Extended Tromograph Surveys for a Full Experimental Characterisation of the San Giorgio Cathedral in Ragusa (Italy)
Abstract
:1. Introduction
2. Description of the Case Study
2.1. Geological and Seismological Framework
2.2. Historical and Architectural Background
3. 3D Subsoil Modelling by Geophysical Surveys
3.1. Methods and Field Surveys
3.2. Data Processing
3.3. Geophysical Integrated Approach
4. Expedited Dynamic Identification
4.1. Methods and Field Surveys
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lourenço, P.B.; Barontini, A.; Oliveira, D.V.; Ortega, J. Rethinking preventive conservation: Recent examples. In Geotechnical Engineering for the Preservation of Monuments and Historic Sites III, 1st ed.; CRC Press: London, UK, 2022; pp. 70–86. [Google Scholar]
- Martinho, E.; Dionísio, A. Main geophysical techniques used for non-destructive evaluation in cultural built heritage: A review. J. Geophys. Eng. 2014, 11, 053001. [Google Scholar] [CrossRef]
- Grassi, S.; Barbano, M.S.; Pirrotta, C.; Morreale, G.; Imposa, S. Seismic Soil–Structure Interaction of Three Historical Buildings at the University of Catania (Sicily, Italy). Heritage 2022, 5, 3562–3587. [Google Scholar] [CrossRef]
- Imposa, S.; Motta, E.; Capilleri, P.; Imposa, G. HVSR and MASW seismic survey for characterising the local seismic response: A case study in Catania area (Italy). In Proceedings of the 1st IMEKO TC-4 International Workshop on Metrology for Geotechnics, Benevento, Italy, 17–18 March 2016. [Google Scholar]
- Imposa, S.; Grassi, S.; Patti, G.; Boso, D. New data on buried archaeological ruins in Messina area (Sicily-Italy) from a ground penetrating radar survey. J. Archaeol. Sci. Rep. 2018, 17, 358–365. [Google Scholar] [CrossRef]
- Vásconez-Maza, M.D.; Martínez-Pagán, P.; Aktarakçi, H.; García-Nieto, M.C.; Martínez-Segura, M.A. Enhancing Electrical Contact with a Commercial Polymer for Electrical Resistivity Tomography on Archaeological Sites: A Case Study. Materials 2020, 13, 5012. [Google Scholar] [CrossRef]
- Hegyi, A.; Diaconescu, D.; Urdea, P.; Sarris, A.; Pisz, M.; Onaca, A. Using Geophysics to Characterize a Prehistoric Burial Mound in Romania. Remote Sens. 2021, 13, 842. [Google Scholar] [CrossRef]
- Monterroso-Checa, A.; Teixidó, T.; Gasparini, M.; Peña, J.A.; Rodero, S.; Moreno, J.C.; Morena, J.A. Use of Remote Sensing, Geophysical Techniques and Archaeological Excavations to Define the Roman Amphitheater of Torreparedones (Córdoba, Spain). Remote Sens. 2019, 11, 2937. [Google Scholar] [CrossRef] [Green Version]
- Negri, S.; Leucci, G.; Mazzone, F. High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface. J. Appl. Geophys. 2008, 65, 111–120. [Google Scholar] [CrossRef]
- Deiana, R. The contribution of geophysical prospecting to the multidisciplinary study of the Sarno Baths, Pompeii. J. Cult. Herit. 2019, 40, 274–279. [Google Scholar] [CrossRef]
- Imposa, S.; Grassi, S.; Di Raimondo, S.; Patti, G.; Lombardo, G.; Panzera, F. Seismic refraction tomography surveys as a method for voids detection: An application to the archaeological park of Cava Ispica, Sicily, Italy. Int. J. Archit. Herit. 2018, 12, 806–815. [Google Scholar] [CrossRef]
- Russo, S. Integrated assessment of monumental structures through ambient vibrations and ND tests: The case of Rialto Bridge. J. Cult. Herit. 2016, 19, 402–414. [Google Scholar] [CrossRef]
- Russo, S.; Spoldi, E. Damage assessment of Nepal heritage through ambient vibration analysis and visual inspection. Struct. Control Health Monit. 2020, 27, e2493. [Google Scholar] [CrossRef]
- Spoldi, E.; Russo, S. Damage Assessment and Dynamic Characteristics of Temples in Nepal Post Gorkha 2015 Earthquake. Int. J. Archit. Herit. 2021, 15, 479–493. [Google Scholar] [CrossRef]
- Ceravolo, R.; Pistone, G.; Fragonara, L.Z.; Massetto, S.; Abbiati, G. Vibration-Based Monitoring and Diagnosis of Cultural Heritage: A Methodological Discussion in Three Examples. Int. J. Archit. Herit. 2016, 10, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Lopez, S.; D’Amato, M.; Ramos, L.; Laterza, M.; Lourenço, P.B. Simplified formulation for estimating the main frequencies of ancient masonry churches. Front. Built Environ. 2019, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Diaferio, M.; Foti, D.; Potenza, F. Prediction of the fundamental frequencies and modal shapes of historic masonry towers by empirical equations based on experimental data. Eng. Struct. 2018, 156, 433–442. [Google Scholar] [CrossRef]
- Grassi, S.; Imposa, S.; Patti, G.; Boso, D.; Lombardo, G.; Panzera, F. Geophysical surveys for the dynamic characterization of a cultural heritage building and its subsoil: The S. Michele Arcangelo Church (Acireale, eastern Sicily). J. Cult. Herit. 2019, 36, 72–84. [Google Scholar] [CrossRef]
- Grassi, S.; Patti, G.; Tiralongo, P.; Imposa, S.; Aprile, D. Applied geophysics to support the cultural heritage safeguard: A quick and non-invasive method to evaluate the dynamic response of a great historical interest building. J. Appl. Geophys. 2021, 189, 104321. [Google Scholar] [CrossRef]
- Li, X.; Ventura, C.E.; Feng, Y.; Pan, Y.; Kaya, Y.; Xiong, H.; Zhang, F.; Cao, J.; Zhou, M. Ambient Vibration Testing of Two Highly Irregular Tall Buildings in Shanghai. In Dynamics of Civil Structures; Pakzad, S., Juan, C., Eds.; Proceedings of the Society for Experimental Mechanics Series; Springer International Publishing: Cham, Switzerland, 2016; Volume 2, pp. 87–94. [Google Scholar] [CrossRef]
- Motamedi, M.; Ventura, C.E.; Adebar, P.; Murugavel, R.A. Ambient Vibration Tests and Modal Response Analysis of an Old Age High-Rise Building in Downtown Vancouver, Canada. In Topics in Modal Analysis & Testing; Mains, M.L., Dilworth, B.J., Eds.; Proceedings of the Society for Experimental Mechanics Series; Springer International Publishing: Cham, Switzerland, 2020; Volume 8, pp. 365–368. [Google Scholar] [CrossRef]
- Gresta, S.; Langer, H.; Mucciarelli, M.; Gallipoli, M.R.; Imposa, S.; Lettica, J.; Monaco, C. The site response in the city of Ragusa-Ibla (Sicily) by using microtremors and strong ground motion simulations. WIT Trans. Ecol. Environ. 2004, 77, 9. [Google Scholar] [CrossRef]
- Magri, L.; Mucciarelli, M.; Albarello, D. Estimates of site seismicity rates using ill-defined macroseismic data. Pure Appl. Geophys. 1994, 143, 617–632. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. The Italian earthquake catalogue CPTI15. Bull. Earthq. Eng. 2020, 18, 2953–2984. [Google Scholar] [CrossRef]
- Grasso, S.; Maugeri, M. Seismic microzonation studies for the city of Ragusa (Italy). Soil. Dyn. Earthq. Eng. 2014, 56, 86–97. [Google Scholar] [CrossRef]
- Stucchi, M.; Meletti, C.; Montaldo, V.; Crowley, H.; Calvi, G.M.; Boschi, E. Seismic Hazard Assessment (2003–2009) for the Italian Building Code. Bull. Seismol. Soc. Am. 2011, 101, 1885–1911. [Google Scholar] [CrossRef]
- Russo, S. On the monitoring of historic Anime Sante church damaged by earthquake in L’Aquila: Monitoring of Historic Church Damaged by Earthquake. Struct. Control Health Monit. 2013, 20, 1226–1239. [Google Scholar] [CrossRef]
- Boscato, G.; Dal Cin, A.; Russo, S.; Sciarretta, F. SHM of Historic Damaged Churches. Adv. Mater. Res. 2013, 838, 2071–2078. [Google Scholar] [CrossRef]
- Tringali, S.; De Benedictis, R.; La Rosa, R.; Russo, C.; Bramante, A.; Gavarini, C.; Valente, G.; Ceradini, V.; Tocci, C.; Tobriner, S.; et al. The reconstruction of the Cathedral of Noto. Constr. Build. Mater. 2003, 17, 573–578. [Google Scholar] [CrossRef]
- Benjumea, B.; Teixido, T.; Pena, J.A. Application of the CMP refraction method to an archaeological study Los Millares, Almería, Spain. J. Appl. Geophys. 2001, 46, 77–84. [Google Scholar] [CrossRef]
- Forte, E.; Pipan, M. Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli). J. Archaeol. Sci. 2008, 35, 2614–2623. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef]
- Achenbach, J.D. Calculation of surface wave motions due to a subsurface point force: An application of elastodynamic reciprocity. J. Acoust. Soc. Am. 2000, 107, 1892–1897. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. Railw. Tech. Res. Inst. 1989, 30, 25–30. [Google Scholar]
- Nogoshi, M.; Igarashi, T. On the amplitude characteristics of microtremor (part 2). J. Seismol. Soc. Jpn. 1971, 24, 26–40. [Google Scholar]
- Okada, H.; Suto, K. The Microtremor Survey Method; Society of Exploration Geophysicists: Houston, TX, USA, 2003. [Google Scholar] [CrossRef]
- Bonnefoy-Claudet, S.; Cotton, F.; Bard, P.Y. The nature of noise wavefield and its applications for site effects studies. Earth-Sci. Rev. 2006, 79, 205–227. [Google Scholar] [CrossRef]
- Pullammanappallil, S.K.; Louie, J.N. A generalized simulated-annealing optimization for inversion of first-arrival times. Bull. Seismol. Soc. Am. 1994, 84, 1397–1409. [Google Scholar] [CrossRef]
- Bard, P.Y. Extracting information from ambient seismic noise: The SESAME project (Site EffectS assessment using AMbient Excitations). Seism. Landslide Risk Eur. Union 2002, 12, 9. [Google Scholar]
- Castellaro, S.; Mulargia, F. The Effect of Velocity Inversions on H/V. Pure Appl. Geophys. 2009, 166, 567–592. [Google Scholar] [CrossRef]
- Xia, J.; Miller, R.D.; Park, C.B.; Tian, G. Inversion of high frequency surface waves with fundamental and higher modes. J. Appl. Geophys. 2003, 52, 45–57. [Google Scholar] [CrossRef]
- Xia, J.; Miller, R.D.; Park, C.B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics 1999, 64, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Alparone, S.; Bonforte, A.; Gambino, S.; Grassi, S.; Guglielmino, F.; Latino, F.; Morreale, G.; Patti, G.; Privitera, L.; Obrizzo, F.; et al. Characterization of an Active Fault through a Multiparametric Investigation: The Trecastagni Fault and Its Relationship with the Dynamics of Mt. Etna Volcano (Sicily, Italy). Remote Sens. 2022, 14, 4760. [Google Scholar] [CrossRef]
- Grassi, S.; De Guidi, G.; Patti, G.; Brighenti, F.; Carnemolla, F.; Imposa, S. 3D subsoil reconstruction of a mud volcano in central Sicily by means of geophysical surveys. Acta Geophys. 2022, 70, 1083–1102. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Imposa, S.; Grassi, S.; Leotta, A.; La Rosa, F.; Salerno, D. A quick combined approach for the characterization of a cliff during a post-rockfall emergency. Landslides 2020, 17, 1063–1081. [Google Scholar] [CrossRef]
- Ibs-von Seht, M.; Wohlenberg, J. Microtremor measurements used to map thickness of soft sediments. Bull. Seismol. Soc. Am. 1999, 89, 250–259. [Google Scholar] [CrossRef]
- Piro, S.; Mauriello, P.; Cammarano, F. Quantitative integration of geophysical methods for archaeological prospection. Archaeol. Prospect. 2000, 7, 203–213. [Google Scholar] [CrossRef]
- Piro, S.; Gabrielli, R. Multimethodological approach to investigate chamber tombs in the Sabine Necropolis at Colle del Forno (CNR, Rome, Italy). Archaeol. Prospect. 2009, 16, 111–124. [Google Scholar] [CrossRef]
- Castellaro, S.; Padrón, L.A.; Mulargia, F. The different response of apparently identical structures: A far-field lesson from the Mirandola 20th May 2012 earthquake. Bull. Earthq. Eng. 2014, 12, 2481–2493. [Google Scholar] [CrossRef]
- Brincker, R.; Zhang, L.; Andersen, P. Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 2001, 10, 441–445. [Google Scholar] [CrossRef]
Estimator | fSSR | fFDD | Δf |
---|---|---|---|
Longitudinal Component (N-S) | 2.34 Hz | 2.25 Hz | 4.0% |
Transversal Component (E-W) | 3.34 Hz | 3.25 Hz | 2.4% |
Macro Element | Longitudinal Component (N-S) | Transversal Component (E-W) |
---|---|---|
Dome | 0.52 s | 0.54 s |
0.39 s | ||
Façade | 0.42 s | 0.30 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imposa, G.; Grassi, S.; Barontini, A.; Morreale, G.; Russo, S.; Lourenço, P.B.; Imposa, S. Extended Tromograph Surveys for a Full Experimental Characterisation of the San Giorgio Cathedral in Ragusa (Italy). Sensors 2023, 23, 889. https://doi.org/10.3390/s23020889
Imposa G, Grassi S, Barontini A, Morreale G, Russo S, Lourenço PB, Imposa S. Extended Tromograph Surveys for a Full Experimental Characterisation of the San Giorgio Cathedral in Ragusa (Italy). Sensors. 2023; 23(2):889. https://doi.org/10.3390/s23020889
Chicago/Turabian StyleImposa, Giacomo, Sabrina Grassi, Alberto Barontini, Gabriele Morreale, Salvatore Russo, Paulo B. Lourenço, and Sebastiano Imposa. 2023. "Extended Tromograph Surveys for a Full Experimental Characterisation of the San Giorgio Cathedral in Ragusa (Italy)" Sensors 23, no. 2: 889. https://doi.org/10.3390/s23020889
APA StyleImposa, G., Grassi, S., Barontini, A., Morreale, G., Russo, S., Lourenço, P. B., & Imposa, S. (2023). Extended Tromograph Surveys for a Full Experimental Characterisation of the San Giorgio Cathedral in Ragusa (Italy). Sensors, 23(2), 889. https://doi.org/10.3390/s23020889