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Abstract: Compared with traditional rule-based algorithms, deep reinforcement learning methods in
autonomous driving are able to reduce the response time of vehicles to the driving environment and
fully exploit the advantages of autopilot. Nowadays, autonomous vehicles mainly drive on urban
roads and are constrained by some map elements such as lane boundaries, lane driving rules, and
lane center lines. In this paper, a deep reinforcement learning approach seriously considering map
elements is proposed to deal with the autonomous driving issues of vehicles following and obstacle
avoidance. When the deep reinforcement learning method is modeled, an obstacle representation
method is proposed to represent the external obstacle information required by the ego vehicle input,
aiming to address the problem that the number and state of external obstacles are not fixed.

Keywords: autonomous driving; deep reinforcement learning; car following; obstacle avoidance;
obstacle representation

1. Introduction and Backgrounds

In a mature autonomous driving system, the environment perception module is
equivalent to human eyes and ears, while the decision-planning module is equivalent to
the human brain.

Most traditional decision-planning modules have a layered and hierarchical archi-
tecture, where the content is transferred layer by layer. Such a structure makes it easier
to decompose complex tasks; thus, it is convenient to detect problems with the specific
module. In addition, relying heavily on prior knowledge and formulae, traditional meth-
ods have strong interpretability. Owing to their good performance in terms of accuracy
and interpretability, the traditional decision-planning modules are the mainstream system
of autonomous driving technology at present. It is indeed established that the cascade
structure in traditional approaches also brings drawbacks in the aspects of instantaneity
and reliability. First, data computation and transmission through different layers hinder the
instantaneity and flexibility of the modules. Second, the operation of traditional modules
requires all elements in it to operate under normal condition, or it will be out of order, i.e.,
the system of traditional decision-planning modules is vulnerable and unreliable.

The adaptive cruise control (ACC) method has been widely applied in most traditional
vehicle-following practices. In order to maintain a relatively stable distance with the target
vehicle, the speed of the ego vehicle changes along with the target one on the straight road.
As described in [1], the paper used the SMPC method, and a conditional linear Gaussian
model was proposed and trained with actual measurements to estimate the probability
distribution of the future speed of the preceding vehicle. Then, the paper built the relevant
driving scenarios in the single lane in the CarMaker, applied the control strategy in the
simulation scene, and verified it. Ioannou et al. modeled the ACC system as a hybrid system
with constant acceleration, smooth acceleration, and a linear state feedback controller in [2].
Kitazono et al. in [3] adopted an adaptive neural network scheme to solve the traffic
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stability problem in convoys. In addition, there are also many other different strategies
used to adjust the distance between the ego and target vehicles, with the utilization of the
ACC system. In [4], Choi et al. used a fixed distance strategy and a sliding mode control
method to control the speed and distance between two vehicles.

There are two main traditional obstacle avoidance methods, including reference line
fitting methods and artificial potential field methods. As for the reference line fitting
method, the rationale of trajectory planning is widely adopted to generate a cluster of
alternative trajectories, with the consideration of vehicle dynamics and the general vehicle
attitudes. Then, these trajectories are sorted on the basis of cost value, and a collision-free
obstacle avoidance trajectory with the least cost is finally obtained after collision detection.
Finally, the trajectory tracking control algorithm is used to control the ego vehicle to avoid
the obstacles. The artificial potential field method is a virtual force method, and its basic
idea is to regard the vehicle’s motion in the surrounding environment as the motion of the
vehicle in the artificially established virtual position. The target point generates gravity,
which guides the vehicle toward the target point, and the obstacles generate repulsion to
avoid a collision between the ego vehicle and the obstacles. Under the combined force
of gravity and repulsion, the ego vehicle moves along the direction of the potential field
decline, resulting in an optimal path without collision. To avoid the local minimum, Ref. [5]
proposed a virtual potential field detection circle model with an adjustable radius. The
“minimum trap” formed by the obstacle repulsion field had been detected by the model
in advance, whose success rate in obstacle avoidance has reached 90% or more. In [6],
the obstacle avoidance function was introduced into the path planning layer, and the
trajectory tracking layer transformed the linear time-varying MPC optimization problem
into a quadratic programming problem, which has realized the path emergency obstacle
avoidance and tracking.

Recently, some optimization methods based on traditional obstacle avoidance have
been proposed and have achieved good results. In [7], a personalized motion planning
and tracking control framework was proposed to prevent collisions between autonomous
vehicles and obstacles ahead. The simulation results showed that the proposed framework
could improve the corresponding driving performance according to the individualized
needs of different passengers. The author in [8] improved an algorithm integrating path
pruning, smoothing, and optimization with geometric collision detection based on the
rapidly exploring random trees (RRT) algorithm. The simulation indicated that the vehicle
could successfully track the path efficiently and reach the destination safely. An improved
heuristic Bi-RRT algorithm, specialized for an unknown dynamic environment, was put
forward by [9] for obstacle avoidance. Thence, the related experiments have verified
the good performance of such an algorithm in differentiable coherence path generation,
ensuring both ride comfort and stability of the vehicle.

Today, with the continuous development of artificial intelligence technology, more
industries have entered the digital deepening and intelligent extension stage. The essence
of digitization is data, while the foundation of intelligence is artificial intelligence tech-
nology. In the current stage of autonomous driving, technology based on data-driven
methods has been fully developed. Until now, data-driven methods have not only played
a part in the perception and positioning of autonomous driving technology, but have
also imposed increasing influences in decision-making planning and autonomous driving
control technology.

Reinforcement learning is a machine learning method, often used to deal with sequen-
tial decision-making issues. Since the reinforcement learning method is trained through
trial and error in the training process, the method strongly depends on the simulation
environment. For the autonomous driving decision-planning module based on the rein-
forcement learning method, the system’s input can be raw perceptual data, such as pixel
data from an RGBD camera or lidar points cloud data. Refs. [10–13] presented some model-
free deep reinforcement learning methods for autonomous driving. For those data with
high dimensions, a convolutional neural network for dimensionality reduction is necessary
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before being passed into the reinforcement learning network. Being mature, the external
perception and recognition technology based on cameras and lidars make accurate data
accessible, including the ego surrounding environment status information, target vehicle
status information, and self-vehicle status information. Moreover, developers can directly
obtain a list of relevant objects from the simulation platform.

Recently, reinforcement learning algorithms have been increasingly utilized to deal
with complex sequential decision-making and control problems. In the following field of
vehicles, the literature [14] applied the policy gradient algorithm in reinforcement learning
to train the CACC longitudinal controller to eliminate the errors of car following. However,
the exploitation of the discrete control variable and more straight-forward environmental
reward rules caused the repeated oscillations of the control quantities during the sim-
ulation. Ref. [15] proposed a potential game-combined multi-agent deep deterministic
policy gradient (MADDPG) approach to optimize multiple UAVs’ trajectories. Ref. [16]
put forward a method that combined imitation learning with reinforcement learning en-
abling the agent to achieve a higher success rate in urban autonomous driving navigation
scenarios. The literature [17] designed an autonomous driving system using the Q network
and A* algorithm. For an unknown rough terrain scenario, Ref. [18] constructed a deep
reinforcement learning method for safe local planning of a ground vehicle. However, the
above-mentioned algorithms were still restricted within the longitudinal control on straight
roads, but seldom addressed the issues related to the turning part of intersections.

Similarly, in the obstacle avoidance part of the high-precision map, obstacle avoidance
methods are all based on reinforcement learning methods. The literature [19] investigated
the dual-target behavior of trajectory tracking and obstacle avoidance based on waypoints
through augmenting the agent’s observation vector by the reward trade-off parameter, thus
enabling the agent to adapt to changes in its reward function. In [20], the author proposed
a deep Q-network-based method for collision-free decisions. The DQN-aided algorithm
was introduced for determining the trajectory and velocity of the AV by receiving real-time
traffic information from the base stations. In [21], they presented a novel learning-based con-
trol algorithm for ASV systems with collision avoidance. The proposed control algorithm
combined a conventional control method with deep reinforcement learning to provide a
closed-loop stability guarantee, uncertainty compensation, and collision avoidance. The
scholars in [22] proposed an interpretable decision-making framework for autonomous
vehicles at highway on-ramps adopting a latent space actor–critic-based method with asym-
metric inputs. When constructing the simulation scene, the ego vehicle and the obstacle
are usually simplified as a circle or a mass point, where the circle center is the center of
the vehicle, and the radius is the safety distance. In this case, the interaction between the
vehicle’s polys (i.e., the attitude requirements of the vehicle) has been ignored, especially
when passing through a narrow passable area. Hence, such methods did not make full
use of the advantages of reinforcement learning. Meanwhile, the reinforcement learning
method requires the input dimension of the object list to be unified. Such requirements
have imposed more challenges to the scene where the external obstacles are not fixed.

Based on the above-mentioned problems ignored in previous studies on autonomous
driving related to reinforcement learning, this paper conducts related research using the
CARLA simulation platform. CARLA is an open-source autonomous driving simulation
platform based on the UE4 engine’s rendering, which provides users with the Python API
interface, which can build rich driving scenes, and rich map elements can be obtained.
In addition, the CARLA platform can also import self-built OpenDRIVE map files and
OpenSCENARIO autonomous driving scene files, which can be customized according to
the users’ own needs.

In this paper, the factor of the braker is not taken into consideration in the CARLA
simulation platform, while only two control quantities are required in the controlled
vehicle, i.e., the steering wheel angle and the accelerator pedal strength. Previous studies
on autonomous driving technology based on reinforcement learning usually discretize
both control quantities, with the utilization of the reinforcement learning model based
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on the DQN method for training. From a human driver’s perspective, when driving a
vehicle, the steering wheel angle and the brake pedal’s position can take any value within
the limit range. In other words, the input variables are continuous. To give full play
to the characteristics of the neural network model and get closer to the level of human
driver operation, the reinforcement learning basic model in this paper adopts the twin
delayed deep deterministic policy gradient network framework that can generate actions
in a continuous space. Additionally, this method will be referred to as TD3 for short. To
sum up, the relevant scenarios of car following and obstacle avoidance in this paper are
all carried out using the CARLA simulation platform, and the TD3 method is used as the
calculation benchmark. The main contributions of this article are as follows:

• A car-following model method based on reinforcement learning is proposed, which
combines the relevant map elements in the map and the Frenet coordinate system, and
can follow the car stably on straights, intersections, and curves.

• We propose an external obstacle state input algorithm that can be adaptive to the ego
vehicle’s speed. Additionally, this algorithm can represent the shape and pose of a
random number of obstacles.

• An obstacle avoidance method using reinforcement learning under map constraints is
designed based on the improved obstacle input method. This method can still perform
well when passing through narrow passable areas.

The rest of this paper is organized as follows. In Section 2, a reinforcement learning-
based target tracking model is presented, and this model can have perfect curve passing
performance. Section 3 mainly introduces a multi-obstacle representation method. Finally,
Section 4 concludes the paper.

2. Reinforcement-Learning-Based Car following Method Using the Map Constraints
2.1. Reinforcement Learning Theory

To meet the continuous demand of action space for policy optimization, this paper
selects the TD3 as the basic algorithm model based on the actor–critic structure.

The actor–critic algorithm is an extension of the policy gradient method. In its single-
step updated calculation, the core formula can be expressed as follows:

δ = rt(st, at) + vω(st+1)− vω(st)
ωt+1 = ωt + αωδt∇ωvω(st)

θt+1 = θt + αθ∇θ log πθ(at|st)δt

(1)

Among them, the first line is the calculated TD error, the second line is the updated
critic model parameters, and the third line is the updated actor model parameters.

TD3 Theoretical Knowledge

Google DeepMind combines the above actor–critic method with the DQN network
and proposes a deep deterministic policy network (deep deterministic policy gradient),
referred to as DDPG. The calculation formula of its objective function is as follows:{

J(ω) = minωEβ

[
1
2 (rt + γQω(st+1, at+1)−Qω(st, at))

2
]

J(θ) = maxθEβ[Qω(st, µ(st))]
(2)

Among them, ω is the critic network parameter, θ refers to the actor network parameter,
Q(s, a) is the action value function, µ(s) is the deterministic strategy, and γ is the discount
factor. By solving the above objective function, we can obtain{

∆ω = Eβ[(rt + γQω(st+1, at+1)−Qw(st, at))∇ωQω(st, at)]

∆θ = αEβ

[
∇ωQω(st, at)

∣∣∣a=µθ(s)∇µθ(st)
] (3)
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The TD3 method in this paper is called the twin delayed deep deterministic policy
gradient, which has been improved as follows based on DDPG:

(1) Actor network and critic network delayed asynchronous updates. After updating
the critic network several times, update the actor network to ensure that the training of the
actor network is more stable.

The actor network will be updated to ensure its stability with regard to the training performance.
(2) Two sets of twin critical networks are used, and the smaller value is selected in the

actual calculation to prevent the network from overestimating.
(3) Adding perturbations to the actor’s internal network output ε2 makes the target

network estimate more accurately and robustly.
The structure of the TD3 network is constructed in Figure 1:
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Figure 1. The improved TD3 network in this paper.

Combined with the reinforcement learning TD3 structure and the simulation process
performance used in training, data units are stored in the container named replay buffer
during the entire training process. This paper adopts a method that dynamically adjusts
the replay buffer’s size according to different training stages, which is divided into three
stages [23]. The first stage refers to the process of data storage, whose capacity is small.
Therefore, it is easy to reach the upper limit and enter the second stage, which refers to the
process of storing data while training. In this stage, the capacity of the replay buffer is also
increased until the third stage is entered. In the third stage, the final replay buffer capacity
is reached, but the data volume does not increase at this stage. Whenever new data are
added, the farthest data will be popped out from the replay buffer to ensure the constancy
of the replay buffer’s capacity.

2.2. State Function and Reward Function
2.2.1. Frenet Coordinate System Introduced

In urban structured roads, one of the challenges in the path planning module of
autonomous driving technology is to continuously express the relative position between
the vehicle and the road map during the whole driving process, resulting in a fuzzy relative
position relationship between them. If the lane information is ignored, the degree of
freedom of the path will be too high to control so that it is easy to violate road traffic
rules. During the DARPA Automotive Challenge, Stanford University proposed the Frenet
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coordinate system, as shown in Figure 2, in which s represents the distance along the road
and l represents the displacement from the longitudinal line.
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and the Frenet coordinate system.

If the vehicle drives along the lane (usually the lane center reference line), in the
Cartesian coordinate system the trajectory of the vehicle is consistent with the reference
line, as shown on the left of the above figure. In the Frenet coordinate system, if the vehicle
drives along the lane, the trajectory becomes a straight line traveling along s, as shown on
the right of the above figure, which greatly simplifies the difficulty of trajectory calculation.
In normal driving scenarios, the trajectory of the vehicle and the reference line usually
do not overlap. As shown in Figure 3, the blue one is the actual driving trajectory of the
vehicle, while the dark gray one represents the reference line trajectory, and the points
on the reference line are waypoints. In the global coordinate system, the motion state of
the ego vehicle at any time t can be described as

[→
x , θx, vx, ax

]
, in which

→
x represents the

current position of the vehicle marked as Q, and in the global Cartesian coordinate system
it is represented as

→
x (t) = (x(t), y(t)). In the Frenet coordinate system, P is the projection

point of the current position point Q on the reference line, s refers to the arc length of the
road lane from the starting point of the reference line to the projection point P, and l is
the distance between the Q point and the projection point P, so it can be described by the
longitudinal displacement s and the lateral displacement l relative to the reference line, i.e.,
→
x (t) = (x(t), y(t)) = (s(t), l(t)). In the actual code, the position of the projected point P is
calculated by the two closest waypoints to the Q point.

2.2.2. Environmental Scenario Analysis

When the ego vehicle follows the target vehicle ahead at a non-junction position such
as a straight road or a one-way road, the reference waypoint is on the center line of each
lane, and the tracking exercise will be simpler. At the road junction, the distribution of
waypoints is relatively dense, and the calculated closest point may be different from the
lane where the preceding vehicle is located, as shown in the following Figure 4.

Therefore, when building the environmental scene and driving scenario in this paper,
the driving options (straight, turn left, turn right) of the preceding vehicle at the junction
should be confirmed first according to the change in the heading angle of the preceding
target vehicle, and then a junction option list can be obtained. The ego vehicle reference
line is updated according to the target junction option set. The detailed algorithm steps are
presented as Algorithm 1.
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Algorithm 1. Reference waypoints’ set acquisition algorithm in each episode

Initialize the ego vehicle reference waypoint list.
Initialize the target vehicle steering option list.
Use the nearest waypoint from the CARLA map to the location of the ego car as the current waypoint.
Repeat (for each episode):

while the size of waypoints is less than N do:
Add the waypoint list to the current waypoint, and find the next waypoint at the interval of sampling_dis according to the

current waypoint.
If there is more than one choice for the next waypoint area, the next waypoint will be chosen randomly.
Set the new next waypoint as the new current waypoint.
Update the steering option of the target vehicle at the intersection to the waypoint list.
If the waypoint of the ego vehicle reference waypoint list is the first waypoint at the junction, update the waypoint according to

the target steering option list.
Re-update the ego vehicle reference waypoint list.
When the ego vehicle exits the corresponding junction, pop the target vehicle steering option list.

end while
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2.2.3. State Function

The set list of ego vehicle reference waypoints is made of all waypoints on the center
line of the lane, which are equivalent to a reference line. According to the content of the
previous section, the position of the ego vehicle can be projected onto the correct lane by
using the set list of reference waypoints so as to obtain the longitudinal distance s and
lateral distance l of the ego vehicle relative to the reference line.

Therefore, under the scene without map constraints, the ego vehicle’s and target’s
relative state information can be utilized. However, when there are map constraints, and
the state input should be considered, this paper selects the relative state of the ego vehicle
and the target vehicle as Sego_obj

t , as well as the relative state of the ego vehicle and the
reference waypoint set list as Sego_wps

t .

St =
{

Sego_obj
t , Sego_wps

t

}
(4)

When considering the relative relationship between the ego vehicle and the target
vehicle, different from the reinforcement learning method without map constraints, it needs
to be calculated in the Frenet coordinate system as follows:

Sego_obj_1
t = long_disobj − long_disego

Sego_obj_2
t = clip

(
velego_long

clip(velobj_long ,min,max)
, min, max

)
Sego_obj

t = Sego_obj_1
t + Sego_obj_2

t

(5)

Among them, Sego_obj_1
t represents the distance between the ego vehicle and the target

vehicle, i.e., the integral arc length between the projection points of the ego vehicle and the
preceding vehicle on the lane. Under the constraints of the map lane, this state can more
accurately reflect the relative position of the ego car and the preceding target vehicle than
the line segment distance between the ego and target vehicles. Sego_obj_2

t is the ratio of the
projection of the speed of the ego car and the target car in the Frenet coordinate system in
the s direction. The closer the ratio Sego_obj_2

t is to 1, the closer the speed components of the
ego car and the target vehicle are. The function of clip() in the formula is to intercept the
value, which can prevent the denominator from being zero or the ratio from being too large
and blocking within the boundary range.

When considering the relative relationship between the ego vehicle and the set of
waypoints, the lateral distance between the ego vehicle, and the lane center line, the yaw
angle deviation between the ego vehicle and the corresponding waypoint are mainly
analyzed, as shown in the following formula

Sego_wps_1
t = lateral_disobj_wps

Sego_wps_2
t = yawego − yawwp

(6)

In addition, the state function also introduces preview points, i.e., three waypoints
in the direction of the vehicle’s forward direction in the lane center line. The difference
between these three preview waypoints and the physical quantities related to the vehicle is
expressed as follows:

Sego_wps_3
t =

wp_1x − egox wp_1y − egoy wp_1yaw − egoyaw
wp_2x − egox wp_2y − egoy wp_1yaw − egoyaw
wp_3x − egox wp_3y − egoy wp_1yaw − egoyaw

 (7)

Therefore, the relative state of the ego vehicle and the set of reference waypoints
Sego_wps

t can be expressed as follows:

Sego_wps
t = Sego_wps_1

t + Sego_wps_2
t + Sego_wps_3

t (8)
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In the external interface of the CARLA platform, three variable parameters control
the driving of the vehicle: the straight-forward parameter, the steering parameter, and
the braking parameter. For the scene in this section, the braking parameters are not
considered for the time being. Therefore, the outputs of the entire neural network contain
the straight direction control command and the steering direction control command, which
are consistent with the model without map constraints. To make the action value acting in
the simulation environment smoother, the two variables directly outputted from the neural
network are adjusted as follows and then directly act on the CARLA simulation platform:

at+1
throttle = at

throttle + γ1

(
at+1

throttle − at
throttle

)
at+1

steer = at
steer + γ2

(
at+1

steer − at
steer

) (9)

γ1 and γ2 are weight values from 0 to 1. It can be seen that the smoothed current time
variable is the weighted value of the variable directly outputted by the neural network at
the last time and the current time.

In the episode-based training process of reinforcement learning, if some policy solu-
tions with relatively poor effects cannot be terminated in time, the invalid training may
waste resources and time. Therefore, the reinforcement learning episode exit condition in
this paper involves multiple termination trigger conditions.

(1) Among the trigger conditions, the most important and intuitive termination con-
dition is the occurrence of a collision event. Safety is undoubtedly the most important
thing for self-driving vehicles. A collision detector can be added in CARLA. When the ego
vehicle collides with other objects, a collision signal is generated. Within a period of the
round, once the collision signal is detected, the current round will exit immediately. The
relevant scenario is shown on the left side of Figure 5.
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(2) The lane departure event is also a relatively intuitive termination condition. In
the early stage of training, the neural network training is not stable, and the trajectory of
the vehicle sometimes deviates too far from the correct lane; thus, a restriction needs to
be added. Combined with the physical quantity of the lateral offset of the vehicle lane
center line point set in the above state factors, the maximum value of the lateral offset is
specified. When the lateral offset exceeds the threshold, the termination condition will be
triggered, and the current round will exit immediately. This scenario is shown on the right
side of Figure 5.

(3) The neural network outputs two control commands, namely the accelerator com-
mand and the steering wheel command. In the early stage of training, the speed of the ego
vehicle may be too low or even close to zero. Therefore, a minimum speed threshold is spec-
ified. When the speed of the ego vehicle is lower than the threshold for several consecutive
steps, the termination condition will be triggered and the current episode will exit.
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(4) Ideally, during an episode of training, the ego vehicle will not meet the above-
mentioned exit conditions, but it cannot be stuck in a certain episode forever and cannot
exit. Therefore, in this paper, the maximum number of training steps is added in the
episode training process. When the number of training steps in the episode reaches the
maximum number of steps, the termination condition will be triggered and the current
episode will exit.

2.2.4. The Design of the Reward Function

As mentioned above, in addition to the influence of the relative position between two
vehicles with regard to the reward, when designing the reward function, the influence of the set
of lane center line points in the map and the relative attitude of the ego vehicle with regard to
the reward function should also be considered. The design of the reward function corresponds
to the above state function. For the set of waypoints, the reward function is as follows:

rego_wps_1
t = k1

∣∣∣lateral_disobj_wps

∣∣∣+ b1

rego_wps_2
t = k2

∣∣yawego − yawwp
∣∣+ b2

rego_wps
t = rego_wps_1

t + rego_wps_2
t

(10)

Among them, k1, k2, and b1, b2 are the artificially designed algorithm parameters. In
actual training, the farther the ego vehicle deviates from the center of the lane, the smaller
the reward value; the larger the yaw difference angle between the ego car and the center
line of the lane, the smaller the reward value. That is, the vehicle will have a higher reward
when driving along the reference center line value. For the positions and attitudes of the
ego vehicle and the preceding/target vehicle, similar to the formula, the reward function is
as follows, and the parameters in the formula are similar to those too:

rego_obj_1
t =


b, Sego_obj_1

t ∈
[
d−threshold, d+threshold

]
−k1·S

ego_obj_1
t , Sego_obj_1

t > d+threshold

−k2/Sego_obj_1
t , Sego_obj_1

t < d+threshold

(11)

In the above formula, the predetermined tracking distance range of the ego vehicle is[
d−threshold, d+threshold

]
. Similar to the actual vehicle driving process, the following distance

will be enlarged along with the increase in the ego vehicle speed. After the introduction of
the Frenet coordinate system, with the aim of maintaining a relatively stable attitude of
both ego and target vehicles, the reward function also needs to be related to the projection
ratio of the two velocities in the s direction.

‖ →v ego_s ‖ = clip
(
‖ →v ego_s ‖, vmin, vmax

)
‖ →v obj_s ‖ = clip

(
‖ →v obj_s ‖, vmin, vmax

)
rego_obj_2

t = k3 − clip
(

max
(
‖→v ego_s‖
‖→v obj_s‖

,
‖→v obj_s‖
‖→v ego_s‖

)
, valuemin, valuemax

)
rego_obj

t = rego_obj_1
t + rego_obj_2

t

(12)

In the formula, the projection of the speed of the ego vehicle and the target vehicle in
the s direction are calculated, respectively, the maximum and minimum values are specified
for the interception, and the relevant reward function design uses the ratio of the speeds of
the ego vehicle and target vehicle. It can be seen from the above formula that when the
discrepancy between the two is significant, the reward function is more minor, and only
when the projection values of the ego vehicle and the target vehicle in the s direction are
close or equal, the reward function is close to, or even reaches, the maximum value. In
addition, as shown in the above state function, when the ego vehicle triggers the round
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termination condition in the round and does not reach the maximum number of training
steps in the round, that is, when it exits the training under abnormal conditions, a large
negative value needs to be added.

rterminate
t =

{
c, trigger termination condition

0, other
(13)

In addition to the above three reward functions, the discussion is also carried out
according to the vehicle’s driving characteristics on straights and curves. On the straight
road, the vehicle is supposed to eliminate the lateral offset, while on the curved road,
especially when at a corner, the vehicle is expected to perform a large steering behavior in
order to achieve cornering. Thence, the steer reward function can be expressed as follows:

rsteer
t =

{
k4steerego, In the junction area

0, other
(14)

So far, the reward function based on map constraints can be expressed as follows

rt = rego_wps
t + rego_obj

t + rterminate
t + rsteer

t (15)

2.2.5. Simulation Results and Analysis

In the simulation process, a curve scene is intercepted for analysis. The trajectory and
lateral distance are illustrated in the following figure.

PID is the abbreviation of “proportional–integral–derivative”, and PID is the most
commonly used control method. Figure 6 shows the simulation results of the target vehicle
controlled by PID and the ego vehicle controlled by reinforcement learning during the
steering process. The target vehicle is driven by the traditional trajectory tracking control
method, and the PID method is used in both the longitudinal and lateral directions of
the target vehicle. The center line of the lane at the turning point is used as the trajectory
and the preview point is extracted from it. In Figure 6, the black curve is the trajectory
of the lane’s center line on the curve, while the red one represents the trajectory of the
vehicle controlled by the reinforcement learning model at the turning point. The blue one
represents the driving curve of the target vehicle using the PID method. According to
the comparison curve of the simulation results, it is found that the reinforcement learning
method achieved a more stable steering effect at the curving area than the target vehicle
even though the former does not input the preview points like the PID method does.
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In Figure 7, the black curve represents the ego vehicle controlled by reinforcement
learning, and the red one refers to the target vehicle controlled by the traditional PID
method. The x-coordinate is the number of time periods experienced in the steering
process, and the y-coordinate is the lateral distance between the driving trajectories of the
two vehicles and the lane center reference line. It can be seen from the curve results that
the ego vehicle car controlled by reinforcement learning can also reach a relatively stable
state at the turning point during the following process, and can fit the reference line well.
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Figure 8 demonstrates the comparison of the throttle scalar input value during the
turning process of the ego vehicle controlled by reinforcement learning and the target
vehicle controlled by PID trajectory tracking. From the comparison of the figures, it can be
seen that the throttle fluctuation range of the vehicle controlled by reinforcement learning
is small, and the fluctuation range is relatively smooth. The trolley controlled by the PID
method has a larger fluctuation range.
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Figure 9 exhibits the projection of the distance between the ego vehicle and the target
vehicle on the lane during the turning process. From the curve results, it is obvious that the
following distance can be stabilized at 16 m on the straight road, and the distance at the
turn has increased, and when it returns to the straight road again, the distance can also be
restabilized at 16 m.
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3. Obstacle Avoidance Using Deep Reinforcement Learning Approach
3.1. Improved Obstacle Representation

For the obstacle avoidance, owing to the fact that the number of external obstacles is
not fixed, some researchers have adopted the rasterization processing method to rasterize
the observation range. A rectangle grid or a sectorial grid is used to encode obstacles
to determine the location and size of the obstacles. Moreover, the obstacle information
is dimensionally reduced to address the issue that the input dimension is not fixed. For
rasterization methods, a question that needs to be considered is the accuracy of the grid.
The smaller the grid size, the higher the accuracy of its representation, and the larger the
input dimension of the reinforcement learning neural network, which is more inconducive
to episode training. However, if the grid size is enlarged, the accuracy will be worsened
and the passable area will be shrunk, making it more difficult for the vehicle to get through
the passable narrow area in complex obstacle avoidance scenarios. In a way, the grid map
method will hinder the performance of the vehicle when passing through the narrow areas.

The perceptual information that the ego vehicle receives at a certain moment is un-
known globally, and the perceptual results constantly change from time to time. In the case
of uncertain external obstacles, taking the external obstacle input as the research object,
it is difficult for us to utilize the fixed-dimensional data input to represent the obstacle
information. Inspired by this limitation, it is thought that the shape of the ego vehicle is
determined, and the ego vehicle’s position, attitude, and speed information can also be
accurately obtained through the simulation platform or sensors. Suppose that a polygon is
fixed on the vehicle body coordinate system. The polygon follows the movement of the
vehicle, and the shape can change according to the speed of the vehicle. When the speed of
the vehicle is slow, the polygon range is small. The extent of the polygon also expands in
accordance with the increase in the vehicle’s speed. When the ego vehicle is driving in an
obstacle avoidance scene, the state function of the obstacle input part only considers the
part that enters the polygonal area. For the reinforcement learning neural network, this
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method can screen and sort out the complex obstacle scenes with unfixed numbers and the
location distribution, but only a part of external obstacles within a certain range will be
quantitatively calculated.

The improved state input of the self-vehicle obstacle avoidance process is shown in
Figure 10. The input is divided into two areas, the sectorial area with the center of the
ego vehicle as the dot and the extended rectangular area of the ego vehicle in the forward
direction. The angle of the sector is determined by the maximum slip angle of the front
wheels on both sides of the vehicle, while the width of the extended rectangular area
depends on the bounding box length of the vehicle. Both areas take the center line of
the vehicle’s forward direction as the axis. Among them, the sectorial area is divided by
a group of equally angularly spaced line segments with the length of the sector radius.
After encountering obstacles and lane boundary lines within the fan-shaped range, the
corresponding inner-sector line segments will intersect with them. The data of line segments
intersecting with the obstacles and lane boundary lines are stored as a list to represent the
obstacle status within the sector. Similarly, the rectangular extension area of the yellow
part is also divided by a cluster of equally spaced line segments. When obstacles and lane
boundary lines are encountered and intersected with each other, the intersecting data of
different interval line segments and obstacles are stored in a list to represent the status of
obstacles in a rectangular area. The specific algorithm is shown in Algorithm 2:

Algorithm 2. Obstacle input representation algorithm

Initialize the sectorial and rectangular areas according to the maximum slip angle of the front
wheel, the size of the ego vehicle frame, and the speed of the ego vehicle.
Obtain the number Nsector and Nrec of the sectors and rectangles, and determine the angular
interval of the sector β and the distance interval of the rectangle ω.
Combine multiple obstacle vehicles and lane boundaries into one obstacle set.
Initialize the sector area representation Ssector = [[β1, r], · · · , [β2, r]], and the rectangle area
representation within the extended area Srectangle = [[ω1, l], · · · , [ωj, l ] ], in which r represents the
radius of the sector and l represents the length of the rectangle.
# Calculate sector representation.
For Nsector in cycles do:

if The current line segment intersects the set of obstacles:
Confirm the intersection of the current line segment and the obstacle, and calculate the

distance from the intersection to the origin, and update the corresponding Ssector
else:

The current Ssector corresponding section is not updated
end for
for Nrectangle in cycles do:

if The current line segment intersects the set of obstacles:
Confirm the intersection of the current line segment and the obstacle, and calculate the

distance from the intersection to the corresponding horizontal reference line of the vehicle, and
update the corresponding Srectangle.

else:
The current Srectangle corresponding section is not updated.

end for
Normalize the updated Ssector and Srectangle.
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In the actual training process, the number of divisions of sectors and rectangles is set
in advance by the parameter file, and the intervals are the same size, so the characterization
of sectors and rectangles can be simplified as follows:

Ssector = [r1, r2, · · · , rNsector ]

Srectangle =
[
d1, d2, · · · , dNrectangle

] (16)

As mentioned above, the lengths of the sectorial area and the rectangular area in the
process are proportional to the speed of the ego vehicle:

r = k3·vego
l = k4·vego

(17)

To represent the obstacle state at different ego vehicle speeds and calculate the reward
function in the relevant state more accurately, the representation list in the region needs to
be normalized, and the elements in Ssector and Ssector can be expressed as follows:

ri = ri/r
di = di/l

(18)

Take Figure 10 as an example; the number of segmented rectangular areas is 10. After
the algorithm and various optimizations, the representations in the sectorial area and the
rectangular area are shown as

Ssector = [0.35, 0.39, 0.52, 1, 1, 1, 1, 1, 0.52, 0.39, 0.35]
Srectangle = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

(19)

On the left side and right side of the sectorial area, there is an intersection with the
obstacle, and the simplified distance from the intersection to the center of the vehicle is as
above. If the area near the center of the sectorial symmetry axis has no intersection with
the obstacle, the corresponding state list element is 1. In the rectangular area, there is no
intersection between the rectangular area and the obstacle in the current round, so the
elements of the state list are all 1. From the current scene graph and this representation, it
can be directly inferred in the current round that the ego vehicle can go straight forward
from the current attitude.

3.2. Corresponding Reward Function Design

The sectorial areas and rectangular areas mentioned above are all forward detection
areas during the driving process of the ego vehicle. The obstacles or lane boundaries in
the detection area might affect the driving state of the ego vehicle in the following process.
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According to the schematic diagram of the obstacle avoidance scene and the corresponding
state representation of obstacles and lane boundaries, it is found that the larger the element
value, the farther the direction is from the obstacle or the lane boundary. When the element
value is 1, it means that within the current detection range, there are no obstacles or lane
boundaries in this direction. For the obstacles and lane boundaries within the detection
range, the closer they are to the ego vehicle, the greater the possibility that the ego vehicle
will collide with the obstacles or exceed the lane boundary; the closer the obstacles or lane
boundary is to the forward direction of the ego vehicle, the higher the possibility that the
ego vehicle will collide with an obstacle or exceed the lane boundary.

In order to describe the reward function of obstacles at different positions at each
moment relative to the ego vehicle, the state bias vector and weight vector can be introduced.
Bsector represents the sectorial state bias vector and Brectangle represents the rectangle state
bias vector. The role of bias vectors is to make the state vectors symmetrically distributed.
During the calculation process of reward function in this part, the two-state bias vectors
and the obstacle and lane boundary state functions are superimposed to generate new state
vectors. The inner product of the new state vectors and the weight vectors obtained by this
part of the operation are used as the benchmarks for the reward function of the obstacle
and lane boundary parts, as described in the following formula,

Bsector =
[
bs_1 bs_2 · · · bs_N1

]
Wsector =

[
ws_1 ws_2 · · · ws_N2

] (20)

rsector = (Ssector − Bsector)·WT
sector =

[
xs1 xs2 · · · xsN1

]
·


ws1

ws2

· · ·
ws3

 =
N1

∑
i=1

xs_i·ws_i (21)

Among them, Wsector is the weight vector of the sectorial area mentioned above. With
the weight values, the closer to the center, the greater the weight, which means that the
obstacle or boundary distance corresponding to the position has a greater impact on
the driving of the ego vehicle. To obtain a large reward value, the ego vehicle tends to
approach the driving state in which there are no obstacles and boundaries in the forward
direction as much as possible. Similarly, the reward function in the rectangular area is as
follows: Wrectangle represents the weight vector of the rectangular area mentioned above.
Different from Wsector, Wrectangle represents the weight vector of the ego vehicle’s forward
direction. As long as an external obstacle appears anywhere within the area, the vehicle
will collide with the obstacle or exceed the lane boundary if it continues to go straight
forward. Therefore, the weight of this area does now show much difference. There is little
difference between the weights in this area.

rrectangle = (Ssector − Bsector)·WT
sector =

[
xr1 xr2 · · · xrN1

]
·


wr1

wr2

· · ·
wr3

 =
N1

∑
i=1

xr_i·wr_i (22)

In this obstacle representation method, the detection range is designed for different
numbers of obstacles, and the input state of obstacles is unified, which is convenient to
generate more complex data in the training process. Additionally, this method is used
to unify the obstacle vehicles that need to be considered at each moment and the lane
boundary lines on both sides into an obstacle set, which simplifies the separate discussion
of obstacles and lane boundary modules in the obstacle avoidance process. This part of the
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reward replaces the reward section rego_boundary and rego_obs, and the rest is the same as the
previous section, which can be described as follows,

rego_obs = rsector + rrectangle
rt = rego_obs + rego_other

(23)

3.3. Simulation Results and Analysis

In the training process of the improved obstacle avoidance method, we enhance
the environment complexity in the training process of the reinforcement learning neural
network, which is embodied as follows: We have increased the randomness of the obstacle
position and the randomness of the obstacle vehicle direction. In the obstacle environment
of each episode, the scene of two vehicles side by side often occurs, resulting in a narrow
traversable area at this location, and higher requirements for the attitudes of passing
vehicles near this location. As shown in Figure 11, in these scenarios, under the model of
the obstacle input state and reward function designed with the traditional method, the
success rate of the ego vehicle passing through the area is low.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 11. Trajectory comparison of three obstacle avoidance methods (a–e). 

In order to compare with traditional classical methods, we also add the trajectory of 
the lattice planner into the same scenario. The lattice planner is a graph-based approach 
to the path planning issue that reduces the search space into a uniform discretization of 
vertices corresponding to positions and headings. It generates multiple obstacle avoid-
ance trajectories, and then selects the most suitable one according to the cost ranking. The 
algorithm has good performance in both real vehicle and simulated obstacle avoidance 
scenes. 

The trajectory comparison of the three obstacle avoidance methods is presented in 
Figure 11. The dark blue rectangle is obstacle vehicles on the road, and they are distributed 
in a random state within a specific range. The cyan one refers to the driving trajectory of 
the ego vehicle frame using the multi-obstacle input method, and the black points are the 
center locations of the ego vehicle during the whole episode. The green points represent 
the final trajectory points generated by the lattice planner. The red rectangle is the bound-
ing trajectories of the ego vehicle using the reinforcement learning method with the 

Figure 11. Trajectory comparison of three obstacle avoidance methods (a–e).



Sensors 2023, 23, 844 18 of 20

In order to compare with traditional classical methods, we also add the trajectory of the
lattice planner into the same scenario. The lattice planner is a graph-based approach to the
path planning issue that reduces the search space into a uniform discretization of vertices
corresponding to positions and headings. It generates multiple obstacle avoidance trajecto-
ries, and then selects the most suitable one according to the cost ranking. The algorithm
has good performance in both real vehicle and simulated obstacle avoidance scenes.

The trajectory comparison of the three obstacle avoidance methods is presented in
Figure 11. The dark blue rectangle is obstacle vehicles on the road, and they are distributed
in a random state within a specific range. The cyan one refers to the driving trajectory
of the ego vehicle frame using the multi-obstacle input method, and the black points
are the center locations of the ego vehicle during the whole episode. The green points
represent the final trajectory points generated by the lattice planner. The red rectangle
is the bounding trajectories of the ego vehicle using the reinforcement learning method
with the traditional obstacle representation method. Specifically, in the first obstacle scene
in the series, the side-by-side vehicles appear next to the first vehicle. Although the
three obstacle avoidance methods all have passed the obstacle field in the simulation
verification, the driving trajectories in the narrow area are slightly different. Similar to the
traditional method lattice planner, the trajectory using the obstacle avoidance method with
the obstacle state representation in Section 3 is smoother when passing through narrow
areas, and the obstacle avoidance effect is more stable when compared with the ordinary
obstacle avoidance method. It can be seen from the obstacle scenes in the series diagram
that the ego vehicle, based on the common obstacle avoidance RL method, collided with
obstacle vehicles. However, the obstacle avoidance method in Section 3 can still pass in a
relatively stable state even though the traversable area is narrow.

Table 1 displays the statistics of the obstacle avoidance performance parameters
of three methods. It is found that both our work and the lattice planner have better
performance, but the lattice planner consumes a longer time per step and is more unstable.
Although the common RL algorithm takes the shortest time and is relatively stable, it has
limited ability of passing through complex obstacles. Our improved algorithm has the
best and most stable passing performance, taking a relatively short time with the highest
success rate.

Table 1. Statistics of obstacle avoidance performance parameters of three methods under random
difficulty conditions.

Algorithm Our Work Common RL Lattice Planner

Average success rate (%) 95 70 92
Average calculation time (ms)

Average time standard variance
3.42
0.37

2.96
0.31

35.41
10.48

From the results and obstacle avoidance trajectories of the above three obstacle avoid-
ance methods, it can be seen that the improved multi-obstacle environment state and
reward function design method can uniformly process the external obstacles with random
numbers and attitudes so that the ego vehicle can better pass obstacle areas in complex
obstacle scenarios.

4. Conclusions

In this paper, we first adopted the reinforcement learning method TD3 as the primary
network, which was convenient for us to further adjust the relevant reward function in
time according to the simulation training performance. The task scenarios of autonomous
driving following and avoiding obstacles using the map constraints were investigated.
For the following scenarios with turning roads, the state function and the corresponding
reward function were designed in combination with the waypoint information in the map
in the Frenet coordinate system. After 10,000 episodes of simulation training, the ego
vehicle’s following performances on straights and corners reached a stable state.
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Aiming at the multi-obstacle avoidance scene under the map constraints, we then
proposed a representation method that could represent obstacles of different numbers
and shapes. Combined with the obstacle representation method and the reinforcement
learning model in the vehicle following scenario, the relevant reward function of the
obstacle avoidance scene was designed. After a period of training, some obstacle scenes
with narrow passable areas were constructed on the map. To verify the effect of two
reinforcement learning methods, we compared them with the classic lattice planner. The
results indicate that the obstacle representation method proposed by this paper has a better
performance. In future work, we consider integrating the two single-task models into a
multi-task reinforcement learning model.

In addition, multi-agent collaboration is also another research endpoint. We plan to
focus on the reinforcement learning network model based on multi-agent collaboration
using the map constraints. The cooperation among multi-agents is more in line with the
future direction of intelligent networked vehicles.
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