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Abstract: High-sensitivity early fire detection is an essential prerequisite to intelligent building safety.
However, due to the small changes and erratic fluctuations in environmental parameters in the initial
combustion phase, it is always a challenging task. To address this challenge, this paper proposes a
hybrid feature fusion-based high-sensitivity early fire detection and warning method for in-building
environments. More specifically, the temperature, smoke concentration, and carbon monoxide
concentration were first selected as the main distinguishing attributes to indicate an in-building fire.
Secondly, the propagation neural network (BPNN) and the least squares support vector machine
(LSSVM) were employed to achieve the hybrid feature fusion. In addition, the genetic algorithm
(GA) and particle swarm optimization (PSO) were also introduced to optimize the BPNN and the
LSSVM, respectively. After that, the outputs of the GA-BPNN and the PSO-LSSVM were fused to
make a final decision by means of the D-S evidence theory, achieving a highly sensitive and reliable
early fire detection and warning system. Finally, an early fire warning system was developed, and
the experimental results show that the proposed method can effectively detect an early fire with an
accuracy of more than 96% for different types and regions of fire, including polyurethane foam fire,
alcohol fire, beech wood smolder, and cotton woven fabric smolder.

Keywords: early fire warning; hybrid feature fusion; intelligent building system; D-S evidence theory

1. Introduction

Over the past few years, building fires have been one of the most common and frequent
types of fire, causing severe property losses and fatalities [1–3]. Thus, it has become
extremely important and imperative to effectively decrease and control the risk of fire in
buildings. One of the most critical technologies is early fire warning, and both academia
and industry are exploring approaches that enable the prompt detection and accurate
determination of scene conditions in the early stages of building fires [4]. Furthermore,
with the development of intelligent buildings, an effective early fire detection and warning
system is also an essential prerequisite to provide safe, healthy, and comfortable residential
or working conditions.

For achieving early fire detection and warning inside building environments, many
algorithms have been presented, which can be mainly divided into three categories, namely
optical, smoke, and carbon-monoxide sensors. Li et al. [5,6] conducted a fire detection
algorithm performance evaluation based on image complexity, which could accurately
determine the detection level of the detection algorithm under different image complexity
conditions. Li et al. [7] proposed a new hybrid model for fire prediction based on the
visual information of RGB images. The model achieves promising performance, which
also shows the potential to monitor the constant changes in a building fire through the
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continuous processing of images of flames. Xie et al. [8] employed an early fire detection
method for shielded indoor environments based on fire light reflection characteristics and
established a multi-expert system by extracting the change characteristics of the fire area
with light reflection. They then verified the method based on a large data evaluation system.
However, in the above methods, they ignored the early stages of the fire that may not
involve the open flame but cannot determine the correct scene conditions in time. The
temperature, another major feature of fire, has also attracted significant attention. Ji et al. [9]
proposed a machine-learning-based real-time prediction method for monitoring physical
parameters for early fire warnings based on temperatures. The results show that the trained
intelligences improve the accuracy and reliability of building fire warnings. Sun et al. [10]
verified a bio-inspired artificial intelligence algorithm driven by temperature data to detect
fire in 3D spaces. Yusuf et al. [3] presented a linearly regressive artificial-neural-network-
based technique to predict temperature increases caused by building fire environments.
This method predicts temperature ranges in a burning compartment based on the historic
fire behavior data modelled via a neural network algorithm. Garrity et al. [11] exploited a
compact embedded artificial neural network (ANN) with a second-stage classifier, reading
temperature data from the in-built thermocouple, to produce the output of predicted
temperatures. However, this technical approach, namely its ability to judge temperature
fluctuations in special environments, still requires further improvement. To compensate
for the deficiencies of the feature parameter, Zhang et al. [12] proposed DBN-R-LSTM-
NN to classify and predict fire smoke and other features based on data collected from
IoT sensors. Pincoot et al. [13] designed a vision-based indoor fire and smoke detection
system with small training and test datasets, whereby different pixel density images, high-
density smoke environments, and flame density scenes were recognized. Qiu et al. [14]
developed a distributed feedback carbon monoxide (CO) sensor based on lasers used for
the early warning detection of fire and verified the reliability of this sensor via different
experiments. Li et al. [15] studied and proposed an early fire detection method based
on a gas turbulent diffusion (GTD) model and particle swarm optimization (PSO). The
experimental results verify that the sensor system has good fire detection and location
performance. Chen et al. [16] proposed a fast and cost-effective indoor fire alarm system,
which is used to find the fire, carbon monoxide, smoke, temperature, and humidity data in
real time and conduct effective data analysis and classification. For smoke detection, the
influence of smoke and dust in the environment represents a challenge.

Although vision-based sensing systems have shown good performance, massive
and complex datasets often delay the time in the decision-making process [17]. Thus,
visual-based sensing systems are not appropriate for early fire detection where decision
making needs to be conducted in limited time. Additionally, vision-based sensing systems
are inappropriate inside buildings because of the size and cost of devices, as well as
privacy concerns that make them unsuitable for installation in multiple rooms and private
homes. Meanwhile, single chemical sensor fire detectors are susceptible to interference
from environmental conditions such as electromagnetic waves, water vapor, dust, cigarette
smoke, and cooking smoke [18], which means that most smoke detectors will have false
alarms when they detect these interfering conditions. Similarly, single temperature sensor
devices still suffer from the misjudgment of environmental temperature fluctuations. They
cannot effectively distinguish between early fire signals and environmental interference
signals and cannot properly send early fire warning signals.

Due to the rapid development of machine learning, many intelligent algorithms have
been presented to fuse several fire feature parameters [19–22]. This method overcomes
the singularity and instability of the traditional threshold judgment method, which can
significantly improve the accuracy of fire detection. Therefore, this paper proposes a hybrid
feature fusion-based early fire detection method. First, by means of the distributed wireless
sensing network, a hybrid feature collection system is developed to collect the smoke
concentration, temperature, and CO concentration. On this account, a hybrid feature fusion
algorithm, combining an error back propagation (BP) neural network with a least square
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support vector machine (LSSVM), is proposed. Then, the genetic algorithm (GA) and
particle swarm optimization (PSO) are applied to obtain the optimal parameters in the
data fusion process of the two algorithms, in order to achieve the optimized feature-level
fusion results. Furthermore, the two algorithms are treated as subevidence bodies and the
output results are adopted as the basic probability assignment of the D-S evidence theory
for decision-level fusion to realize highly sensitive and reliable early fire warnings.

2. Suggestions and Methodology

The process of the hybrid feature data fusion algorithm is shown in Figure 1. The
smoke concentration, temperature, and carbon monoxide concentration are obtained after
collecting nodes and they are then transmitted to the data processing center via LoRa as
inputs of the genetic algorithm–back propagation neural network (GA-BPNN) and the
particle swarm optimization–least squares support vector machine (PSO-LSSVM). The two
models both obtain three outputs: fire, smolder, and no fire. Then, the results of the feature
layer fusion are integrated by the D-S evidence theory to output the final decision.

Figure 1. Overall design of the early fire detection and warning system.

2.1. Genetic Algorithm–Back Propagation Neural Network Fire Warning Model

The BPNN algorithm optimized by GA is a continuous and iterative process used for
searching the best weight and threshold [19]. The process of the BPNN algorithm optimized
by GA is shown in Figure 2.

The BPNN is a multi-layer forward feedback network for error correction, which
includes the forward propagation of the signal and backward propagation of the error. The
error excitation function is a sigmoid function, as shown in Equation (1).

Yi =
1

1 + exp
[
−
(

n
∑

i=1
wijxi + wj0

)]
Yk =

N
∑

k=1
wkjYj + wk0

(1)
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where Yk is the kth variable of the output layer, Yj is the jth variable of the hidden layer,
xi is the ith input variable, N is the number of output neurons, n is the number of hidden
neurons, wkj is the weight between the output layer and the hidden layer, and wji is the
weight between the input layer and the hidden layer.

Figure 2. The BPNN process with GA optimization.

The gradient descent method is often used to optimize the parameters of neural
networks. However, BPNN is difficult to converge and may fall into local extremes. Since
the GA [23] can reduce the solution space of the neural network, the global optimal solution
can be obtained more quickly and stably by the GA-BPNN [24]. The GA uses selection,
crossover, and mutation to generate several initial populations of defined encoding lengths
in a random number [25].

In the GA optimization strategy, the best realized individuals of the new generation
will be considered as a result of the execution and GA setups shown in Table 1. The optimal
parameters obtained by GA are then brought into the BPNN for training.

Table 1. The GA setups.

Types Symbols Interval

The coding length N 20~200
The crossover probability Pc 0.4~0.99
The mutation probability \ 0.005~0.1

The number of terminated
evolutionary generations \ 100~1000

2.2. Particle Swarm Optimization–Least Squares Support Vector Machine Fire Warning Model

The inputs to the LSSVM are the smoke concentration, temperature, and carbon
monoxide concentration. The penalty factor C and the kernel parameter σ of the LSSVM
are optimized by PSO. The simulation outputs are compared with the expected outputs to
verify the feasibility of the algorithm, and the design is shown in Figure 3.
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Figure 3. The PSO-LSSVM fire warning algorithm model.

In support vector machines (SVMs), the dot product algorithm in the high-level feature
is replaced by the kernel function [26].

SuykensJ and Vandewalle [27] further proposed the least squares support vector
machine (LSSVM) for solving pattern classification and regression prediction problems [28].
A nonlinear function ϕ(xi) is used to map the input to the feature space, and the nonlinear
function estimation modeling is shown in Equation (2).

f (x) = b + (∅(x), w) (2)

where w is the weight vector and b is the bias term.
The evaluation problem is described as the optimization problem based on the princi-

ple of structured risk minimization and the Lagrange function is constructed, as shown in
Equation (3), to solve the optimization problem.

LLSSVM =
1
2

w2 +
1
2

γ
N

∑
i=1

e2
i −

N

∑
i=1

αi[(w,∅(xi)) + b + ei − yi] (3)

where ai is the Lagrange multiplier.
The linear problems can be simplified by eliminating w and ei, as described in Equation (4).[

0 ET

E
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y(x) = (w,∅(x)) + b =
n

∑
i=1

αi∅(xi) ·∅(x) + b =
n

∑
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αiK(xi, x) + b (6)

The four main forms of the LSSVM kernel function are shown in Table 2.

Table 2. The forms of the kernel function.

Kernel Function Forms

The polynomial kernel function K(x, xi) = (x·xi + c)N

The radial basis kernel function K(x, xi) = exp
(
‖x−xi‖2

2σ2

)
The sigmoid kernel function K(x, xi) = tanh(τ·(x, xi) + t), (τ > 0, t > 0)

The linear kernel function k(x, xi) = x∗xi
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The PSO algorithm simulates a bird in a flock by designing a massless particle with
position and velocity attributes [30]. The individual extremes are matched with the cur-
rent global optimal solution shared by other particles in the global to adjust the speed
and position [31].

The PSO will initialize to a group of random particles and find the optimal solution by
iteration [21]. The particle update is tracked (pbest, gbest) in iteration by Equations (7) and (8).

vi = vi + c1 × rand()× (pbesti − xi) + c2 × rand()× (gbesti − xi) (7)

xi = xi + vi (8)

where i = 1, 2, . . . , N, and N is the total number of particles. Vi is the speed of the particle.
Rand ( ) is a random number between 0 and 1. Xi is the current position of the particle.
C1 and c2 are the learning factors of c1 = c2 = 2. The maximum value of vi is Vmax (>0);
if vi > Vmax, then vi = Vmax.

According to the update of the velocity v, c1 is aimed towards the local optimal
solution and c2 is aimed towards the global optimal solution. The representation is shown
in Figure 4.

Figure 4. Schematic diagram of particle search for optimization.

The design steps of the PSO are shown in Figure 5.

Figure 5. Particle swarm optimization process.

The initialization of the PSO algorithm is shown in Table 3. The fire detection uses
the smoke concentration, temperature, and carbon monoxide concentration as inputs for
training and testing samples. Then, the samples are trained by the LSSVM. The optimal
penalty factor c and the optimal kernel function width factor σ of the LSSVM are obtained
by the PSO optimization search. The partial fusion results of another group of samples can
be obtained as the original fusion results for adjustment.
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Table 3. The PSO algorithm initialization parameters.

Types Symbols Interval

The acceleration factor
c1 1.5
c2 1.7

The maximum number of population evolution \ 300
The population size \ 30

The penalty factor range \ 0.1~1000
The kernel function width factor range σ 0.01~1000

To assess the performance of the BPNN, the GA-BPNN, and the PSO-LSVM model,
three evaluation indicators, i.e., the mean square error (MSE), the root mean square error
(RMSE), and the mean absolute error (MAE), are adopted [20]. The MSE, RMSE, and MAE
are calculated, as shown in Equations (9)–(11). The smaller the MSE, RMSE, and MAE, the
smaller the error.

RSE =
1
N

Nd

∑
m=1

(ŷm − ym)
2 (9)

RMSE =

√√√√ 1
Nd

Nd

∑
m=1

(ŷm − ym)
2 (10)

MAE =
1

Nd

Nd

∑
m=1
|(ŷm − ym)| (11)

where Nd is the amount of data, ym is the actual value of data, and ŷm is the simulation
output of the model.

2.3. Decision-Level Feature Data Fusion

The D-S evidence theory [32,33] is specialized in solving uncertainty problems [34,35].
It fuses confidence functions obtained by different algorithms to make decisions using the
combination rules of the evidence theory. The system will make a final decision based on
new evidence according to the decision rules.

Suppose U is an identification frame, the function m: 2Θ→ [0, 1] satisfies Equation (12).

m(φ) = 0, ∑
A⊆Θ

m(A) = 1 (12)

m is the basic probability assignment function based on 2Θ and m(A) is the basic
probability assignment of proposition A, indicating the degree of confidence in the proba-
bility assignment.

The confidence function indicates the total degree to which the obtained evidence
supports the information grading. The function Bal is defined by ∀A ⊆ Θ and Bal(A) =

∑
B⊆A

m(B). 2Θ → [0, 1] is the reliability function on Θ. For ∀A ⊆ Θ if m(A) > 0, A is the focal

element of the reliability function Bel and the union of all the focal elements in the frame Θ
is the kernel.

The likelihood function describes the degree to which the obtained evidence cannot
reject the score. A pl: 2Θ → [0, 1] is defined in Equation (13):

pl(A) = 1− Bel(A) = ∑
B∩A 6=φ

M(B) (13)

The confidence functions of Bel1 and Bel2 are demonstrated. M1 and m2 are the
corresponding basic probability assignment functions. The focal elements are A1, A2, . . . ,
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An and B1, B2, . . . , Bn. The new probability M can be obtained according to the D-S
evidence theory shown in Equation (14):

M =


0, C = φ

1
1−K ∑

Ai∩Bj=C
m1(Ai)m2(Bj), C 6= Φ (14)

The calculation of K is shown in Equation (15).

K = ∑
A∩B=φ

m1(A)m2(B) (15)

On the one hand, if K 6= 1, the two are compatible, and basic probability assignment
can be conducted. On the other hand, if K = 1, then m1 and m2 are contradictory or
cannot combine.

The decision of the D-S evidence theory followed the rules shown below, assuming
that A1 ⊂ Θ, A2 ⊂ Θ satisfies Equations (16) and (17).

m(A1) = max[m(Ai), A ⊂ Θ] (16)

m(A2) = max[m(Ai), Ai ⊂ Θ], Ai 6= A1 (17)

If Equations (18) and (20) are satisfied as below:

m(A1)−m(A2) > ε1 (18)

m(Θ) < ε2 (19)

m(A1) > m(Θ) (20)

where ε1 and ε2 are the preset thresholds, then A1 is the determined result by the D-S
evidence theory.

The training error e of the GA-BPNN and the PSO-LSSVM is calculated as part of the
basic probability assignment shown in Equation (21).

e =
1
2∑ (ti − yi)

2 (21)

where ti and yi are the expected and simulated outputs in the GA-BP and the PSO-LSSVM.
The identification framework of the evidence theory Θ = {A1, A2, A3}, A1, A2, A3

represents the fire, smolder, and no fire. In the portfolio of evidence E = {E1, E2}, E1 and
E2 denote the outputs of the GA-BP and the PSO-LSSVM, respectively. m1(A1), m1(A2),
and m1(A3) represent the basic probability assignments of the GA-BP for the three outputs
of fire, smolder, and no fire, respectively. m2(A1), m2(A2), and m2(A3) represent the basic
probability assignments of the PSO-LSSVM for the three outputs of fire, smolder, and no
fire, respectively.

The final basic probability assignment of each element obtained from Equation (21) is
shown in Equation (22) below:

mj(Ai) =
y(Ai)

3
∑

i=1
y(Ai) + e

(j = 1, 2) (22)

Then, the D-S evidence theory fusion rule is described in Equation (23).

m(Az) = m1(Ai)⊕m2(Aj) =


1

1−K ∑
Ai∩Aj=Az

m1(Ai)m2(Aj), ∀AZ ⊆ Θ, Az 6= φ

0, AZ = φ
(23)
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Equation (24) is then used to calculate K:

K = ∑
Ai∩Aj=φ

m1(Ai)m2(Aj) (24)

3. Results and Discussions
3.1. Experimental Setup

Firstly, the fire dynamics simulator (FDS) [36,37] was employed to simulate in-building
fires, as shown in Figure 6a. The large eddy simulation (LES) in the FDS was used by
the Smagorinsky subgrid model to solve the Navier–Stokes equations for the turbulence
with a low Mach number caused by the fire phenomenon. The simulated setting was a
no-wind scenario. In this figure, the burning duration was set to 40 s, and the combustion
products in the space are presented in Figure 6b–d. We can see that the temperature, smoke
concentration, and CO concentration changed slowly in the first five seconds, and then
they began to rise significantly. At the end of the 40 s burn time, the temperature achieved
the maximum, while the smoke variation stabilized, and the CO concentration continued
to increase. Therefore, according to the results of the building fire simulation, these three
feature parameters were selected as the monitoring parameters of the fire warning system.

Figure 6. The simulation analysis of in-building fire features: (a) fire model; (b) temperature change;
(c) smoke concentration change; and (d) carbon monoxide concentration.

Three key parameters, i.e., temperature, smoke concentration, and carbon monoxide
concentration, were extracted from the experimental data to form the basic datasets. Then,
we divided the outputs of the hybrid feature fusion model into three classes (open fire,
smolder, and no fire). On this basis, (1,0,0), (0,1,0), and (0,0,1) were modeled as the ideal
representations of open fire, smolder, and no fire, respectively. Subsequently, we developed
a combustion product collection system, including the combustion product collection node
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and gateway node, as shown in Figure 7, to obtain the real experimental data generated
by small simulated in-building fires, where 800 sets of data were collected. The feature
data in the datasets were derived from combustion products of different materials, while
each dataset included the temperature (Temp), smoke concentration (Smoke), and carbon
monoxide concentration (CO). After that, these data were further divided into 600 sets of
training data and 200 groups of test data. The training data were utilized to train the model
and the optimal network training model could be obtained after consecutive iterations with
learning rates of 0.001. The test data were employed to demonstrate the effectiveness.

Figure 7. The fire detection and warning system: (a) collection node design; (b) gateway node design;
(c) hardware.

3.2. Results of Open Fire

The fire test data were substituted into the already trained BPNN, and the results
are shown in Figure 8a. The comparison reveals that the simulation output of the BPNN
differed significantly from the expected output of fire. However, the network model
optimized by the GA could obtain the optimal weights and thresholds, which we inputted
into the BPNN for training. The outputs are shown in Figure 8b. It can be seen that the
difference between the simulated and expected outputs was reduced.

Figure 8. The output results of fire with (a) the BPNN and (b) the GA-BPNN.

The PSO-LSSVM fire warning model adopted four kernel functions: (1) the radial basis
kernel function; (2) the sigmoid kernel function; (3) the polypolynomial kernel function;
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(4) and the linear kernel function. The simulation results of fire based on the four types
of kernel functions were compared and analyzed with the expected outputs, as shown in
Figure 9a–d. It is clear that the radial basis kernel function could perform better than the
other three kernel functions. Thereby, it delivered the best data fusion effects.

Figure 9. The output results of fire with the LSSVM for different kernel functions: (a) the radial basis
kernel function; (b) the sigmoid kernel function; (c) the polypolynomial kernel function; (d) the linear
kernel function.

3.3. Results of the Smolder

Figure 10 shows that the simulation results of the BPNN optimized by GA had better
stability. Compared with the original model, the difference between the simulation results
and the expected results was significantly reduced.

Figure 10. The output results of smolder with (a) the BPNN and (b) the GA-BPNN.
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Figure 11 illustrates the different output results of smolder with the LSSVM. It can
be seen that the radial basis kernel function also obtained the most stable output results,
representing the highest reliability and the best data fusion effects.

Figure 11. The output results of smolder with the LSSVM for different kernel functions: (a) radial
basis kernel function; (b) sigmoid kernel function; (c) polypolynomial kernel function; (d) linear
kernel function.

3.4. Model Performance Analysis

Table 4 shows the error MSE, RMSE, and MAE of the BPNN and the GA-BPNN to
quantify the model performance. Table 4 also shows that the GA-BPNN had the smallest
MSE, RMSE, and MAE, which indicates that the simulation output of the GA-BPNN was
more suited to the expected output. The GA-BPNN also performed better than the original
BPNN. Therefore, the GA-BPNN could also fuse the fire feature data in the feature layer.

Table 4. The output error analysis.

Algorithm Model
Fire Smolder

MSE RMSE MAE MSE RMSE MAE

BP 0.0185 0.1361 0.0412 0.0083 0.0910 0.0362
GA-BP 0.0037 0.0612 0.0164 0.0025 0.0498 0.0140

Table 5 illustrates the calculation analysis of the MSE, RMSE, and MAE for different
kernel functions. As shown in Tables 4 and 5, the algorithm based on the RBF had the
smallest MSE, RMSE, and MAE, indicating that the simulation output was closer to the
expected output and the model performance was better than the others. Therefore, the
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PSO-LSSVM model based on the RBF was selected to fuse the feature layer data for the
fire feature.

Table 5. The output error analysis.

Kernel Function
Fire Smolder

MSE RMSE MAE MSE RMSE MAE

RBF 0.0028 0.0529 0.0293 0.000984 0.0314 0.0152
Sigmoid 0.0188 0.1370 0.0639 0.0155 0.1247 0.0603

Poly 0.0172 0.1310 0.0640 0.0146 0.1209 0.0619
Linear 0.0192 0.1386 0.0694 0.0169 0.1300 0.0681

3.5. Results of the Proposed Method

According to the empirical definition ε1 = 0.5, the simulation outputs of five groups
of test sample data were selected for comparison and analysis with the expected outputs
using Equation (24). Table 6 shows three uncertainty data outputs from the GA-BPNN and
one uncertainty output from the PSO-LSSVM. These results are ambiguous. So, these five
groups of results were then assigned and calculated by the probability of the D-S evidence
theory, and the results are shown in Table 7. The evidence indicates that the results of
the fusion based on the D-S evidence theory were consistent with the expected outputs.
Thus, the results of the D-S evidence theory fusing the two model treatments effectively
addressed the ambiguity of the evidence and improved the reliability of the fused data.

Table 6. Neural network simulation output results and expected output results.

Algorithm Model Simulation Output Expected Output Results

The GA-BP neural network

0.62745 0.00138 0.37117 1 0 0 Uncertainty
0.68278 0.01471 0.30251 1 0 0 Uncertainty
0.9969 0.0025 0.0006 1 0 0 Fire
0.5986 0.3927 0.0087 1 0 0 Uncertainty
0.99792 0.002 0.00008 1 0 0 Fire

The PSO-LSSVM network

0.86354 0.07689 0.07941 1 0 0 Fire
0.87026 0.04597 0.0794 1 0 0 Fire
0.64114 0.29953 0.05933 1 0 0 Uncertainty
0.87451 0.11074 0.07941 1 0 0 Fire
0.97166 0.00114 0.02283 1 0 0 Fire

Table 7. The results of the D-S evidence theory fusion approach.

Sample m(A1) m(A2) m(A3) Results

1 0.9997 0.0001 0.0002 Fire
2 0.9983 0.0011 0.0006 Fire
3 1 0 0 Fire
4 1 0 0 Fire
5 1 0 0 Fire

A comparison of the simulated and expected outputs of the D-S evidence theory incor-
porating the GA-BP fire warning algorithm and the PSO-LSSVM fire warning algorithm is
shown in Figure 12. The expected output and the fused output were basically the same.
Additionally, the inferred results of the D-S evidence theory enabled the accurate determi-
nation of fire hazards. The combined prediction method, used to fuse the information from
the above two networks after identification, provided results with higher accuracy than
each single model.
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Figure 12. Comparative results of the D-S evidence theory fusion approach: (a) expected fire output
and simulation outputs; (b) desired smolder output and simulation outputs.

4. Early Fire Warning Experiments

To verify the real-time performance of the presented early fire detection and warning
system, we conducted four early fire warning experiments with different fire classes, i.e.,
polyurethane foam fire, alcohol fire, beech wood smolder, and cotton woven fabric smolder.
A combustion experiment box was then placed inside the building and the fire detector
was installed at 2.0 m above the combustion box.

4.1. Results of the Warning Time

Figure 13a shows the combustion process of polyurethane foam, and Figure 13b shows
the fire scene. The polyurethane burned slowly at the beginning. However, a period later,
the flame became larger, with a gradually increasing temperature and producing much
smoke. The PC alarmed after 16 s.

Figure 13. The polyurethane fire test: (a) the process of polyurethane combustion; (b) the fire scene.

Figure 14a shows the process of alcohol burns, and Figure 14b shows the scene of
alcohol fire. The alcohol immediately burned when ignited. The flame became large and
released a lot of heat, resulting in the temperature rising rapidly. However, there was no
visible smoke. The PC alarmed after 18 s.
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Figure 14. The alcohol fire test: (a) the process of alcohol combustion; (b) the fire scene.

Figure 15a shows the burn process of beech wood and Figure 15b shows the beech
wood experiment with smolder. The smolder had no obvious fire but produced smoke
particles with a slow rise in temperature. The PC alarmed after 22 s.

Figure 15. The beech wood smolder test: (a) the process of beech wood combustion; (b) the smol-
der scene.

Figure 16a shows the process when the cotton rope is ignited and smoldered, and
Figure 16b shows the overall state of the cotton rope smolder. The smolder process pro-
duced a large amount of smoke, but the temperature did not rise significantly with a few
sparks. The PC alarmed after 20 s.

Figure 16. The cotton rope smolder test: (a) the process of cotton rope combustion; (b) the smol-
der scene.
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4.2. Accuracy Verification of Alarm System

Fifty experiments were conducted on the above scenarios to verify the accuracy of
the fire warning system. The data were collected using a single acquisition node for the
features information generated from each burn experiment to verify whether the results
in the PC match the real situation. A comparison between the realistic case and the fire
warning system is shown in Table 8. The alarm accuracy of each type of experiment was
shown to exceed 96%. The results show that the early fire warning model can ensure the
detection and warning of different types of fire hazards.

Table 8. A comparison of the real situation and system recognition.

Fire Types Experiments/n Alarms/n Missed Alarms/n Accuracy/%

Polyurethane fire 50 49 1 98%
Alcohol fire 50 48 2 96%

Beech wood smolder 50 48 2 96%
Cotton rope smolder 50 49 1 98%

4.3. Distributed Network Fire Response

The main purpose of the distributed network fire warning experiment is to verify
whether the early fire warning system consisting of three data collection nodes can achieve
the simultaneous detection of fires in multiple regions. Three fire feature data collection
nodes were used to detect fires in three different regions (see Figure 17). Each collection
node was connected to a gateway node via LoRa wireless spread spectrum technology,
and the gateway node collected the environmental feature data acquired by each collection
node. The fusion results of the GA-BP algorithm are shown in Table 9, the fusion results of
the PSO-LSSVM algorithm are shown in Table 10, and the fusion results of the D-S evidence
theory are shown in Table 11.

Figure 17. Distributed networking experiments: (a) Node 1; (b) Node 2; (c) Node 3.
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Table 9. The GA-BP algorithm fusion results.

Temperature/◦C Smoke/103 ppm CO/ppm Fire Output Smolder Output No Fire Output

Node 1
25.6 2.36 6 0.6949 0.0532 0.2519
31.6 3.68 26 0.7247 0.0513 0.2239
35.9 2.56 17 0.9296 0.0011 0.0692

Node 2
26.3 1.84 2 0.6762 0.1522 0.1716
33.7 2.28 14 0.8124 0.0524 0.1350
36.9 2.44 7 0.9456 0.0325 0.0219

Node 3
25.3 2.6 6 0.7025 0.2305 0.0670
32.4 1.95 23 0.7952 0.1248 0.0800
37 1.6 9 0.9033 0.0362 0.0605

Table 10. The PSO-LSSVM algorithm fusion results.

Temperature/◦C Smoke/103 ppm CO/ppm Fire Output Smolder Output No Fire Output

Node 1
25.6 2.36 6 0.6314 0.1250 0.2436
31.6 3.68 26 0.7615 0.0215 0.2171
35.9 2.56 17 0.8703 0.0460 0.0838

Node 2
26.3 1.84 2 0.7043 0.1453 0.1504
33.7 2.28 14 0.8021 0.1320 0.0659
36.9 2.44 7 0.9382 0.0044 0.0573

Node 3
25.3 2.6 6 0.6125 0.2310 0.1566
32.4 1.95 23 0.7493 0.0816 0.1691
37 1.6 9 0.8853 0.0333 0.0814

Table 11. The D-S evidence theory fusion results.

Temperature/◦C Smoke/103 ppm CO/ppm Fire Output Smolder Output No Fire Output

Node 1
25.6 2.36 6 0.8658 0.0131 0.1211
31.6 3.68 26 0.9174 0.0018 0.0808
35.9 2.56 17 0.9928 0.0001 0.0071

Node 2
26.3 1.84 2 0.9086 0.0422 0.0492
33.7 2.28 14 0.9763 0.0104 0.0133
36.9 2.44 7 0.9984 0.0002 0.0014

Node 3
25.3 2.6 6 0.8710 0.1078 0.0212
32.4 1.95 23 0.9617 0.0164 0.0218
37 1.6 9 0.9924 0.0015 0.0061

It is evident that the data obtained from different sensor nodes collected by the GA-BP
and PSO-LSSVM algorithms were also ambiguous after calculation. However, the fusion
of different results using the D-S evidence theory was shown to improve the reliability of
the evidence.

5. Conclusions

This paper proposes a data fusion method with multiple features to achieve an in-
building fire detection and early warning system. Firstly, the GA-BPNN and the PSO-
LSSVM were employed to translate the smoke concentration, temperature, and CO con-
centration into probabilities of fire, smolder, and no fire. Subsequently, the feature data
of the GA-BPNN and the PSO-LSSVM were fused by the D-S evidence theory to further
improve the accuracy and the reliability of the fire warning algorithm. Finally, an early fire
detection and warning system was developed. Small-scale in-building fire experiments
have confirmed the effectiveness of the method, and the combined algorithm of the D-S
evidence theory could significantly improve early fire detection. Additionally, the early fire
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warning system could accurately identify the fire signals from different types and regions.
The early fire detection accuracy also exceeded 96%. However, the proposed method can
only achieve fire recognition. It cannot be utilized to indicate the severity of fire. In addition,
in this paper, limited kinds of experimental materials were employed for fire combustion.
As a result, in future work, we plan to develop an end-to-end approach that can not only
achieve fire detection but also predict the fire levels based on the featured data, and more
kinds of experimental materials will be presented to demonstrate the effectiveness. More-
over, another valuable research interest is to identify the smoking behavior for avoiding
false fire alarm by utilizing the hybrid feature fusion-based method.
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