Multiple Damaged Cables Identification in Cable-Stayed Bridges Using Basis Vector Matrix Method
Abstract
:1. Introduction
2. Basis Vector Matrix Method
2.1. Relationship between the Cable Tension and the Bending Strain
2.2. Damage Index for the Damaged Cables of Cable-Stayed Bridges
2.3. Basis Vector Matrix
2.4. Damaged Cable Identification
3. Applications
3.1. Description of the Structural Health Monitoring System
3.2. Finite Element Model of the Cable-Stayed Bridge
3.3. Cable Damage Identification
3.4. The Hypothetical Damage Scenarios
3.5. Damaged Cable Identification
3.6. Damage Severity Identification
4. Conclusions
- For a single-cable case, the damage severity does not have an effect on the BV. Therefore, the BVM does not change with the cable damage severity, which is the key to the proposed BVM method.
- The BVM method can directly identify single damaged cables and multiple damaged cables. With 100 samples, the sample probability of damaged cables is greater than 90%. The damage identification functions have a good performance to identify the cable damage severity. Therefore, the BVM method has good generalization and anti-noise capability.
- The BVM method may be easily adapted to the field cable-stayed bridge health monitoring system. The identification probability could be improved with the increase in monitoring data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alamdari, M.M.; Kildashti, K.; Samali, B.; Goudarzi, H.V. Damage diagnosis in bridge structures using rotation influence line: Validation on a cable-stayed bridge. Eng. Struct. 2019, 185, 1–14. [Google Scholar] [CrossRef]
- Ghannadi, P.; Kourehli, S.S.; Mirjalili, S. The application of PSO in structural damage detection: An analysis of the previously released publications (2005–2020). Frat. Ed Integrità Strutt. 2022, 62, 460–489. [Google Scholar] [CrossRef]
- Talebinejad, I.; Fischer, C.; Ansari, F. Numerical evaluation of vibration-based methods for damage assessment of cable-stayed bridges. Comput. Civ. Infrastruct. Eng. 2011, 26, 239–251. [Google Scholar] [CrossRef]
- Zhou, X.T.; Ni, Y.Q.; Zhang, F.L. Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network. Math. Probl. Eng. 2014, 2014, 837963. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.L.; Li, A.Q.; Du, D.S.; Liu, T. Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge. Struct. Infrastruct. Eng. 2010, 6, 725–739. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Zhou, H.F.; Chan, K.C.; Ko, J.M. Modal flexibility analysis of cable-stayed ting kau bridge for damage identification. Comput. Civ. Infrastruct. Eng. 2008, 23, 223–236. [Google Scholar] [CrossRef]
- Ismail, Z.; Ibrahim, Z.; Ong, A.Z.C.; Rahman, A.G.A. Approach to reduce the limitations of modal identification in damage detection using limited field data for nondestructive structural health monitoring of a cable-stayed concrete bridge. J. Bridge Eng. 2012, 17, 867–875. [Google Scholar] [CrossRef]
- Liang, Y.B.; Li, D.S.; Song, G.B.; Feng, Q. Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation. Measurement 2018, 125, 163–175. [Google Scholar] [CrossRef]
- Huang, J.Z.; Li, D.S.; Li, H.N.; Song, G.B.; Liang, Y.B. Damage identification of a large cable-stayed bridge with novel cointegrated Kalman filter method under changing environments. Struct. Control Health Monit. 2018, 25, e2152. [Google Scholar] [CrossRef]
- Bisheh, H.B.; Amiri, G.G.; Nekooei, M.; Darvishan, E. Damage detection of a cable-stayed bridge using feature extraction and selection methods. Structure and Infrastructure Engineering. Struct. Infrastruct. Eng. 2019, 15, 1165–1177. [Google Scholar] [CrossRef]
- Bisheh, H.B.; Amiri, G.G.; Nekooei, M.; Darvishan, E. Damage detection of a cable-stayed bridge based on combining effective intrinsic mode functions of empirical mode decomposition using the feature selection technique. Inverse Probl. Sci. Eng. 2021, 29, 861–881. [Google Scholar] [CrossRef]
- Entezami, A.; Shariatmadar, H.; Mariani, S. Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection. Adv. Eng. Softw. 2020, 150, 102923. [Google Scholar] [CrossRef]
- Alamdari, M.M.; Khoa, N.L.D.; Wang, Y.; Samali, B.; Zhu, X.Q. A multi-way data analysis approach for structural health monitoring of a cable-stayed bridge. Struct. Health Monit. 2019, 18, 35–48. [Google Scholar] [CrossRef]
- Sharry, T.; Guan, H.; Nguyen, A.; Oh, E.; Hoang, N. Latest advances in finite element modelling and model updating of cable-stayed bridges. Infrastructures 2022, 7, 8. [Google Scholar] [CrossRef]
- Alamdari, M.M.; Ge, L.L.; Kildashti, K.; Zhou, Y.C.; Harvey, B.; Du, Z.Y. Non-contact structural health monitoring of a cable-stayed bridge: Case study. Struct. Infrastruct. Eng. 2019, 15, 1119–1136. [Google Scholar] [CrossRef]
- Mehrabi, B. In-service evaluation of cable-stayed bridges, over-view of available methods and findings. J. Bridge Eng. 2006, 11, 716–724. [Google Scholar] [CrossRef]
- Sun, Z.K.; Li, G.M.; Geng, S.H. Study on stayed-cable health monitoring. In Intelligence Computation and Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ren, J.Y.; Zhang, B.; Zhu, X.Q.; Li, S.H. Damaged cable identification in cable-stayed bridge from bridge deck strain measurements using support vector machine. Adv. Struct. Eng. 2022, 25, 754–771. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Chen, W.L.; Ma, M.L.; Tao, D.W.; Ou, J.P. Estimation and warning of fatigue damage of FRP stay cables based on acoustic emission techniques and fractal theory. Comput. Civ. Infrastruct. Eng. 2011, 26, 500–512. [Google Scholar] [CrossRef]
- Arjomandi, K.; Araki, Y.; MacDonald, T. Application of a hybrid structural health monitoring approach for condition assessment of cable-stayed bridges. J. Civil Struct. Health Monit. 2019, 9, 217–231. [Google Scholar] [CrossRef]
- Son, H.; Yoon, C.; Kim, Y.; Jang, Y.; Tran, L.V.; Kim, S.-E.; Kim, D.J.; Park, J. Damaged cable detection with statistical analysis, clustering, and deep learning models. Smart Struct. Syst. 2022, 29, 17–28. [Google Scholar]
- An, Y.H.; Zhong, Y.; Tan, Y.B.; Ou, J.P. Experimental and numerical studies on a test method for damage diagnosis of stay cables. Adv. Struct. Eng. 2017, 20, 245–256. [Google Scholar] [CrossRef]
- Jose, M.M.L.; Martin, V.R.; Juan, P.A.S.; Francisco, J.C.V.; Juan, A.Q.R. A shannon entropy-based methodology to detect and locate cables loss in a cable-stayed bridge. Int. J. Appl. Mech. 2021, 13, 2150063. [Google Scholar]
- Yanez-Borjas, J.J.; Machorro-Lopez, J.M.; Camarena-Martinez, D.; Valtierra-Rodriguez, M.; Amezquita-Sanchez, J.P.; Carrion-Viramontes, F.J.; Quintana-Rodriguez, J.A. A new damage index based on statistical features, PCA, and Mahalanobis distance for detecting and locating cables loss in a cable-stayed bridge. Int. J. Struct. Stab. Dyn. 2021, 21, 2150127. [Google Scholar] [CrossRef]
- Peng, Z.; Li, J.; Hao, H. Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios. Smart Struct. Syst. 2022, 29, 167–179. [Google Scholar]
- Fang, R.; Wu, Y.; Wei, W.; Na, L.; Biao, Q.; Jiang, P.; Yang, Q. An improved static residual force algorithm and its application in cable damage identification for cable-stayed bridges. Appl. Sci. 2022, 12, 2945. [Google Scholar] [CrossRef]
- Abdullah, A.B.M.; Jennifer, A.R.; Hamilton, H.R. Wire breakage detection using relative strain variation in unbonded posttensioning anchors. J. Bridge Eng. 2015, 20, 04014056. [Google Scholar] [CrossRef]
- Dang, N.L.; Huynh, T.C.; Kim, J.T. Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study. Sensors 2019, 19, 1054. [Google Scholar] [CrossRef] [Green Version]
- Scarella, A.; Salamone, G.; Babanajad, S.K.; De Stefano, A.; Ansari, F. Dynamic Brillouin scattering-based condition assessment of cables in cable-stayed bridges. J. Bridge Eng. 2016, 22, 04016130. [Google Scholar] [CrossRef]
- Kalhori, H.; Alamdari, M.M.; Zhu, X.Q.; Samali, B. Nothing-on-road axle detection strategies in bridge-weigh-in-motion for a cable-stayed bridge: Case study. J. Bridge Eng. 2018, 23, 05018006. [Google Scholar] [CrossRef]
- Sun, M.; Alamdari, M.M.; Kalhori, H. Automated operational modal Analysis of a cable-stayed bridge. J. Bridge Eng. 2017, 22, 05017012. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Samali, B.; Rashidi, M.; Alamdari, M.M. Long-term vibration monitoring of a cable-stayed bridge: Effects of environmental and operational conditions. In Proceedings of the 8th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Brisbane, Australia, 5–8 December 2017. [Google Scholar]
- Ghannadi, P.; Kourehli, S.S. Multiverse optimizer for structural damage detection: Numerical study and experimental validation. Structl. Des. Tall Spec. 2020, 29, e1777. [Google Scholar] [CrossRef]
- Ghannadi, P.; Kourehli, S.S. An effective method for damage assessment based on limited measured locations in skeletal structures. Adv. Struct. Eng. 2021, 24, 183–195. [Google Scholar] [CrossRef]
- Saberi-Movahed, F.; Najafzadeh, M.; Mehrpooya, A. Receiving more accurate predictions for longitudinal dispersion coefficients in water pipelines: Training group method of data handling using extreme learning machine conceptions. Water Resour. Manag. 2020, 34, 529–561. [Google Scholar] [CrossRef]
Mode No. | Frequency (FEM) (Hz) | Frequency (Test) (Hz) [31] | Difference (%) | MAC |
---|---|---|---|---|
1 | 2.038 | 2.014 | 1.192 | 0.978 |
2 | 3.163 | 3.510 | 9.886 | |
3 | 4.088 | 3.645 | 12.154 | |
4 | 5.329 | 5.538 | 3.774 | |
5 | 6.530 | 6.068 | 7.614 |
Damage Scenario | Damaged Cable Label | Damage Severity (%) | Remarks |
---|---|---|---|
① | 1# | 20 | Single cable damaged |
② | 4# | 10 | |
③ | 10# | 25 | |
④ | 1# | 20 | Two cables damaged simultaneously |
4# | 10 | ||
⑤ | 2# | 20 | |
12# | 20 | ||
⑥ | 1# | 10 | Three cables damaged simultaneously |
4# | 30 | ||
10# | 20 | ||
⑦ | 1# | 30 | Four cables damaged simultaneously |
3# | 10 | ||
9# | 20 | ||
11# | 30 |
Noise Level | Method | Scenario ① | Scenario ② | Scenario ③ | Scenario ④ | Scenario ⑤ | Scenario ⑥ | Scenario ⑦ |
---|---|---|---|---|---|---|---|---|
0% | BVM | 1 | 4 | 10 | 1, 4 | 2, 12 | 1, 4, 10 | 1, 2, 3, 9, 10, 11 |
SVM | 1 | 4 | 10 | 1, 4 | 2, 12 | —— | —— | |
5% | BVM | 1 | 4 | 10 | 1, 4 | 2, 12 | 1, 4, 10 | 1, 2, 3, 9, 10, 11 |
SVM | 1 | 4 | 10 | 1, 4 | 2, 12 | —— | —— | |
10% | BVM | 1 | 4 | 10 | 1, 4 | 2, 12 | 1, 4, 10 | 1, 2, 3, 9, 11 |
SVM | 1 | 4 | 10 | 1, 4 | 2, 12 | —— | —— | |
15% | BVM | 1 | 4 | 10 | 1, 4 | 1, 2, 3, 12 | 1, 4, 10 | 1, 3, 9, 10, 11 |
SVM | 1 | 4 | 10 | 1, 4 | 2, 12 | —— | —— | |
20% | BVM | 1 | 4 | 10 | 1, 4 | 2, 11, 12 | 1, 3, 4, 9, 10 | 1, 3, 9, 10, 11 |
SVM | 1 | 4 | 10 | 1, 4 | 2, 12 | —— | —— |
Damaged Cable Label | Damage Severity Identification Function |
---|---|
1#(9#) | de1(x) =1.268 × 10−07x3 − 3.624×10−05x2 + 0.006903x − 4.684×10−17 |
2#(10#) | de2(x) = 9.334 × 10−08x3 − 2.985×10−05x2 + 0.006615x + 4.372×10−17 |
3#(11#) | de3(x) = 2.758 × 10−08x3 − 1.341×10−05x2 + 0.004704x + −6.592×10−17 |
4#(12#) | de4(x) = 1.148 × 10−08x3 − 7.828×10−06x2 + 0.004198x + −3.504×10−17 |
The Damage Scenario | Damaged Cable | Exact Damage Severity (%) | Identified Damage Severity (%) | |||||
---|---|---|---|---|---|---|---|---|
Method | Noise 0% | Noise 5% | Noise 10% | Noise 15% | Noise 20% | |||
① | 1# | 20 | BVM | 19.99 | 20.26 | 18.14 | 22.15 | 22.80 |
SVM | 19.43 | 19.17 | 20.25 | 23.57 | 19.28 | |||
② | 4# | 10 | BVM | 10.00 | 9.76 | 10.81 | 7.64 | 5.78 |
SVM | 10.14 | 10.29 | 9.36 | 9.94 | 9.34 | |||
③ | 9# | 25 | BVM | 25.00 | 26.37 | 24.46 | 29.71 | 29.02 |
SVM | 24.73 | 25.01 | 23.04 | 23.06 | 26.09 | |||
④ | 1# | 20 | BVM | 19.99 | 22.09 | 20.88 | 13.43 | 30.13 |
SVM | 19.28 | 19.32 | 20.07 | 19.61 | 23.80 | |||
4# | 10 | BVM | 10.01 | 10.26 | 9.78 | 11.69 | 12.32 | |
SVM | 7.92 | 8.16 | 8.68 | 7.81 | 5.06 | |||
⑤ | 2# | 20 | BVM | 20.41 | 20.91 | 20.67 | 21.13 | 16.17 |
SVM | 19.16 | 19.34 | 19.48 | 18.39 | 13.05 | |||
12# | 20 | BVM | 19.70 | 19.46 | 22.86 | 19.83 | 17.47 | |
SVM | 19.31 | 18.21 | 20.21 | 19.39 | 19.73 | |||
1# | —— | BVM | —— | —— | —— | 5.36 | —— | |
3# | —— | BVM | —— | —— | —— | 3.42 | —— | |
11# | —— | BVM | —— | —— | —— | —— | 3.00 | |
⑥ | 1# | 10 | BVM | 9.41 | 9.64 | 10.46 | 9.22 | 8.11 |
4# | 30 | BVM | 29.73 | 28.64 | 28.95 | 26.48 | 34.61 | |
10# | 20 | BVM | 20.66 | 20.87 | 22.81 | 27.99 | 15.87 | |
3# | —— | BVM | —— | —— | —— | —— | 9.60 | |
9# | —— | BVM | —— | —— | —— | —— | 3.91 | |
⑦ | 1# | 30 | BVM | 28.02 | 26.44 | 21.01 | 25.35 | 30.31 |
3# | 10 | BVM | 6.78 | 6.42 | 3.82 | 11.75 | 9.93 | |
9# | 20 | BVM | 15.00 | 15.31 | 8.59 | 13.11 | 22.74 | |
11# | 30 | BVM | 28.26 | 28.73 | 27.63 | 22.30 | 30.58 | |
2# | —— | BVM | 4.08 | 7.48 | 5.50 | —— | —— | |
10# | —— | BVM | 4.69 | 3.52 | —— | 13.05 | 5.78 |
The Damage Scenario | Damaged Cable | Exact Damage Severity (%) | Error of Identified Damage Severity (%) | |||||
---|---|---|---|---|---|---|---|---|
Method | Noise 0% | Noise 5% | Noise 10% | Noise 15% | Noise 20% | |||
① | 1# | 20 | BVM | −0.01 | 0.26 | −1.86 | 2.15 | 2.8 |
SVM | −0.57 | −0.83 | 0.25 | 3.57 | −0.72 | |||
② | 4# | 10 | BVM | 0 | −0.24 | 0.81 | −2.36 | −4.22 |
SVM | 0.14 | 0.29 | −0.64 | −0.06 | −0.66 | |||
③ | 10# | 25 | BVM | 0 | 1.37 | −0.54 | 4.71 | 4.02 |
SVM | −0.27 | 0.01 | −1.96 | −1.94 | 1.09 | |||
④ | 1# | 20 | BVM | −0.01 | 2.09 | 0.88 | −6.57 | 10.13 |
SVM | −0.72 | −0.68 | 0.07 | −0.39 | 3.80 | |||
4# | 10 | BVM | 0.01 | 0.26 | −0.22 | 1.69 | 2.32 | |
SVM | −2.08 | −1.84 | −1.32 | −2.19 | −4.94 | |||
⑤ | 2# | 20 | BVM | 0.41 | 0.91 | 0.67 | 1.13 | −3.83 |
SVM | −0.84 | −0.66 | −0.52 | −1.61 | −6.95 | |||
12# | 20 | BVM | −0.3 | −0.54 | 2.86 | −0.17 | −2.53 | |
SVM | −0.69 | −1.79 | 0.21 | −0.61 | −0.27 | |||
⑥ | 1# | 10 | BVM | −0.59 | −0.36 | 0.46 | −0.78 | −1.89 |
4# | 30 | BVM | −0.27 | −1.36 | −1.05 | −3.52 | 4.61 | |
10# | 20 | BVM | 0.66 | 0.87 | 2.81 | 7.99 | −4.13 | |
⑦ | 1# | 30 | BVM | −1.98 | −3.56 | −8.99 | −4.65 | 0.31 |
3# | 10 | BVM | −3.22 | −3.58 | −6.18 | 1.75 | −0.07 | |
9# | 20 | BVM | −5 | −4.69 | −11.4 | −6.89 | 2.74 | |
11# | 30 | BVM | −1.74 | −1.27 | −2.37 | −7.7 | 0.58 |
The Damage Scenario | Damaged Cable | Exact Damage Severity (%) | MSE of Identified Damage Severity | ||||
---|---|---|---|---|---|---|---|
Method | Noise 5% | Noise 10% | Noise 15% | Noise 20% | |||
① | 1# | 20 | BVM | 0.0001 | 0.0006 | 0.0013 | 0.0019 |
SVM | 0.7590 | 1.891 | 3.889 | 5.9577 | |||
② | 4# | 10 | BVM | 0.0000 | 0.0001 | 0.0003 | 0.0005 |
SVM | 0.0655 | 0.2088 | 0.3985 | 1.1179 | |||
③ | 10# | 25 | BVM | 0.0003 | 0.0013 | 0.0024 | 0.0041 |
SVM | 0.6353 | 2.4003 | 4.7062 | 10.0898 | |||
④ | 1# | 20 | BVM | 0.0001 | 0.0005 | 0.0013 | 0.0018 |
SVM | 1.0166 | 2.4357 | 4.3462 | 5.9171 | |||
4# | 10 | BVM | 0.0000 | 0.0001 | 0.0003 | 0.0005 | |
SVM | 4.1723 | 4.5239 | 5.0131 | 5.5097 | |||
⑤ | 2# | 20 | BVM | 0.0002 | 0.0007 | 0.0022 | 0.0040 |
SVM | 1.0083 | 1.5974 | 2.9434 | 4.7203 | |||
12# | 20 | BVM | 0.0001 | 0.0005 | 0.0011 | 0.0016 | |
SVM | 1.0372 | 3.5539 | 6.3826 | 10.2385 | |||
⑥ | 1# | 10 | BVM | 0.0001 | 0.0003 | 0.0006 | 0.0014 |
4# | 30 | BVM | 0.0002 | 0.0011 | 0.0015 | 0.0036 | |
10# | 20 | BVM | 0.0003 | 0.0008 | 0.0019 | 0.0039 | |
⑦ | 1# | 30 | BVM | 0.0007 | 0.0013 | 0.0044 | 0.0046 |
3# | 10 | BVM | 0.0011 | 0.0014 | 0.0023 | 0.0021 | |
9# | 20 | BVM | 0.0033 | 0.0037 | 0.0080 | 0.0076 | |
11# | 30 | BVM | 0.0009 | 0.0017 | 0.0035 | 0.0055 |
The Damage Scenario | Damaged Cable | Exact Damage Severity (%) | R2 of Identified Damage Severity | ||||
---|---|---|---|---|---|---|---|
Method | Noise 5% | Noise 10% | Noise 15% | Noise 20% | |||
① | 1# | 20 | BVM | 1.0028 | 1.0154 | 1.0319 | 1.0484 |
SVM | 1.0020 | 1.0050 | 1.0101 | 1.1056 | |||
② | 4# | 10 | BVM | 1.0028 | 1.0096 | 1.0296 | 1.0516 |
SVM | 1.0006 | 1.0020 | 1.0039 | 1.0107 | |||
③ | 10# | 25 | BVM | 1.0053 | 1.0203 | 1.0390 | 1.0720 |
SVM | 1.0010 | 1.0039 | 1.0075 | 1.0166 | |||
④ | 1# | 20 | BVM | 1.0032 | 1.0114 | 1.0334 | 1.0470 |
SVM | 1.0028 | 1.0065 | 1.0116 | 1.0154 | |||
4# | 10 | BVM | 1.0033 | 1.0091 | 1.0255 | 1.0524 | |
SVM | 1.0701 | 1.0768 | 1.0864 | 1.0927 | |||
⑤ | 2# | 20 | BVM | 1.0055 | 1.0181 | 1.0541 | 1.1033 |
SVM | 1.0028 | 1.0043 | 1.0080 | 1.0129 | |||
12# | 20 | BVM | 1.0038 | 1.0128 | 1.0305 | 1.0412 | |
SVM | 1.0028 | 1.0095 | 1.0180 | 1.0269 | |||
⑥ | 1# | 10 | BVM | 1.0156 | 1.0297 | 1.0738 | 1.1627 |
4# | 30 | BVM | 1.0028 | 1.0122 | 1.0177 | 1.0420 | |
10# | 20 | BVM | 1.0062 | 1.0192 | 1.0488 | 1.0982 | |
⑦ | 1# | 30 | BVM | 1.0085 | 1.0167 | 1.0622 | 1.0556 |
3# | 10 | BVM | 1.2923 | 1.3935 | 1.8755 | 1.6798 | |
9# | 20 | BVM | 1.1725 | 1.1846 | 1.4798 | 1.3949 | |
11# | 30 | BVM | 1.0113 | 1.0213 | 1.0467 | 1.0714 |
The Damage Scenario | Damaged Cable | Exact Damage Severity (%) | U95 of Identified Damage Severity | ||||
---|---|---|---|---|---|---|---|
Method | Noise 5% | Noise 10% | Noise 15% | Noise 20% | |||
① | 1# | 20 | BVM | 0.0021 | 0.0048 | 0.0071 | 0.0087 |
SVM | 0.1708 | 0.2696 | 0.3865 | 0.4784 | |||
② | 4# | 10 | BVM | 0.0010 | 0.0019 | 0.0033 | 0.0045 |
SVM | 0.0502 | 0.0896 | 0.1237 | 0.2072 | |||
③ | 10# | 25 | BVM | 0.0036 | 0.0072 | 0.0096 | 0.0126 |
SVM | 0.1562 | 0.3037 | 0.4252 | 0.6226 | |||
④ | 1# | 20 | BVM | 0.0022 | 0.0042 | 0.0071 | 0.0083 |
SVM | 0.1976 | 0.3059 | 0.4086 | 0.4768 | |||
4# | 10 | BVM | 0.0011 | 0.0019 | 0.0032 | 0.0045 | |
SVM | 0.4004 | 0.4169 | 0.4388 | 0.4601 | |||
⑤ | 2# | 20 | BVM | 0.0030 | 0.0053 | 0.0091 | 0.0124 |
SVM | 0.1968 | 0.2477 | 0.3363 | 0.4258 | |||
12# | 20 | BVM | 0.0024 | 0.0044 | 0.0066 | 0.0079 | |
SVM | 0.1996 | 0.3695 | 0.4952 | 0.6272 | |||
⑥ | 1# | 10 | BVM | 0.0023 | 0.0033 | 0.0050 | 0.0073 |
4# | 30 | BVM | 0.0031 | 0.0064 | 0.0077 | 0.0117 | |
10# | 20 | BVM | 0.0031 | 0.0056 | 0.0086 | 0.0122 | |
⑦ | 1# | 30 | BVM | 0.0051 | 0.0072 | 0.0130 | 0.0133 |
3# | 10 | BVM | 0.0064 | 0.0073 | 0.0094 | 0.0090 | |
9# | 20 | BVM | 0.0112 | 0.0119 | 0.0175 | 0.0171 | |
11# | 30 | BVM | 0.0058 | 0.0081 | 0.0115 | 0.0145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Zhu, X.; Li, S. Multiple Damaged Cables Identification in Cable-Stayed Bridges Using Basis Vector Matrix Method. Sensors 2023, 23, 860. https://doi.org/10.3390/s23020860
Ren J, Zhu X, Li S. Multiple Damaged Cables Identification in Cable-Stayed Bridges Using Basis Vector Matrix Method. Sensors. 2023; 23(2):860. https://doi.org/10.3390/s23020860
Chicago/Turabian StyleRen, Jianying, Xinqun Zhu, and Shaohua Li. 2023. "Multiple Damaged Cables Identification in Cable-Stayed Bridges Using Basis Vector Matrix Method" Sensors 23, no. 2: 860. https://doi.org/10.3390/s23020860
APA StyleRen, J., Zhu, X., & Li, S. (2023). Multiple Damaged Cables Identification in Cable-Stayed Bridges Using Basis Vector Matrix Method. Sensors, 23(2), 860. https://doi.org/10.3390/s23020860