Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review
Abstract
:1. Introduction
2. Current Situation and Limitations of the Research and Its Translation to the Care
2.1. Study Design and Level of Evidence
2.2. Challenges in the Validation of New Intervention and Suggestions for Reconsideration of the Choice of the Outcomes
3. New Developments Allow for Innovative Clinical Trials
3.1. Innovative Technologies (Including Sensors) to Facilitate High-Quality Clinical Trials
3.2. Adaptative Trials
3.3. Advanced Statistical Methods to Increase the Efficiency of the Research
4. Perspectives on the Development of Scientific Evidence in Rehabilitation
4.1. Pragmatic Trials
4.2. Rehabilitation Treatment Specification System
5. Call for Action: The Development of Evidence-Based Technology Supported Rehabilitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feinstein, A.R. Clinical Judgment; Williams & Wilkins: Philadelphia, PA, USA, 1967. [Google Scholar]
- Cochrane, A.L. Effectiveness & Efficiency: Random Reflections on Health Services; New; RSM Books: London, UK, 1999; ISBN 978-1-85315-394-5. [Google Scholar]
- Claridge, J.A.; Fabian, T.C. History and Development of Evidence-Based Medicine. World J. Surg. 2005, 29, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.H. Clinical Medicine Meets Modern Epidemiology—And Both Profit. Ann. Epidemiol. 1992, 2, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Jenicek, M. Epidemiology, Evidenced-Based Medicine, and Evidence-Based Public Health. J. Epidemiol. 1997, 7, 187–197. [Google Scholar] [CrossRef]
- Reveiz, L.; Chapman, E.; Asial, S.; Munoz, S.; Bonfill, X.; Alonso-Coello, P. Risk of Bias of Randomized Trials over Time. J. Clin. Epidemiol. 2015, 68, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Young, M.; Shoman, H.; Punnoose, A.; Norrish, A.R.; Khanduja, V. Advanced Rehabilitation Technology in Orthopaedics—A Narrative Review. Int. Orthop. 2021, 45, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 323, 1824–1836. [Google Scholar] [CrossRef]
- Lehane, E.; Leahy-Warren, P.; O’Riordan, C.; Savage, E.; Drennan, J.; O’Tuathaigh, C.; O’Connor, M.; Corrigan, M.; Burke, F.; Hayes, M.; et al. Evidence-Based Practice Education for Healthcare Professions: An Expert View. BMJ Evid.-Based Med. 2019, 24, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Howick, J.; Koletsi, D.; Ioannidis, J.P.A.; Madigan, C.; Pandis, N.; Loef, M.; Walach, H.; Sauer, S.; Kleijnen, J.; Seehra, J.; et al. Most Healthcare Interventions Tested in Cochrane Reviews Are Not Effective According to High Quality Evidence: A Systematic Review and Meta-Analysis. J. Clin. Epidemiol. 2022, 148, 160–169. [Google Scholar] [CrossRef]
- Verweij, J.; Hendriks, H.R.; Zwierzina, H.; on behalf of the Cancer Drug Development Forum. Innovation in Oncology Clinical Trial Design. Cancer Treat. Rev. 2019, 74, 15–20. [Google Scholar] [CrossRef]
- Shaneyfelt, T. Pyramids Are Guides not Rules: The Evolution of the Evidence Pyramid. Evid. Based Med. 2016, 21, 121–122. [Google Scholar] [CrossRef]
- Miller, F.G.; Colloca, L. The Placebo Phenomenon and Medical Ethics: Rethinking the Relationship between Informed Consent and Risk–Benefit Assessment. Theor. Med. Bioeth. 2011, 32, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Lesaffre, E. Superiority, Equivalence, and Non-Inferiority Trials. Bull. NYU Hosp. Jt. Dis. 2008, 66, 150–154. [Google Scholar] [PubMed]
- Kacha, A.K.; Nizamuddin, S.L.; Nizamuddin, J.; Ramakrishna, H.; Shahul, S.S. Clinical Study Designs and Sources of Error in Medical Research. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2789–2801. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.; Savović, J.; Higgins, J.P.T.; Caldwell, D.M.; Reeves, B.C.; Shea, B.; Davies, P.; Kleijnen, J.; Churchill, R.; ROBIS Group. ROBIS: A New Tool to Assess Risk of Bias in Systematic Reviews Was Developed. J. Clin. Epidemiol. 2016, 69, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sertkaya, A.; Wong, H.-H.; Jessup, A.; Beleche, T. Key Cost Drivers of Pharmaceutical Clinical Trials in the United States. Clin. Trials Lond. Engl. 2016, 13, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Waldstreicher, J.; Johns, M.E. Managing Conflicts of Interest in Industry-Sponsored Clinical Research: More Physician Engagement Is Required. JAMA 2017, 317, 1751–1752. [Google Scholar] [CrossRef]
- Han, B.; Wang, S.; Wan, Y.; Liu, J.; Zhao, T.; Cui, J.; Zhuang, H.; Cui, F. Has the Public Lost Confidence in Vaccines Because of a Vaccine Scandal in China. Vaccine 2019, 37, 5270–5275. [Google Scholar] [CrossRef]
- Nair, S.C.; AlGhafli, S.; AlJaberi, A. Developing a Clinical Trial Governance Framework for Pharmaceutical Industry-Funded Clinical Trials. Account. Res. 2018, 25, 373–386. [Google Scholar] [CrossRef]
- Pew Research Center. Trust and Mistrust in Americans’ Views of Scientific Experts; Pew Research Center: Washington, DC, USA, 2019. [Google Scholar]
- Gluud, L.L. Bias in Clinical Intervention Research. Am. J. Epidemiol. 2006, 163, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Kempf, L.; Goldsmith, J.C.; Temple, R. Challenges of Developing and Conducting Clinical Trials in Rare Disorders. Am. J. Med. Genet. Part A 2018, 176, 773–783. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power Failure: Why Small Sample Size Undermines the Reliability of Neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinney, A.R.; Eakman, A.M.; Graham, J.E. Novel Effect Size Interpretation Guidelines and an Evaluation of Statistical Power in Rehabilitation Research. Arch. Phys. Med. Rehabil. 2020, 101, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.D.; Komorowski, A.S.; Lo, C.K.L.; Tandon, P.; Li, X.X.; Mokashi, V.; Cvetkovic, A.; Findlater, A.; Liang, L.; Tomlinson, G.; et al. Intention-to-Treat Analysis May Be More Conservative than per Protocol Analysis in Antibiotic Non-Inferiority Trials: A Systematic Review. BMC Med. Res. Methodol. 2021, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Krauss, A. Why All Randomised Controlled Trials Produce Biased Results. Ann. Med. 2018, 50, 312–322. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. Consolidated Standards of Reporting Trials Group CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. J. Clin. Epidemiol. 2010, 63, E1–E37. [Google Scholar] [CrossRef] [Green Version]
- Dijkers, M.P. An End to the Black Box of Rehabilitation? Arch. Phys. Med. Rehabil. 2019, 100, 144–145. [Google Scholar] [CrossRef]
- Whyte, J.; Hart, T. It’s More than a Black Box; it’s a Russian Doll: Defining Rehabilitation Treatments. Am. J. Phys. Med. Rehabil. 2003, 82, 639–652. [Google Scholar] [CrossRef]
- Zanca, J.M.; Turkstra, L.S.; Chen, C.; Packel, A.; Ferraro, M.; Hart, T.; Van Stan, J.H.; Whyte, J.; Dijkers, M.P. Advancing Rehabilitation Practice through Improved Specification of Interventions. Arch. Phys. Med. Rehabil. 2019, 100, 164–171. [Google Scholar] [CrossRef]
- Negrini, S.; Arienti, C.; Pollet, J.; Engkasan, J.P.; Francisco, G.E.; Frontera, W.R.; Galeri, S.; Gworys, K.; Kujawa, J.; Mazlan, M.; et al. Clinical Replicability of Rehabilitation Interventions in Randomized Controlled Trials Reported in Main Journals Is Inadequate. J. Clin. Epidemiol. 2019, 114, 108–117. [Google Scholar] [CrossRef]
- Van Stan, J.H.; Dijkers, M.P.; Whyte, J.; Hart, T.; Turkstra, L.S.; Zanca, J.M.; Chen, C. The Rehabilitation Treatment Specification System: Implications for Improvements in Research Design, Reporting, Replication, and Synthesis. Arch. Phys. Med. Rehabil. 2019, 100, 146–155. [Google Scholar] [CrossRef]
- Slade, S.C.; Dionne, C.E.; Underwood, M.; Buchbinder, R.; Beck, B.; Bennell, K.; Brosseau, L.; Costa, L.; Cramp, F.; Cup, E.; et al. Consensus on Exercise Reporting Template (CERT): Modified Delphi Study. Phys. Ther. 2016, 96, 1514–1524. [Google Scholar] [CrossRef] [Green Version]
- Zarbin, M. Real Life Outcomes vs. Clinical Trial Results. J. Ophthalmic Vis. Res. 2019, 14, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Nieuwlaat, R.; Wilczynski, N.; Navarro, T.; Hobson, N.; Jeffery, R.; Keepanasseril, A.; Agoritsas, T.; Mistry, N.; Iorio, A.; Jack, S.; et al. Interventions for Enhancing Medication Adherence. Cochrane Database Syst. Rev. 2014, CD000011. [Google Scholar] [CrossRef]
- Infante-Rivard, C.; Cusson, A. Reflection on modern methods: Selection Bias—A Review of Recent Developments. Int. J. Epidemiol. 2018, 47, 1714–1722. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Kirkham, J.; Dwan, K.; Kramer, S.; Green, S.; Forbes, A. Bias Due to Selective Inclusion and Reporting of Outcomes and Analyses in Systematic Reviews of Randomised Trials of Healthcare Interventions. Cochrane Database Syst. Rev. 2014, MR000035. [Google Scholar] [CrossRef]
- Wong, G.W.K.; Miravitlles, M.; Chisholm, A.; Krishnan, J.A.; Krishnan, J. Respiratory Guidelines—Which Real World? Ann. Am. Thorac. Soc. 2014, 11 (Suppl. 2), S85–S91. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.; Giraudeau, B.; Dechartres, A.; Baron, G.; Ravaud, P. Reporting of Sample Size Calculation in Randomised Controlled Trials: Review. BMJ 2009, 338, b1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianola, S.; Castellini, G.; Corbetta, D.; Moja, L. Rehabilitation Interventions in Randomized Controlled Trials for Low Back Pain: Proof of Statistical Significance Often Is Not Relevant. Health Qual. Life Outcomes 2019, 17, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassington, I. The Ethics of Reporting All the Results of Clinical Trials. Br. Med. Bull. 2017, 121, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Murad, M.H.; Chu, H.; Lin, L.; Wang, Z. The Effect of Publication Bias Magnitude and Direction on the Certainty in Evidence. BMJ Evid.-Based Med. 2018, 23, 84–86. [Google Scholar] [CrossRef]
- Castellini, G.; Gianola, S.; Bonovas, S.; Moja, L. Improving Power and Sample Size Calculation in Rehabilitation Trial Reports: A Methodological Assessment. Arch. Phys. Med. Rehabil. 2016, 97, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Krohne, B.; Röder, W.; Sander, K. Randomized, Prospective, Monocentric Study to Compare the Outcome of Continuous Passive Motion and Controlled Active Motion after Total Knee Arthroplasty. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2018, 26, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Feys, P.; Straudi, S. Beyond Therapists: Technology-Aided Physical MS Rehabilitation Delivery. Mult. Scler. Houndmills Basingstoke Engl. 2019, 25, 1387–1393. [Google Scholar] [CrossRef]
- Bonnechère, B. Serious Games in Physical Rehabilitation; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Garro, F.; Chiappalone, M.; Buccelli, S.; De Michieli, L.; Semprini, M. Neuromechanical Biomarkers for Robotic Neurorehabilitation. Front. Neurorobot. 2021, 15, 742163. [Google Scholar] [CrossRef]
- Bonnechère, B.; Sholukha, V.; Omelina, L.; Van Vooren, M.; Jansen, B.; Van Sint Jan, S. Suitability of functional evaluation embedded in serious game rehabilitation exercises to assess motor development across lifespan. Gait Posture 2017, 57, 35–39. [Google Scholar] [CrossRef]
- Werner, C.; Schönhammer, J.G.; Steitz, M.K.; Lambercy, O.; Luft, A.R.; Demkó, L.; Easthope, C.A. Using Wearable Inertial Sensors to Estimate Clinical Scores of Upper Limb Movement Quality in Stroke. Front. Physiol. 2022, 13, 877563. [Google Scholar] [CrossRef]
- Song, X.; van de Ven, S.S.; Chen, S.; Kang, P.; Gao, Q.; Jia, J.; Shull, P.B. Proposal of a Wearable Multimodal Sensing-Based Serious Games Approach for Hand Movement Training After Stroke. Front. Physiol. 2022, 13, 811950. [Google Scholar] [CrossRef]
- Gavrilović, M.M.; Janković, M.M. Temporal Synergies Detection in Gait Cyclograms Using Wearable Technology. Sensors 2022, 22, 2728. [Google Scholar] [CrossRef]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Sholukha, V.; Van Sint Jan, S. Validation of the Balance Board for Clinical Evaluation of Balance During Serious Gaming Rehabilitation Exercises. Telemed. e-Health 2016, 22, 709–717. [Google Scholar] [CrossRef]
- Bonnechère, B.; Jansen, B.; Haack, I.; Omelina, L.; Feipel, V.; Van Sint Jan, S.; Pandolfo, M. Automated Functional Upper Limb Evaluation of Patients with Friedreich Ataxia Using Serious Games Rehabilitation Exercises. J. Neuroeng. Rehabil. 2018, 15, 87. [Google Scholar] [CrossRef]
- Bonnechère, B.; Klass, M.; Langley, C.; Sahakian, B.J. Brain Training Using Cognitive Apps Can Improve Cognitive Performance and Processing Speed in Older Adults. Sci. Rep. 2021, 11, 12313. [Google Scholar] [CrossRef]
- Adans-Dester, C.; Hankov, N.; O’Brien, A.; Vergara-Diaz, G.; Black-Schaffer, R.; Zafonte, R.; Dy, J.; Lee, S.I.; Bonato, P. Enabling Precision Rehabilitation Interventions Using Wearable Sensors and Machine Learning to Track Motor Recovery. NPJ Digit. Med. 2020, 3, 121. [Google Scholar] [CrossRef] [PubMed]
- Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.W.; Keller, A.; et al. Long-Term Unsupervised Mobility Assessment in Movement Disorders. Lancet Neurol. 2020, 19, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, E130. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Ashrafian, H.; Aufegger, L.; Khan, S.; Arora, S.; Cooke, G.; Darzi, A. Wearable Sensors to Improve Detection of Patient Deterioration. Expert Rev. Med. Devices 2019, 16, 145–154. [Google Scholar] [CrossRef]
- Dillenseger, A.; Weidemann, M.L.; Trentzsch, K.; Inojosa, H.; Haase, R.; Schriefer, D.; Voigt, I.; Scholz, M.; Akgün, K.; Ziemssen, T. Digital Biomarkers in Multiple Sclerosis. Brain Sci. 2021, 11, 1519. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Papapetropoulos, S.; Xiong, M.; Kieburtz, K. The First Frontier: Digital Biomarkers for Neurodegenerative Disorders. Digit. Biomark. 2017, 1, 6–13. [Google Scholar] [CrossRef]
- Adams, J.L.; Dinesh, K.; Xiong, M.; Tarolli, C.G.; Sharma, S.; Sheth, N.; Aranyosi, A.J.; Zhu, W.; Goldenthal, S.; Biglan, K.M.; et al. Multiple Wearable Sensors in Parkinson and Huntington Disease Individuals: A Pilot Study in Clinic and at Home. Digit. Biomark. 2017, 1, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Schumann, M.; Le, S.; Cheng, S. Reliability and Validity of a New Accelerometer-Based Device for Detecting Physical Activities and Energy Expenditure. PeerJ 2018, 6, e5775. [Google Scholar] [CrossRef]
- Dinesh, K.; Snyder, C.W.; Xiong, M.; Tarolli, C.G.; Sharma, S.; Dorsey, E.R.; Sharma, G.; Adams, J.L. A Longitudinal Wearable Sensor Study in Huntington’s Disease. J. Huntingt. Dis. 2020, 9, 69–81. [Google Scholar] [CrossRef]
- Lipsmeier, F.; Simillion, C.; Bamdadian, A.; Tortelli, R.; Byrne, L.M.; Zhang, Y.-P.; Wolf, D.; Smith, A.V.; Czech, C.; Gossens, C.; et al. A Remote Digital Monitoring Platform to Assess Cognitive and Motor Symptoms in Huntington Disease: Cross-Sectional Validation Study. J. Med. Internet Res. 2022, 24, e32997. [Google Scholar] [CrossRef]
- Jacobs, D.; Farid, L.; Ferré, S.; Herraez, K.; Gracies, J.-M.; Hutin, E. Evaluation of the Validity and Reliability of Connected Insoles to Measure Gait Parameters in Healthy Adults. Sensors 2021, 21, 6543. [Google Scholar] [CrossRef]
- Torous, J.; Rodriguez, J.; Powell, A. The New Digital Divide for Digital BioMarkers. Digit. Biomark. 2017, 1, 87–91. [Google Scholar] [CrossRef]
- Dagum, P. Digital Biomarkers of Cognitive Function. NPJ Digit. Med. 2018, 1, 10. [Google Scholar] [CrossRef]
- Jacobson, N.C.; Summers, B.; Wilhelm, S. Digital Biomarkers of Social Anxiety Severity: Digital Phenotyping Using Passive Smartphone Sensors. J. Med. Internet Res. 2020, 22, e16875. [Google Scholar] [CrossRef]
- Ceolini, E.; Kock, R.; Band, G.P.H.; Stoet, G.; Ghosh, A. Temporal Clusters of Age-Related Behavioral Alterations Captured in Smartphone Touchscreen Interactions. iScience 2022, 25, 104791. [Google Scholar] [CrossRef]
- Omberg, L.; Chaibub Neto, E.; Perumal, T.M.; Pratap, A.; Tediarjo, A.; Adams, J.; Bloem, B.R.; Bot, B.M.; Elson, M.; Goldman, S.M.; et al. Remote Smartphone Monitoring of Parkinson’s Disease and Individual Response to Therapy. Nat. Biotechnol. 2022, 40, 480–487. [Google Scholar] [CrossRef]
- Mehta, S.J.; Hume, E.; Troxel, A.B.; Reitz, C.; Norton, L.; Lacko, H.; McDonald, C.; Freeman, J.; Marcus, N.; Volpp, K.G.; et al. Effect of Remote Monitoring on Discharge to Home, Return to Activity, and Rehospitalization After Hip and Knee Arthroplasty: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2028328. [Google Scholar] [CrossRef]
- Berry, D.A. Emerging Innovations in Clinical Trial Design. Clin. Pharmacol. Ther. 2016, 99, 82–91. [Google Scholar] [CrossRef]
- Stegert, M.; Kasenda, B.; von Elm, E.; You, J.J.; Blümle, A.; Tomonaga, Y.; Saccilotto, R.; Amstutz, A.; Bengough, T.; Briel, M.; et al. An Analysis of Protocols and Publications Suggested that Most Discontinuations of Clinical Trials Were Not Based on Preplanned Interim Analyses or Stopping Rules. J. Clin. Epidemiol. 2016, 69, 152–160. [Google Scholar] [CrossRef]
- WOMAN Trial Collaborators. Effect of Early Tranexamic Acid Administration on Mortality, Hysterectomy, and Other Morbidities in Women with Post-Partum Haemorrhage (WOMAN): An International, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Lond. Engl. 2017, 389, 2105–2116. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.L.; Mehta, C. Adaptive Designs for Clinical Trials. N. Engl. J. Med. 2016, 375, 65–74. [Google Scholar] [CrossRef]
- Bauer, P.; Bretz, F.; Dragalin, V.; König, F.; Wassmer, G. Twenty-Five Years of Confirmatory Adaptive Designs: Opportunities and Pitfalls. Stat. Med. 2016, 35, 325–347. [Google Scholar] [CrossRef]
- Fraiman, J.; Erviti, J.; Jones, M.; Greenland, S.; Whelan, P.; Kaplan, R.M.; Doshi, P. Serious Adverse Events of Special Interest following mRNA COVID-19 Vaccination in Randomized Trials in Adults. Vaccine 2022, 40, 5798–5805. [Google Scholar] [CrossRef]
- Sato, A.; Shimura, M.; Gosho, M. Practical Characteristics of Adaptive Design in Phase 2 and 3 Clinical Trials. J. Clin. Pharm. Ther. 2018, 43, 170–180. [Google Scholar] [CrossRef]
- Mulcahey, M.J.; Jones, L.A.T.; Rockhold, F.; Rupp, R.; Kramer, J.L.K.; Kirshblum, S.; Blight, A.; Lammertse, D.; Guest, J.D.; Steeves, J.D. Adaptive Trial Designs for Spinal Cord Injury Clinical Trials Directed to the Central Nervous System. Spinal Cord 2020, 58, 1235–1248. [Google Scholar] [CrossRef]
- Wason, J.M.S.; Abraham, J.E.; Baird, R.D.; Gournaris, I.; Vallier, A.-L.; Brenton, J.D.; Earl, H.M.; Mander, A.P. A Bayesian Adaptive Design for Biomarker Trials with Linked Treatments. Br. J. Cancer 2015, 113, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Korotcov, A.; Tkachenko, V.; Russo, D.P.; Ekins, S. Comparison of Deep Learning with Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets. Mol. Pharm. 2017, 14, 4462–4475. [Google Scholar] [CrossRef]
- Bui, Q.; Kaufman, K.J.; Munsell, E.G.; Lenze, E.J.; Lee, J.-M.; Mohr, D.C.; Fong, M.W.; Metts, C.L.; Tomazin, S.E.; Pham, V.; et al. Smartphone Assessment Uncovers Real-Time Relationships between Depressed Mood and Daily Functional Behaviors after Stroke. J. Telemed. Telecare 2022, 1357633X221100061. [Google Scholar] [CrossRef]
- Horn, S.D.; DeJong, G.; Ryser, D.K.; Veazie, P.J.; Teraoka, J. Another Look at Observational Studies in Rehabilitation Research: Going beyond the Holy Grail of the Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2005, 86, S8–S15. [Google Scholar] [CrossRef]
- Jette, A.M. Opening the Black Box of Rehabilitation Interventions. Phys. Ther. 2020, 100, 883–884. [Google Scholar] [CrossRef]
- Pham, B.; Jovanovic, J.; Bagheri, E.; Antony, J.; Ashoor, H.; Nguyen, T.T.; Rios, P.; Robson, R.; Thomas, S.M.; Watt, J.; et al. Text Mining to Support Abstract Screening for Knowledge Syntheses: A Semi-Automated Workflow. Syst. Rev. 2021, 10, 156. [Google Scholar] [CrossRef]
- Shi, L.; Lin, L. The Trim-and-Fill Method for Publication Bias: Practical Guidelines and Recommendations Based on a Large Database of Meta-Analyses. Medicine 2019, 98, e15987. [Google Scholar] [CrossRef]
- Du, H.; Liu, F.; Wang, L. A Bayesian “Fill-in” Method for Correcting for Publication Bias in Meta-Analysis. Psychol. Methods 2017, 22, 799–817. [Google Scholar] [CrossRef]
- Brown, M.T.; Bussell, J.; Dutta, S.; Davis, K.; Strong, S.; Mathew, S. Medication Adherence: Truth and Consequences. Am. J. Med. Sci. 2016, 351, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Bonnechère, B.; Van Vooren, M.; Jansen, B.; Van Sint, J.S.; Rahmoun, M.; Fourtassi, M. Patients’ Acceptance of the Use of Serious Games in Physical Rehabilitation in Morocco. Games Health J. 2017, 6, 290–294. [Google Scholar] [CrossRef]
- Coleman, C.I.; Limone, B.; Sobieraj, D.M.; Lee, S.; Roberts, M.S.; Kaur, R.; Alam, T. Dosing Frequency and Medication Adherence in Chronic Disease. J. Manag. Care Pharm. 2012, 18, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Palacio, A.; Garay, D.; Langer, B.; Taylor, J.; Wood, B.A.; Tamariz, L. Motivational Interviewing Improves Medication Adherence: A Systematic Review and Meta-Analysis. J. Gen. Intern. Med. 2016, 31, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Morawski, K.; Ghazinouri, R.; Krumme, A.; Lauffenburger, J.C.; Lu, Z.; Durfee, E.; Oley, L.; Lee, J.; Mohta, N.; Haff, N.; et al. Association of a Smartphone Application with Medication Adherence and Blood Pressure Control: The MedISAFE-BP Randomized Clinical Trial. JAMA Intern. Med. 2018, 178, 802–809. [Google Scholar] [CrossRef]
- Pickler, R.H.; Kearney, M.H. Publishing Pragmatic Trials. Nurs. Outlook 2018, 66, 464–469. [Google Scholar] [CrossRef]
- Baumfeld Andre, E.; Reynolds, R.; Caubel, P.; Azoulay, L.; Dreyer, N.A. Trial Designs Using Real-World Data: The Changing Landscape of the Regulatory Approval Process. Pharmacoepidemiol. Drug Saf. 2020, 29, 1201–1212. [Google Scholar] [CrossRef] [Green Version]
- Steinhubl, S.R.; Waalen, J.; Edwards, A.M.; Ariniello, L.M.; Mehta, R.R.; Ebner, G.S.; Carter, C.; Baca-Motes, K.; Felicione, E.; Sarich, T.; et al. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA 2018, 320, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Stroulia, E.; Nikolaidis, I.; Miguel-Cruz, A.; Rios Rincon, A. Smart Homes and Home Health Monitoring Technologies for Older Adults: A Systematic Review. Int. J. Med. Inf. 2016, 91, 44–59. [Google Scholar] [CrossRef]
- Anderson, A.; Borfitz, D.; Getz, K. Global Public Attitudes about Clinical Research and Patient Experiences with Clinical Trials. JAMA Netw. Open 2018, 1, e182969. [Google Scholar] [CrossRef] [Green Version]
- Hayes, S.L.; Riley, P.; Radley, D.C.; McCarthy, D. Reducing Racial and Ethnic Disparities in Access to Care: Has the Affordable Care Act Made a Difference? Issue Brief Commonw. Fund 2017, 2017, 1–14. [Google Scholar]
- Van Stan, J.H.; Whyte, J.; Duffy, J.R.; Barkmeier-Kraemer, J.M.; Doyle, P.B.; Gherson, S.; Kelchner, L.; Muise, J.; Petty, B.; Roy, N.; et al. Rehabilitation Treatment Specification System: Methodology to Identify and Describe Unique Targets and Ingredients. Arch. Phys. Med. Rehabil. 2021, 102, 521–531. [Google Scholar] [CrossRef]
- Hart, T.; Dijkers, M.P.; Whyte, J.; Turkstra, L.S.; Zanca, J.M.; Packel, A.; Van Stan, J.H.; Ferraro, M.; Chen, C. A Theory-Driven System for the Specification of Rehabilitation Treatments. Arch. Phys. Med. Rehabil. 2019, 100, 172–180. [Google Scholar] [CrossRef]
- Pierce, J.E.; O’Halloran, R.; Menahemi-Falkov, M.; Togher, L.; Rose, M.L. Comparing Higher and Lower Weekly Treatment Intensity for Chronic Aphasia: A Systematic Review and Meta-Analysis. Neuropsychol. Rehabil. 2021, 31, 1289–1313. [Google Scholar] [CrossRef]
- Fava, G.A. Evidence-Based Medicine Was Bound to fail: A Report to Alvan Feinstein. J. Clin. Epidemiol. 2017, 84, 3–7. [Google Scholar] [CrossRef]
- Duffau, H. Paradoxes of Evidence-Based Medicine in Lower-Grade Glioma: To Treat the Tumor or the Patient? Neurology 2018, 91, 657–662. [Google Scholar] [CrossRef]
- Angeli, J.M.; Schwab, S.M.; Huijs, L.; Sheehan, A.; Harpster, K. ICF-Inspired Goal-Setting in Developmental Rehabilitation: An Innovative Framework for Pediatric Therapists. Physiother. Theory Pract. 2019, 37, 1167–1176. [Google Scholar] [CrossRef]
- Nonnekes, J.; Nieuwboer, A. Towards Personalized Rehabilitation for Gait Impairments in Parkinson’s Disease. J. Park. Dis. 2018, 8, S101–S106. [Google Scholar] [CrossRef] [Green Version]
- Castellini, G.; Corbetta, D.; Cecchetto, S.; Gianola, S. Twenty-Five Years after the Introduction of Evidence-Based Medicine: Knowledge, Use, Attitudes and Barriers among Physiotherapists in Italy—A Cross-Sectional Study. BMJ Open 2020, 10, e037133. [Google Scholar] [CrossRef]
- Benfield, A.; Krueger, R.B. Making Decision-Making Visible-Teaching the Process of Evaluating Interventions. Int. J. Environ. Res. Public. Health 2021, 18, 3635. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnechère, B.; Timmermans, A.; Michiels, S. Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. Sensors 2023, 23, 875. https://doi.org/10.3390/s23020875
Bonnechère B, Timmermans A, Michiels S. Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. Sensors. 2023; 23(2):875. https://doi.org/10.3390/s23020875
Chicago/Turabian StyleBonnechère, Bruno, Annick Timmermans, and Sarah Michiels. 2023. "Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review" Sensors 23, no. 2: 875. https://doi.org/10.3390/s23020875
APA StyleBonnechère, B., Timmermans, A., & Michiels, S. (2023). Current Technology Developments Can Improve the Quality of Research and Level of Evidence for Rehabilitation Interventions: A Narrative Review. Sensors, 23(2), 875. https://doi.org/10.3390/s23020875