Incipient Wear Detection of Welding Gun Secondary Circuit by Virtual Resistance Sensor Using Mahalanobis Distance
Abstract
:1. Introduction
MFDC Welding
2. Background and Objectives
2.1. Previous Research
2.2. Research Objectives
3. Materials and Methods
3.1. Virtual Sensors for Resistance Estimation
3.2. Incipient Wear Detection
3.3. Wear Detection System
Algorithm 1: Threshold Calibration. |
Input: Vweld, Isec and Dcycle Output: Al (Alarm Thershold), Pr (Prealarm Threshold), C
|
Algorithm 2: Analysis of new incoming data. |
Input: Vweldnew, Isecmew, Dcyclenew, Al, Pr and C Output: Alarm/Prealarm warning
If D > Pr and D < Al then “Pre-alarm” |
Algorithm 3: Recalibration after alarm. |
Input: Vweld_after_alarm, Isec_after_alarm, Dcycle_after_alarm, Al, Pr and C Output: Al, Wn, C
Al = Alnew Pr = Prnew |
4. Results
4.1. Gun 1: Welding Arm Wear
4.2. Gun 2: Welding Resistance Wear
4.3. Gun 3: Welding Resistance and Arm Resistance Wear
5. Analysis and Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- RWMA. Resistance Welding Manual, 4th ed.; Resistance Welder Manufacturer’s Association: Philadelphia, PA, USA, 1989. [Google Scholar]
- Banga, H.K.; Kalra, P.; Kumar, R.; Singh, S.; Pruncu, C.I. Optimization of the cycle time of robotics resistance spot welding for automotive applications. J. Adv. Manuf. Process. 2021, 3, e10084. [Google Scholar] [CrossRef]
- Su, Z.W.; Xia, Y.J.; Shen, Y.; Li, Y.B. A novel real-time measurement method for dynamic resistance signal in medium frequency DC resistance spot welding. Meas. Sci. Technol. 2020, 31, 055011. [Google Scholar] [CrossRef]
- Li, Y.B.; Lin, Z.; Hu, S.; Chen, G.L. Numerical analysis of magnetic fluid dynamics behaviors during resistance spot welding. J. Appl. Phys. 2007, 101, 053506. [Google Scholar] [CrossRef]
- Wohner, M.; Mitzschke, N.; Jüttner, S. Resistance spot welding with variable electrode force—Development and benefit of a force profile to extend the weldability of 22MnB5+AS150. Weld. World 2020, 65, 105–117. [Google Scholar] [CrossRef]
- Yu, J. Adaptive resistance spot welding process that reduces the shunting effect for automotive high-strength steels. Metals 2018, 8, 775. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.; Yan, S.; Zhou, H.; Chen, H.; Qin, Q.H. Qualitative and quantitative analysis of misaligned electrode degradation when welding galvannealed steel. Int. J. Adv. Manuf. Technol. 2018, 97, 629–640. [Google Scholar] [CrossRef]
- Wang, L.; Rong, Y. Review on processing stability, weld defects, finite element analysis, and field assisted welding of ultra-high-power laser (≥10 kW) welding. Int. J. Hydromechatron. 2022, 5, 167–190. [Google Scholar] [CrossRef]
- Yu, J. New methods of resistance spot welding using reference waveforms of welding power. Int. J. Precis. Eng. Manuf. 2016, 17, 1313–1321. [Google Scholar] [CrossRef]
- Zhou, K.; Cai, L. Online measuring power factor in AC resistance spot welding. IEEE Trans. Ind. Electron. 2014, 61, 575–582. [Google Scholar] [CrossRef]
- Nagasathya, N.; Boopathy, S.R.; Santhakumari, A. MFDC-An energy efficient adaptive technology for welding of thin sheets. In Proceedings of the 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India, 10–12 April 2013; IEEE: Toulouse, France, 2013; pp. 901–906. [Google Scholar]
- Zhou, K.; Yao, P. Review of Application of the Electrical Structure in Resistance Spot Welding. IEEE Access 2017, 5, 25741–25749. [Google Scholar] [CrossRef]
- Arslan, S.; Tarimer, İ.; Güven, M.; Oy, S. A medium frequency transformer design for spot welding machine using sizing equation and finite element analysis. Eng. Rev. 2020, 40, 42–51. [Google Scholar] [CrossRef]
- Hidiroğlu, M.; Kahraman, U.; Kahraman, N. The effect of AC and MFDC resistance spot welding technology on mechanical properties of new generation automotive steels. Pamukkale Üniversitesi Mühendislik Bilim. Derg. 2021, 27, 465–471. [Google Scholar]
- Ibáñez, D.; García, E.; Martos, J.; Soret, J. A Novel Real-Time Wear Detection System for the Secondary Circuit of Resistance Welding Guns. In Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics—ICINCO, Lisbon, Portugal, 14–16 July 2022; pp. 185–192, ISBN 978-989-758-585-2. ISSN 2184-2809. [Google Scholar] [CrossRef]
- Lins, R.G.; de Araujo, P.R.M.; Corazzim, M. In-process machine vision monitoring of tool wear for Cyber-Physical Production Systems. Robot. Comput. -Integr. Manuf. 2020, 61, 101859, ISSN 0736-5845. [Google Scholar] [CrossRef]
- Li, Z.; Liu, R.; Wu, D. Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning. J. Manuf. Process. 2019, 48, 66–76, ISSN 1526-6125. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Guo, Z.; Zhang, W.; Yin, J.; Zhao, W. Physical model-based tool wear and breakage monitoring in milling process. Mech. Syst. Signal Process. 2023, 184, 109641. [Google Scholar] [CrossRef]
- Garcia, E.; Montés, N.; Llopis, J.; Lacasa, A. Miniterm, a Novel Virtual Sensor for Predictive Maintenance for the Industry 4.0 Era. Sensors 2022, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Mathiszik, C.; Köberlin, D.; Heilmann, S.; Zschetzsche, J.; Füssel, U. General Approach for Inline Electrode Wear Monitoring at Resistance Spot Welding. Processes 2021, 9, 685. [Google Scholar] [CrossRef]
- Panza, L.; De Maddis, M.; Spena, P.R. Use of electrode displacement signals for electrode degradation assessment in resistance spot welding. J. Manuf. Process. 2022, 76, 93–105. [Google Scholar] [CrossRef]
- Vinutha, H.P.; Poornima, B.; Sagar, B.M. Detection of outliers using interquartile range technique from intrusion dataset. In Information and Decision Sciences; Springer: Singapore, 2018; pp. 511–518. [Google Scholar]
- Liu, L.; Kuo, S.; Zhou, M. Virtual sensing techniques and their applications. In Proceedings of the 2009 International Conference on Networking, Sensing and Control, Okayama, Japan, 26–29 March 2009; pp. 31–36. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Martin, H.L. Chow, 7—Diode Rectifiers. In Power Electronics Handbook, 4th ed.; Rashid, M.H., Ed.; Butterworth-Heinemann: Woburn, MA, USA, 2018; pp. 177–208. ISBN 9780128114070. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the Generalised Distance in Statistics. Proc. Natl. Inst. Sci. India 1936, 12, 49–55. [Google Scholar]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Ghorbani, H. Mahalanobis distance and its application for detecting multivariate outliers. Facta Univ. Ser. Math. Inform. 2019, 34, 583–595. [Google Scholar] [CrossRef]
- Gower, J.C. Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Its Appl. 1985, 67, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Park, M.; Lee, H.-S.; Ahn, S.J.; Ji, S.-H.; Song, K.; Son, B.-S. Covariance effect analysis of similarity measurement methods for early construction cost estimation using case-based reasoning. Autom. Constr. 2017, 81, 254–266, ISSN 0926-5805. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez, D.; Garcia, E.; Soret, J.; Martos, J. Incipient Wear Detection of Welding Gun Secondary Circuit by Virtual Resistance Sensor Using Mahalanobis Distance. Sensors 2023, 23, 894. https://doi.org/10.3390/s23020894
Ibáñez D, Garcia E, Soret J, Martos J. Incipient Wear Detection of Welding Gun Secondary Circuit by Virtual Resistance Sensor Using Mahalanobis Distance. Sensors. 2023; 23(2):894. https://doi.org/10.3390/s23020894
Chicago/Turabian StyleIbáñez, Daniel, Eduardo Garcia, Jesús Soret, and Julio Martos. 2023. "Incipient Wear Detection of Welding Gun Secondary Circuit by Virtual Resistance Sensor Using Mahalanobis Distance" Sensors 23, no. 2: 894. https://doi.org/10.3390/s23020894
APA StyleIbáñez, D., Garcia, E., Soret, J., & Martos, J. (2023). Incipient Wear Detection of Welding Gun Secondary Circuit by Virtual Resistance Sensor Using Mahalanobis Distance. Sensors, 23(2), 894. https://doi.org/10.3390/s23020894