutional computation module for CNN model based on GSNQ quantization.

This convolutional computation module functions to complete the convolution of an
input feature map with a 3 × 3 convolutional kernel and outputs an output feature map
after the ReLU activation function. PE is the multiplication processing unit based on the
shift operation, as shown in Figure 8.
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Figure 8. Multiplication processing unit based on shift operation.

CNNs containing a large number of multiplication operations and the on-chip DSP
resources in FPGAs being relatively scarce lead to a fundamental limitation of the computa-
tional efficiency of the CNNs in hardware. The designed multiplication processing unit
uses shift operations instead of multiplication operations according to the characteristics
of power-of-two quantization and can be directly implemented in FPGAs using abundant
on-chip LUT resources for implementation, which can achieve the effect of not occupying
any on-chip DSP resources and improving the computational efficiency.

For the CNNs compressed by the pruning and quantization-based network compres-
sion framework in this study, the structure in Figure 7 needs to be further improved by
designing a special convolutional computation module in FPGA to adapt to the changed
network structure after pruning. First, for the 3 × 3 convolutional kernels, there will be
three weight distributions after KRP pruning. We need to rearrange and add indexes for
them to efficiently calculate, as shown in Figure 9.

As shown in Figure 9, we convert the pruned 3 × 3 convolutional kernels to a 1 × 4
format for storage and computation in FPGAs. In addition to removing all the pruned
weights, we also use 2-bit binary numbers (00, 01, and 10) as indexes to represent the
three forms of pruned kernels, and we add them to the first position of the rearranged
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kernels. These indexes can facilitate the selection and computation of kernels in subsequent
operations. Similarly, for pruned convolution kernels of other sizes, the corresponding⌈

logK
2

⌉
-bit indexes are used to represent them, where K denotes the number of rows of

convolution kernels, and d · e denotes the ceiling operation.
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The rearranged convolution kernels are stored in the FPGA on-chip SRAM. Then, we
designed a dedicated convolutional computation module to more accurately match the
proposed KRP pruning method in a pipeline form according to the weight distribution
characteristics of row-scale pruning, as shown in Figure 10.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 22 
 

 

As shown in Figure 9, we convert the pruned 3 × 3 convolutional kernels to a 1 × 4 
format for storage and computation in FPGAs. In addition to removing all the pruned 
weights, we also use 2-bit binary numbers (00, 01, and 10) as indexes to represent the three 
forms of pruned kernels, and we add them to the first position of the rearranged kernels. 
These indexes can facilitate the selection and computation of kernels in subsequent oper-
ations. Similarly, for pruned convolution kernels of other sizes, the corresponding ඃ 
log2

K ඇ-bit indexes are used to represent them, where K denotes the number of rows of 
convolution kernels, and ⌈ · ⌉ denotes the ceiling operation. 

The rearranged convolution kernels are stored in the FPGA on-chip SRAM. Then, we 
designed a dedicated convolutional computation module to more accurately match the 
proposed KRP pruning method in a pipeline form according to the weight distribution 
characteristics of row-scale pruning, as shown in Figure 10. 

 
Figure 10. Convolutional computation module for CNN compression model based on KRP pruning 
and GSNQ quantization. 

Figure 10 shows that the input part is the same as that shown in Figure 7. We still use 
two buffers with a depth equal to the width of the input feature map to reuse the input 
feature map data (the number of buffers depends on the size of the convolutional kernel). 
After the module starts working, the feature map data start to be transferred into Buffer2 
in the form of a data stream. After Buffer2 is filled, the remaining data start to be trans-
ferred into Buffer1, and when Buffer1 is filled, three input data streams are formed. After 
a three-to-one multiplexer (MUX), only one data stream is finally selected for subsequent 
calculations. Streams 1, 2, and 3 represent the data input from the first, second, and third 
rows of the feature map, respectively. For the three pruned convolutional kernel formats, 
when the index of the kernel in this convolutional computation module is 00, Figure 9 
shows that the first two rows in the feature map will not be computed because the weights 
of the first two rows are all zero. This is equivalent to the 1×3 convolutional kernel starting 
calculating from the third row of the feature map, which represents the index 00 that cor-
responds to data stream 3. This means that after filtering by the MUX, we can skip all the 
zero calculations and only calculate the unpruned part. Similarly, the convolutional kernel 
with index 01 corresponds to data stream 2, and the convolutional kernel with index 10 
corresponds to data stream 1. The first index of each rearranged kernel is used as the en-
able signal of the MUX to select its output data stream, which is input to the 1 × 3 convo-
lution sliding window. PE is the multiplication computation unit based on the shift oper-
ation shown in Figure 8. We set two registers between the PEs to temporarily store the 
feature map data, and each register can output and input one feature data per clock cycle, 
which enables data reuse during convolution calculation and turns the 1 × 3 convolution 
kernel into a sliding window for sliding calculation in the feature map. The other ReLU 
activation functions and truncation module operations remain consistent with the design 
of our previously reported method [37]. 

This convolutional computation module takes advantage of the row-scale convolu-
tional kernel pruning to significantly reduce the computation amount and storage require-
ment, while still maintaining a highly pipelined computation mode. Unlike unstructured 

Figure 10. Convolutional computation module for CNN compression model based on KRP pruning
and GSNQ quantization.

Figure 10 shows that the input part is the same as that shown in Figure 7. We still
use two buffers with a depth equal to the width of the input feature map to reuse the
input feature map data (the number of buffers depends on the size of the convolutional
kernel). After the module starts working, the feature map data start to be transferred
into Buffer2 in the form of a data stream. After Buffer2 is filled, the remaining data start
to be transferred into Buffer1, and when Buffer1 is filled, three input data streams are
formed. After a three-to-one multiplexer (MUX), only one data stream is finally selected
for subsequent calculations. Streams 1, 2, and 3 represent the data input from the first,
second, and third rows of the feature map, respectively. For the three pruned convolutional
kernel formats, when the index of the kernel in this convolutional computation module is
00, Figure 9 shows that the first two rows in the feature map will not be computed because
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the weights of the first two rows are all zero. This is equivalent to the 1×3 convolutional
kernel starting calculating from the third row of the feature map, which represents the
index 00 that corresponds to data stream 3. This means that after filtering by the MUX,
we can skip all the zero calculations and only calculate the unpruned part. Similarly, the
convolutional kernel with index 01 corresponds to data stream 2, and the convolutional
kernel with index 10 corresponds to data stream 1. The first index of each rearranged kernel
is used as the enable signal of the MUX to select its output data stream, which is input to
the 1 × 3 convolution sliding window. PE is the multiplication computation unit based on
the shift operation shown in Figure 8. We set two registers between the PEs to temporarily
store the feature map data, and each register can output and input one feature data per
clock cycle, which enables data reuse during convolution calculation and turns the 1 × 3
convolution kernel into a sliding window for sliding calculation in the feature map. The
other ReLU activation functions and truncation module operations remain consistent with
the design of our previously reported method [37].

This convolutional computation module takes advantage of the row-scale convolu-
tional kernel pruning to significantly reduce the computation amount and storage require-
ment, while still maintaining a highly pipelined computation mode. Unlike unstructured
pruning, this convolutional computation module can skip all the zero calculations pro-
duced by pruning without abundant extra indexes and retrieval operations, which can save
more hardware resources and improve computational efficiency, and has strong practical
application value.

3. Experiments

To verify the performance and universality of the row-scale convolutional kernel
pruning and LR tracking retraining, we set up comparative pruning experiments to compare
the proposed methods with a variety of other methods. In terms of hardware, to verify
hardware adaptability, impact on CNN computation efficiency, and application value of the
KRP method, we also set up several groups of comparative experiments on the designed
convolution computation module on FPGAs.

3.1. KRP Pruning Comparative Experiments
3.1.1. Implementation Details

To prove the effectiveness and universality of the proposed KRP method and LR track-
ing retraining at the software level, we set up pruning experiments on the CIFAR10 dataset
on the AlexNet, VGG-16, ResNet-56, and ResNet-110 CNNs, which were all dedicated to
CIFAR10, and compared the results with the traditional retraining method and existing
representative pruning algorithms.

We trained these original CNN models on the CIFAR10 dataset with two learning rate
change modes and obtained the baseline model for retraining algorithm testing. One mode
of learning rate was the standard training mode mentioned in the literature [1,40], and the
other was a commonly used mode based on warm-up and cosine annealing attenuation [41].
The two learning rate change modes are shown in Figure 11.

For the two modes, we set the original training process for 160 and 110 epochs,
respectively, for AlexNet and VGG-16; and 180 and 160 epochs, respectively, for ResNet-56
and ResNet-110. Other important training parameters are shown in Table 1.

The sizes of the convolutional kernels in VGG-16, ResNet-56, and ResNet-110 are
all 3 × 3, while the sizes of the convolutional kernels in AlexNet include 11 × 11, 5 × 5,
and 3 × 3. Therefore, for AlexNet, we adopted the incremental layer iteration framework
shown in Figure 5, and we kept only one row of weights in all convolutional kernels with
different sizes. For the other three networks, we used one-time pruning and retraining
to reduce the time cost. We adopted a hybrid pruning method with KRP pruning for the
convolutional layers and nonstructured pruning for the fully connected layers, so that the
pruning rate of AlexNet and VGG-16 reached 70% and that of ResNet-56 and ResNet-110
reached 66.7%.
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Figure 11. Learning rate change modes for original CNNs training: (a) standard step descent mode;
(b) warm-up and cosine annealing attenuation mode.

Table 1. Important CNN training parameters.

Network Batch Size Weight Decay Momentum

AlexNet 64 0.0001 0.9
VGG-16 64 0.0001 0.9

ResNet-56 128 0.0001 0.9
ResNet-110 128 0.0001 0.9

The whole experiment was based on the Python PyTorch library [47]. The development
environment was the PyCharm Community Edition 2021.2.3, and the experimental platform
was an NVIDIA GeForce RTX 2080 Ti GPU.

3.1.2. Comparative Experiments of LR Tracking Retraining Method

In this study, we separately conducted conventional traditional retraining and LR
tracking retraining experiments for the obtained pruned models. For each CNN model,
we set the retraining comparative experiments every 10 epochs between 0 and the total
epochs of the original CNN training, and the results of the experimental comparison of
the four networks under the standard step descent training mode are shown in Figure 12,
where the blue indicates the highest retraining accuracy of the pruning model obtained by
conventional retraining with different epoch numbers, and the red indicates the highest
retraining accuracy of the pruning model obtained by the proposed LR tracking retraining
with different epoch numbers. Each set of red and blue bar charts represents a set of
comparison experiments.

Figure 12b–d shows that for networks where the kernel sizes are all 3 × 3, one-time
pruning was sufficient to obtain a high-performance pruning model at a pruning rate of 70%
with an accuracy loss of no more than 0.8%. The results in Figure 12a show that for networks
containing 11 × 11 and 5 × 5 convolutional kernels, such as AlexNet, the incremental layer
iteration approach effectively compensated for the accuracy loss caused by large-scale
pruning of large-size convolution kernels, and the final pruning accuracy loss was 0.58%.
This provides strong proof that the proposed KRP pruning algorithm is applicable to
any size of the convolutional kernel and has strong universality and effectiveness. The
results in Figures 12 and 13 show that the LR tracking retraining method outperformed
the conventional retraining method in most cases, and the optimal settings of the epoch
numbers for LR tracking retraining ranged from 35% to 50% and 70% to 100% of the total
epochs of the original CNN training. The training performance at other epochs was similar
to that of conventional retraining. From 0% to 35%, the learning rate variation in the LR
tracking retraining method under the standard step descent training approach, as shown
in Figure 11a, was the same as that of the conventional retraining method, resulting in
close performance between them. The similarity in performance in the range of 50–70%
illustrates that the network should not be trained at learning rates with fewer epochs
followed by a direct reduction in the learning rate, which leads to the optimal value being
skipped and affects the training accuracy.
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Figure 12. Results of different retraining methods with standard step descent training mode. Com-
parison of retraining results of (a) AlexNet KRP pruning model; (b) VGG-16 KRP pruning model;
(c) ResNet-56 KRP pruning model; and (d) ResNet-110 KRP pruning models.
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Figure 13 shows a comparison of the results of the retraining experiments of the
warm-up and cosine annealing attenuation training mode. Again, the blue indicates the
highest retraining accuracy obtained by the conventional retraining, and the red indi-
cates the highest retraining accuracy obtained by the LR tracking method. The results
showed that the LR tracking retraining method outperformed the conventional retraining
method at any retraining epoch in the original training mode of warm-up and cosine
annealing attenuation.

Figure 14 shows the retraining accuracy variation in the results of the ResNet-56 KRP
pruning model shown in Figure 13c for different epochs for the two retraining methods,
with the blue solid line indicating the conventional retraining method and the red solid line
indicating the LR tracking retraining method. The starting retraining accuracy was higher
when using a fixed small learning rate to retrain, and it quickly converged and reached
the optimal accuracy. The LR tracking method started with lower retraining accuracy, but
the accuracy increased faster and finally always exceeded the accuracy of the conventional
retraining method.
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In conclusion, the LR tracking retraining method can obtain higher accuracy more
quickly than the conventional retraining method, which can effectively reduce the time
required for retraining and can be used as an alternative to the conventional retraining
method. Additionally, with the LR tracking retraining method, the performance of the
proposed KRP pruning algorithm is excellent in a variety of CNNs and can produce a
hardware-friendly pruning CNN model with high accuracy and a high pruning rate, which
has high practical value.
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3.1.3. Comparison with State-of-the-Art Pruning Methods

To further validate the proposed pruning method, we compared the results of KRP
with those of some classical pruning methods [14,17,20,35,48] at similar pruning rates (all
using one-time pruning), and we comprehensively evaluated them. Among them, the
ResRep algorithm is the current SOTA model for structured pruning [20]. The comparison
results are shown in Table 2.

Table 2. Performance comparison of different pruning methods on the CIFAR10 dataset.

Networks Methods Pruning Type Pruning Rate Accuracy ∆ Accuracy

VGG-16
(Baseline: 92.76%)

Pruning filters Structured 69.7% 90.63% −2.13%
Lottery ticket Structured 69.7% 92.03% −0.73%

ITOP Nonstructured 70.0% 92.99% +0.23%
KRP Between both types 70.0% 92.54% −0.22%

ResNet-56
(Baseline: 92.66%)

Pruning filters Structured 70.0% 90.66% −2.00%
Lottery ticket Structured 70.0% 91.20% −1.46%

TRP Structured 66.1% 91.72% −0.94%
ResRep Structured 66.1% 91.84% −0.82%
ITOP Nonstructured 66.7% 93.24% +0.58%
KRP Between both types 66.7% 91.87% −0.79%
KRP Between both types 63.8% 92.65% −0.01%

The non-structured pruning algorithm ITOP had the highest pruning accuracy at
the same compression rate. However, due to the considerable randomness of the weight
distribution in the nonstructured pruning model, the obtained pruning model is not suitable
for deployment in hardware and has low practical application value. The structured
pruning model has strong practical application value because of its stronger pruning
regularity, which does not require additional computation during, and is convenient
for, hardware deployment. However, the experimental results showed that the pruning
accuracy of the structured pruning algorithms (Lottery ticket, TRP, ResRep, etc.) was
generally low. In contrast, the pruning network obtained by our KRP pruning method had
high regularity, similar to that of structured pruning, while being more accurate than that of
the structured pruning SOTA model ResRep. The accuracy loss of the final pruning model
of KRP was less than 0.8%, essentially achieving one-time lossless pruning with a 70%
pruning rate. We also verified in ResNet-56 that the KRP pruning method could exactly
obtain a performance matching that of the baseline model at a 63.8% pruning rate, which is
much higher than the 50% pruning rate of the structured pruning SOTA model [20].

In conclusion, the proposed pruning algorithm successfully solves the contradiction
between the hardware and software performance of currently structured pruning and
nonstructured pruning. On the premise of hardware-friendly, our algorithm has higher
pruning accuracy at a high pruning rate, which demonstrates its strong application value.

3.1.4. Experiments on CNN Compression Framework Based on KRP and GSNQ

We combined the KRP pruning method with the GSNQ quantization method pro-
posed in our previous study [37] to develop a hardware-friendly and high-precision CNN
compression framework, as shown in Figure 6. All parameters in the CNN pruning model
obtained by KRP were still 32-bit floating-point numbers, which hinders the deployment
of FPGAs. We used the GSNQ quantization method to quantize the KRP pruning mod-
els by 4 bits to obtain 4-bit fixed-point CNN models with 70% fewer parameters, which
compressed the storage volume of the CNN models by 27×. For example, the original
storage volume of the VGG-16 model dedicated to CIFAR10 was 114.4 Mb, and after com-
pression by this compression framework and rearrangement of the pruning kernels shown
in Figure 9, the final network model file stored in the FPGA was only 4.7 Mb, which could
be directly stored in the on-chip SRAM on FPGAs without using off-chip memory. The
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compression effect is extremely remarkable. Table 3 shows the compression accuracy of the
three CNN models after this compression framework.

Table 3. Accuracy by the CNN compression framework.

Network
Accuracy

Baseline KRP KRP and GSNQ

VGG-16 92.76% 92.54% (−0.22%) 92.79% (+0.03%)
ResNet-56 92.66% 91.87% (−0.79%) 92.56% (−0.10%)
ResNet-110 93.42% 92.66% (−0.76%) 93.28% (−0.14%)

We found that after being compressed by this compression framework, the accuracy
of the VGG-16 model exceeded that of the baseline model, while ResNet-56 and ResNet-
110 also basically experienced no accuracy loss. Therefore, the proposed pruning and
quantization-based CNN compression framework can help to obtain 4-bit fixed-point
lossless compression CNN models with a pruning ratio of 70%, which substantially reduces
the bandwidth, storage, and computational pressure in FPGAs without losing accuracy.
This is important for the practical application of convolutional neural networks.

3.2. FPGA Design Experiments
3.2.1. Implementation Details

On the FPGA platform, we compared the convolution calculation module based
on KRP pruning and GSNQ quantization with other FPGA deployment modules. The
input used in the experiment was the 32 × 32 pixels feature maps in the CIFAR10 dataset.
The whole FPGA deployment experiment was written in Verilog hardware description
language based on a ZYNQ XC7Z035FFG676-2I chip, the on-chip hardware resources of
which included 171,900 LUTs, 343,800 FFs, and 900 DSPs. The development environment
was the official Xilinx compilation environment: Vivado Design Suite-HLx Editions 2019.2.

3.2.2. Results Analysis

First, we compared the two designed convolutional computation modules
(Figures 6 and 9) with two conventional convolutional computation modules on FPGA:
Module 1 [49], which used on-chip DSPs to implement multiplication operations tradition-
ally, and Module 2 [50], which used on-chip LUT to implement multiplication operations
by using the hardware synthesis function in the Vivado compilation environment. Modules
1, 2, and 3 were all convolutional computation modules for the non-pruned models, and
module 4 added the KRP pruning method to module 3 as a convolutional computation
module for the pruned model. Table 4 shows a comparison of the hardware resource
consumption when the four convolutional computation modules ran independently.

Table 4. On-chip resource consumption comparison of one convolution computing module. Bit width
indicates the bit width of the CNN parameters after GSNQ quantization.

Modules Bit Width LUTs FFs DSPs

Module 1: implement multiplication by on-chip DSPs 4 bits 375 293 9
Module 2: implement multiplication by on-chip LUTs 4 bits 499 257 0
Module 3: based on GSNQ only 4 bits 397 273 0
Module 4: based on KRP and GSNQ 4 bits 162 165 0

Module 1: implement multiplication by on-chip DSPs 3 bits 250 268 9
Module 2: implement multiplication by on-chip LUTs 3 bits 402 226 0
Module 3: based on GSNQ only 3 bits 263 237 0
Module 4: based on KRP and GSNQ 3 bits 124 134 0

We found that our designed module 3 achieved zero on-chip DSP occupation com-
pared with module 1, while the consumption of other resources remained basically the
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same. Compared with module 2, the on-chip LUT and FF consumption in module 3 was
significantly reduced. These were described in detail in our previous study [37].

The proposed pruning and quantization compression framework performed better
in terms of on-chip resource consumption. From the resource consumption of module 4,
we can see that the KRP pruning method not only reduced the CNN parameters by a
large amount, but also helped to reduce on-chip hardware resource consumption while
maintaining efficient hardware operation. Compared with the convolution calculation
module 3, which only quantized and did not prune, the hardware resource consumption
of module 4 was reduced by more than 50%. Compared with modules 1 and 2, module 4
even significantly reduced hardware resource consumption overall, which means that the
KRP pruning method can theoretically help to achieve more than twice the parallelism
of the original CNN model and has additional advantages in multichannel parallel CNN
deployment computation.

In most cases, the number of input and output channels of convolutional layers in
CNNs was between 32 and 512. Therefore, in the FPGA deployment work, regardless of
the method followed to accelerate the CNN computation, a convolutional computation
accelerator architecture must be built with at least 32 convolutional computation modules
in parallel [51–55]. Therefore, we also performed 32-channel parallel processing for the
designed modules and compared the results of the four methods to verify the performance
of the proposed method in real applications. Table 5 shows the on-chip hardware resource
consumption of different modules for 32-channel parallelism.

Table 5. On-chip resource consumption comparison of 32-channel convolutional computing modules
in parallel.

Modules Bit Width LUTs FFs DSPs

Module 1: implement multiplication by on-chip DSPs 4 bits 13,438 (7.82%) 11,463 (3.33%) 288 (32%)
Module 2: implement multiplication by on-chip LUTs 4 bits 16,906 (9.83%) 9960 (2.90%) 0 (0.00%)
Module 3: based on GSNQ only 4 bits 13,917 (8.10%) 10,824 (3.15%) 0 (0.00%)
Module 4: based on KRP and GSNQ 4 bits 5481 (3.19%) 6051 (1.76%) 0 (0.00%)

Module 1: implement multiplication by on-chip DSPs 3 bits 9430 (5.49%) 9938 (2.89%) 288 (32%)
Module 2: implement multiplication by on-chip LUTs 3 bits 13,849 (8.06%) 9037 (2.63%) 0 (0.00%)
Module 3: based on GSNQ only 3 bits 9500 (5.53%) 9348 (2.72%) 0 (0.00%)
Module 4: based on KRP and GSNQ 3 bits 4231 (2.46%) 4899 (1.42%) 0 (0.00%)

We found that, as in the comparison of one convolutional computation module, the
GSNQ quantization method well overcame the limitation of on-chip DSP resources on the
deployment performance, and module 3 performed better than modules 1 and 2. The KRP
pruning-based module 4 further significantly reduced the on-chip hardware resource con-
sumption of FPGA deployment on this basis, occupying the fewest resources. Without the
on-chip DSPs limitation, we could continue to stack 32-channel parallelism up to 64-channel
or even 128-channel parallelism. The proposed KRP pruning method and designed con-
volutional computation module can considerably save the on-chip hardware resources of
FPGAs and achieve increased parallelism to enable higher computational efficiency, which
strongly demonstrates the hardware-friendliness and engineering application value of the
proposed KRP pruning method. Although the two cases of quantizing parameters into
4-bit and 3-bit have less impact on the on-chip hardware resource consumption in FPGAs,
considering the slightly larger accuracy loss of 3-bit quantization, the 4-bit quantization
of the KRP pruning model using the GSNQ method in the proposed CNN compression
framework is a comprehensive choice with outstanding performance.

4. Conclusions

In this study, we designed an innovative CNN regular pruning method, KRP, based
on the row scale of convolutional kernels and a hardware-friendly and high-accuracy CNN
compression framework. The KRP pruning method uses the rows in the convolutional
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kernel as the basic pruning unit, keeping only one row for each convolutional kernel and
pruning all other rows. The pruning granularity is between that of nonstructured pruning
and structured pruning, and it can easily obtain higher pruning accuracy than structured
pruning methods with high regularity, and all the zero calculations caused by pruning can
be skipped during FPGA deployment without much indexing. During model retraining,
we proposed a special retraining method based on LR tracking, which can achieve far better
results than traditional retraining methods by strictly tracking the learning rate schedule
of the original CNN training. The results of several sets of experiments demonstrated
that the KRP pruning method can produce lossless network pruning models at a pruning
rate of over 60%. The proposed CNN compression framework based on the KRP pruning
method and GSNQ quantization method can help to construct a lightweight CNN model
that exactly matches the performance of the original model. For the compression models,
we designed a high-performance convolutional computation module in FPGA. The results
of multiple sets of experiments demonstrated that the KRP pruning method can help to
significantly reduce the storage and hardware resource consumption during deployment
in FPGA, and more effectively improve the computational parallelism and memory access
efficiency with good hardware adaptation capability. The methods described in this paper
provide a complete idea for the application of CNNs in the edge computing field, which
can help with constructing high-accuracy lightweight CNN models and implementing a
high-performance hardware accelerator.
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