
Citation: Katsidimas, I.; Kostopoulos,

V.; Kotzakolios, T.; Nikoletseas, S.E.;

Panagiotou, S.H.; Tsakonas, C. An

Impact Localization Solution Using

Embedded Intelligence—Methodology

and Experimental Verification via a

Resource-Constrained IoT Device.

Sensors 2023, 23, 896. https://

doi.org/10.3390/s23020896

Academic Editor: Stavros Koubias

Received: 9 December 2022

Revised: 8 January 2023

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Impact Localization Solution Using Embedded
Intelligence—Methodology and Experimental Verification
via a Resource-Constrained IoT Device †

Ioannis Katsidimas 1 , Vassilis Kostopoulos 2 , Thanasis Kotzakolios 2 , Sotiris E. Nikoletseas 1,3 ,
Stefanos H. Panagiotou 1,* and Constantinos Tsakonas 1

1 Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece;
ikatsidima@ceid.upatras.gr (I.K.); nikole@cti.gr (S.E.N.); st1059666@ceid.upatras.gr (C.T.)

2 Mechanical Engineering and Aeronautics Department, University of Patras, 26504 Patras, Greece;
kostopoulos@mech.upatras.gr (V.K.); kotzakol@upatras.gr (T.K.)

3 Computer Technology Institute and Press “Diophantus”, 26504 Patras, Greece
* Correspondence: spanagiotou@ceid.upatras.gr
† This paper is an extended version of our paper published in Katsidimas, I.; Kotzakolios, T.; Nikoletseas, S.;

Panagiotou, S.H.; Tsakonas, C. Smart Objects: Impact localization powered by TinyML. In Proceedings of the
20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 6–11 November 2022.
https://doi.org/10.1145/3560905.3568298.

Abstract: Recent advances both in hardware and software have facilitated the embedded intelligence
(EI) research field, and enabled machine learning and decision-making integration in resource-scarce
IoT devices and systems, realizing “conscious” and self-explanatory objects (smart objects). In the
context of the broad use of WSNs in advanced IoT applications, this is the first work to provide an
extreme-edge system, to address structural health monitoring (SHM) on polymethyl methacrylate
(PPMA) thin-plate. To the best of our knowledge, state-of-the-art solutions primarily utilize impact
positioning methods based on the time of arrival of the stress wave, while in the last decade machine
learning data analysis has been performed, by more expensive and resource-abundant equipment
than general/development purpose IoT devices, both for the collection and the inference stages of
the monitoring system. In contrast to the existing systems, we propose a methodology and a system,
implemented by a low-cost device, with the benefit of performing an online and on-device impact
localization service from an agnostic perspective, regarding the material and the sensors’ location (as
none of those attributes are used). Thus, a design of experiments and the corresponding methodology
to build an experimental time-series dataset for impact detection and localization is proposed, using
ceramic piezoelectric transducers (PZTs). The system is excited with a steel ball, varying the height
from which it is released. Based on TinyML technology for embedding intelligence in low-power
devices, we implement and validate random forest and shallow neural network models to localize in
real-time (less than 400 ms latency) any occurring impacts on the structure, achieving higher than
90% accuracy.

Keywords: resource-constrained IoT; TinyML; structural health monitoring; PZT sensors; PMMA
plate; industrial WSN

1. Introduction
1.1. TinyML

Recent advances in algorithms, hardware and software have facilitated the realization
of performing on-device sensor data analytics, namely TinyML [1] (also known as extreme
edge ML, embedded ML or embedded intelligence), in low power and limited resources IoT
devices. Mainly focusing on, but not limited to, applications that are related to (i) computer
vision (ii) audio and speech processing, (iii) natural language processing, and (iv) activity

Sensors 2023, 23, 896. https://doi.org/10.3390/s23020896 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020896
https://doi.org/10.3390/s23020896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1986-811X
https://orcid.org/0000-0003-0051-0732
https://orcid.org/0000-0002-5559-1499
https://orcid.org/0000-0003-3765-5636
https://orcid.org/0000-0002-7051-730X
https://orcid.org/0000-0001-7016-7533
https://doi.org/10.3390/s23020896
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020896?type=check_update&version=2

Sensors 2023, 23, 896 2 of 22

recognition, has set a strong basis for a lot more potential modern systems that promote
principles such as decentralization and cost effectiveness. TinyML can also be characterised
as the epitome of utilisation and resources availability, as it successfully demonstrates
the most effective use of models and resources, to achieve an acceptable performance to
the service provided. TinyML has also contributed to the realization of novel paradigms
such as smart objects and smart sensing, presenting a new era in the Internet of Things
(IoT) research area, where embedded devices present advanced intelligence capabilities,
resulting in the Artificial Intelligence of Things (AIoT) or Intelligent IoT (IIoT).

Successful deployment of such systems requires addressing the scarcity of computa-
tional and energy resources for real-time (or near real-time) calculations. Such solutions
inherently provide several advantages, namely scalability, and easy installation (due to
small physical dimensions), less transmissions and no latency (due to local process), and
data protection (as the readings are not exposed out of the device). However, to achieve self-
reflection and enhance the system’s performance parameters, the whole process pipeline
from the methodology and the data collection, to the final deployment of the model on the
device, must be complete and well designed, while various challenges must be addressed
including computational and memory limited resources, and low energy consumption to
perform real-time (or near real-time) applications.

1.2. Structural Health Monitoring

Structural health monitoring (SHM) plays a vital role in decision-making concerning
maintenance operations and strategies, making it a very wide application subject with
many challenges to apply sensing and processing capabilities.

It covers a massive area of interest as it improves reliability, life, quality control, pro-
ductivity and safety. Thus, different classes can be found to taxonomize each application
based on the construction and the corresponding requirements; (i) machine condition
monitoring, (ii) global monitoring of large structures, (iii) large areas monitoring, and
(iv) local monitoring [2]. These groups of applications present a common vertical consider-
ing damage classifier into four distinct levels, namely the damage detection, localization,
assessment and prediction through the remaining life estimation. In some cases we may
also see a self healing layer that can be applied, depending on the use case. Impact detection
and localization refer to the first two levels, and can be used to make a prognosis on the
potential existence of damage.

The core element to a modern digitalized SHM system is sensing, which in most cases
includes vibroacoustic, piezoelectric, stain gauges, fiber optics, cameras (for image analy-
sis), fluid (lubricant, oil) pressure and consumption, accelerometers, and thermography
sensors. Vibration-like sensors are the most widely used in SHM systems as they enable
vibration detection that results in an equivalent electrical signal that feeds a processing unit.
Vibration analysis is an accepted and reliable method for monitoring the operation and
performance of the structures, while its transparent adoption without any process in-
terference offers a sustainable monitoring solution. Most common signal processing
methods include Fourier transformation (and its variants such as fast and short-time),
statistical analysis over time-series, Cohen’s class, wavelet transform, Hilbert–Huang trans-
formation, neural networks (NN), Bayesian classifiers and further hybrid approaches [3].
Finally, there are typically two approaches that mainly attempt to deal with SHM
problems [4]; (i) knowledge-based or model-driven models, which in some cases ei-
ther neglect realistic and real life conditions or make some convenient assumptions, and
(ii) data-based models, which suffer from sufficient data availability, as running an experi-
ment multiple times is costly in time, equipment and personnel.

Modern and critical paradigms such as the circular economy and additive manufactur-
ing, set plastic parts and items in a leading role due to the many advantages that natively
offer and facilitate desired principles, such as cost-effectiveness, reusability, recycling, less
material waste, mass customisation capabilities, etc. However, these benefits come together
with challenges, namely condition monitoring, tracking and tracing that must be addressed

Sensors 2023, 23, 896 3 of 22

for transparent integration both in industry and everyday life. Integrated TinyML seems a
quite promising technology to address some of these challenges in a transparent and decen-
tralized way, offering technical assistance in decision-making using processed information
that is produced autonomously and without further conflicts and impedances.

1.3. Aim and Motivation

In this work, we investigate impact loads on a transparent poly-methyl-methacrylate
(PMMA) thin-plate structure. PMMA is a synthetic polymer from the methyl methacrylate
monomer and it is widely used instead of inorganic glass, due to its high impact strength
and low, as well as easy, processing. The first major application of the polymer took place
during World War II, when PMMA was used as aircraft windows and bubble canopies for
gun turrets. Nowadays, PMMA is used in car windows, motorcycle windshields, interior
and exterior panels, fenders, etc. It is also used for ship windows (salt resistance) and
aviation purposes. Furthermore, PMMA is used in solar panels due to its mechanical
strength, compatibility, and optical clarity [5–7]. From the aforementioned applications,
it is concluded that PMMA is used where operational loads are combined with impact
loads either caused by accidents (tool drops, etc.) or due to environment (hail impacts).
In plastics, impacts often cause critical damages that under continuous cyclic loads lead to
internal crack propagation and further weakening of the component until it experiences
critical failure under regular loads [8]. Knowing the location of the impact is a key factor in
successful examination of the component because traditional inspection methods inspect
the structure locally [9]. Additionally, because thin surfaces are the most heavily exposed
to impacts, the majority of experimental work concerning impacts used plate structures as
specimens. To this end, it is crucial that a system exists near a PMMA structure, capable
to perform impact monitoring tasks such as the detection of the location of an impact and
thus providing information about failure-prone areas and decay in its condition.

We regard our paper as a significant work towards the broad use of WSNs in advanced
IoT applications, as we aim to integrate effectively the characteristic resource-constrained
nature of sensors into an industrial application characterized by strict real-time specifica-
tions (e.g., systems that are installed on the road surface, demonstrated in [10], and for
infrastructure monitoring purposes [11], that also need sustainable SHM tools for the struc-
ture itself, to meet their autonomy requirements). Our approach targets several problems
and needs in Industrial IoT applications such as the low-latency, real-time information ex-
change and decision-making, the concerns for security and privacy, the limited bandwidth
for data sharing as well as the unreliable performance of the wireless channel into harsh
production environments. Thus, we propose an online, on-device data processing solution
that minimizes external communications, decreases the costs and ensures system flexibility,
mobility, safety and security.

To the best of our knowledge, this is the first work in which a TinyML-based SHM
system is implemented in plastic (PMMA) structures. We aim to design and implement a
real-time impact detection and localization model based on TinyML principles, that con-
tributes to the continuous monitoring of impacts over a mechanical system made by PMMA.
The main contributions of this work are summarized as follows:

• On-device intelligence (powered by TinyML) to solve the impact localization problem
of a thin plate, by introducing two models that perform effectively with respect to
TinyML principles.

• Real-time data collection methodology with an Arduino 33 BLE MCU (in contrast to
the literature that uses oscilloscopes), that achieves and demonstrates high sampling
frequency (100 KHz) and extreme low latency (8.5 µs).

• Sharing a new publicly available dataset, denoted as “Impact Events”, that contains
PZT sensor measurements concerning low-velocity, low-energy impact events in a
thin PMMA plate [12].

Roadmap of the paper. The rest of this paper is organized as follows. Section 2
elaborates on the related work in ML-driven impact localization and industrial TinyML

Sensors 2023, 23, 896 4 of 22

research and afterwards in Section 3 we present the methodology of our work, by defin-
ing the thin plate and sensors setup, the design and setup of our experiments and the
associated monitoring system. Moreover, in Section 4, we describe our approach for a
resource-constrained sensing solution, the contructed dataset and feature extraction pro-
cess, and in Section 5, the models and the rationale behind their selection are presented.
Section 6 contains the outcomes and technical discussion of the experimental results and,
finally, in Section 7 we summarize the subject of the work and report our next steps for
further exploitation.

2. Related Work

To the best of our knowledge, there is a gap in the literature concerning the availability
of public SHM datasets and impact localization methodologies that deploy TinyML models
in resource-constrained edge devices. Therefore, in this section we present some research
works which can be considered as the most related to the current paper. The section is
divided in three parts, covering related work in plate structure impact localization based
on machine learning (ML) techniques and data from piezoelectric sensors (PZTs), general
research related to industrial TinyML applications and currently available SHM datasets.

2.1. Impact Localization

Dipietrangelo et al. [13] studied the low speed impact localization problem over a
rectangular, isotropic thin structure made of aluminum, while the impact was produced by
a steel sphere, to finally provide two supervised machine learning models, using a shallow
neural network (SNN) and polynomial regression (PR). The authors used piezoelectric
experimental data from 4 sensors and the monitoring procedure was supported by standard
equipment (oscilloscope, amplifier). The results were based on a mean radial error metric
(MRE), achieving quite impressive and acceptable accuracy (SNN with 1.2 mm and PR
with 1.5 mm).

For the same experimental setup, Balasubramanian et al. [14] developed and validated
a convolutional neural network (CNN), a long short-term memory (LSTM) network, and
an artificial neural network (ANN), with respect to mean absolute error (MAE) metric.
Although, the accuracy of these networks is reduced compared to the SNN (when be-
ing shallower and wider), are found to be more robust in cases where noise is present.
In particular, the MAE of ANN was 22 mm (11% accuracy reduction with noise), CNN was
31 (2% accuracy reduction with noise), and LSTM was 25 mm (7% accuracy reduction with
noise). Closer to our work, in terms of the material, as the experiments consider carbon
fiber reinforced plastic (CFRP), Datta et al. [15] solved low-velocity impact (LVI) events
localization, by estimating X,Y coordinates, alongside the corresponding force of the impact.
To this end, the authors proposed a least square support vector regression-based algorithm
that performs over two types of data that are produced from fiber optic sensors and resis-
tance strain gauges. For the experimental test setup, special equipment (with abundant
resources) was used for the data collection, able to provide integrated data acquisition,
signal conditioning and a list of different options regarding sampling rates.

Hesser et al. [16] used knowledge-based piezoelectric data to train and develop ANN
and support vector machine (SVM) models to solve LVI localization problem caused by
steel ball over an aluminum thin-plate. In particular, training data was produced by
simulations that the authors managed to implement via a finite element model. However,
the validation was performed over experimental data (acquired by oscilloscope instrument
and a data logger). The results showed that the ANN achieved 1.8 mm mean value of the
error estimation when the impact occurs inside the area that the PZT sensors form, and
2.6 mm when it occurs outside, while the SVM achieves 3 mm and 14.3 mm, respectively.
Tabian et al. [17] developed a metamodel using convolutional neural networks (CNN)
and passive sensing to detect, localize, and characterize impacts on complex composite
structures. By using raw data from a network of PZT sensors and transforming it into 2D
images, the model was able to accurately predict impacts on similar locations that it had

Sensors 2023, 23, 896 5 of 22

been trained on, with prediction accuracy ranging from 94.3 to 100%. The metamodel’s
scalability was also demonstrated by its ability to accurately predict impacts on locations
outside of the training region, with prediction accuracy exceeding 95% in most cases.

In [18], Jung et al. developed a CNN-based model that can identify impacts on
composite structures by analyzing PZT signals. They converted the signals into image
data using discrete wavelet transform and used data augmentation to increase the amount
of training data. When data augmentation was not used, the model’s error in predicting
impacts was large (up to 27.5%), but using data augmentation to double the training data
size reduced the maximum and average prediction errors to 13.0% and 5.7%, respectively.

Karmakov et al. [19] introduced a new method for classifying impacts on compos-
ite structures using self-attention, a key component of the transformer neural network.
They transformed raw time series data from piezoelectric sensors into Fourier transform
data and compared the performance of the transformer network to a CNN. Both models
were able to accurately classify the energy of steel impacts with 100% accuracy using as
few as 378 samples, and the transformer required less computational power for training
and prediction compared to the CNN.

2.2. TinyML in Industrial Applications

Zonzini et al. [20] studied the application of TinyML for vibration-based structural
health monitoring scenarios. The authors experimented with the one class classifier neural
network (OCCNN) into the Arduino Nano 33 BLE Sense (Arduino LLC, Italy), which is the
same resource-constrained device that we also use in the present study. The authors used
data from the Z24 bridge use case to benchmark the OCCN and they achieved an average
accuracy and precision of 95% and 94%, respectively. In [21], different NN architectures
are benchmarked, namely CNN, LSTM, CNN LSTM, GRU, and CNN GRU, for estimating
maximum capacity of Li-Ion batteries using Li-Ion battery datasets provided by NASA.
The authors compare the STM32Cube.AI and TensorFlow Lite for microcontrollers (TFLM)
tools, demonstrating that the former outperforms TFLM in terms of average inference time
[ms], RAM size including inputs buffer [KB], and Flash size [KB]. TinyML for remaining
useful life prognosis was studied in the work of Athanasakis et al. [22]. The authors used
the popular C-MAPSS NASA dataset that is comprised of simulation time series sensor
data and used the STMF767ZI microcontroller (STMicroelectronics, Switzerland) along
with X-CUBE-AI tool, to predict the RUL of turbofan engines. They optimized several
models such as Long Short Term Memory (LSTM), Convolutional Neural Network (CNN),
XGBoost and random forest. Concerning the accuracy and model footprint metrics, the
authors report that the quantized CNN models can reach as low as 26 KB of Flash and
9 KB of RAM memory that leads to an average 10% quality loss in the RMSE metric for
embedded devices.

Ren et al. [23], propose a novel system called TinyOL (TinyML with online-learning),
which enables incremental on-device training on streaming data. TinyOL is based on the
concept of online learning and is suitable for constrained IoT devices. They experimented
with TinyOL under supervised and unsupervised setups using an autoencoder neural
network for multi-anomaly classification, deployed to an Arduino Nano 33 BLE MCU
board using TFLite Micro library and validated in a USB fan. In Bratu et al. [24], a low-
power unsupervised learning solution is proposed for the detection of anomalies in the
vibration patterns of bearings. An autoencoder takes as input the median absolute deviation
of each measurement set produced by an accelerometer, and then a classifier compares the
values provided by the output with values that are known to be normal vibration patterns.
The authors report that the models deployed in an ESP32 board with TensorFlow Lite,
achieve up to 93.42% accuracy. Lastly, Funk et al. [25], propose a lightweight direct inverse
NN-based control approach for controlling the angular speed of a permanent magnet
DC motor, which runs on a tiny Arm Cortex-M0 microcontroller with only 4 kB of RAM.
The NN can be trained and executed on a tiny ARM Cortex-M0 microcontroller and all
necessary neural network functions (activation functions and derivatives, feedforward,

Sensors 2023, 23, 896 6 of 22

backpropagation, batch-gradient calculation and Adam) were implemented from scratch in
embedded C.

2.3. Limitations of Existing Datasets

Despite the large number of research works on SHM, the vast majority do not share
their datasets. Azimi et al. [26], provide an extensive list of those publications that do
share their datasets (with vibration and mostly vision-based data) that have been recently
used in deep learning-based SHM. However, for impact detection and localization in plate
structures with PZT sensors, which is also a very well studied problem in the literature (for
example, [13–15,27,28]), there are no openly available datasets.

Regarding some indicative open access datasets (for any SHM-related problem),
Bechhoefer et al. [29] have published data for wind turbine high-speed bearing prognosis
and also Figueiredo et al. [30] from Los Alamos National Lab have published standardized
datasets intending to familiarise users with feature extraction and statistical modelling for
feature classification in the context of SHM. Teloli et al. [31] have a published dataset named
UNESP-BERT for bolted joint SHM based on vibration tests. Finally, Marzani et al. [32],
have made available a dataset for benchmarking guided waves on a composite full-scale
outer section of an aircraft wing. However, by utilizing the aforementioned datasets, the
algorithms that can be trained focus on detecting, and sometimes (but not always), locat-
ing damage (instead of impact) but they do not consider environmental and operational
factors, and just rely on specific damages (change in geometry, material) that occur in
the structure.

3. Methodology

In this section, we provide the methodology that was followed to execute the experi-
ments and create an Impact Events dataset. First, we describe the design of the thin plate
structure. Afterward, we provide the details for the design of experiments, how and why
they were performed and then we outline the procedure and challenges to realize the data
acquisition with the edge-sensing device.

3.1. Thin Plate and Sensors Setup

The structure that is used is a thin PMMA plate P with dimensions of 300 mm × 300 mm
and 4 mm thickness and with four piezoelectric transducers (PZTs) bonded at the corners,
as shown in Figure 1. The grid is separated in a grid of 25 identical 60 mm × 60 mm square
tiles, to allow the modeling of impact localization problems with classification approaches.
However, since the grid tiles are essentially derived from the X and Y-coordinates of the
impact, the number and size of tiles can be arbitrarily formulated to fewer or more labels
depending on the research purposes.

Figure 1. Thin plate model with the sensors and the impact localization areas. Letters A, B, C, D
correspond to the respective sensors, as they are denoted later in the paper as SensorA, SensorB, etc.

The set of the squares is denoted as Q = {q1,1, q1,2, . . . , q1,5, q2,1, q2,2, . . . , q2,5, q3,1,
. . . , q5,1, . . . , q5,5} where x and y at qx,y is the row and column square, respectively, thus

Sensors 2023, 23, 896 7 of 22

PZT A is deployed at q1,1, PZT B at q1,5, PZT C at q5,5, and PZT D at q5,1 (and they are
denoted as sensor [A|B|C|D] in the following sections).

In Table 1 and Figure 2, we provide the attributes of the ceramic piezoelectric trans-
ducer CEB-35D26 (Mouser Electronics, Mansfield, TX, USA) [33] that was used and below
we provide the formula for correlating the force applied to the output voltage of the
piezoelectric sensor.

F = V × d33 × C (1)

where

F = Applied force
V = Output voltage
d33 = Piezoelectric constant
C = Stiffness factor of ceramic

For the CEB-35D26, d33 = 460 pC/N and C = 60 × 109 N/m2

Figure 2. Ceramic piezoelectric transducer CEB-35D26.

Table 1. Specifications of Ceramic piezoelectric transducer CEB-35D26.

Parameter Units

operating voltage max. 30 V
resonant frequency typ. 2.6 Hz

weight max. 2.0 g
dimensions Ø35 × 0.53 mm

3.2. Design and Execution of Experiments

This paper introduces a real-time solution, to accomplish the impact localization at the
edge utilizing TinyML models. Thus, we consider the following problem definition.

Impact Localisation Multiclass Classification Problem: Given a plate P and a set of
piezoelectric sensors S , determine the area Q in which an impact event occurs.

The data acquisition portion of the SHM process involves selecting the excitation
methods—the sensor type and number, and locations—and the data acquisition/storage/
processing/transmittal hardware. It is important to associate the sensors’ response with
the parameters defining the ball impact. This can be accomplished with a methodology
called experiment design or design of experiments (DOE), which generates test sequences
that correspond to the impact experiments. The test sequences consist of operating points
of input variables of the system, which are the x-coordinate, the y-coordinate, and the fall
height. The design is maximized so that the model can provide an accurate prediction for
the system’s response given the sensors’ response.

Generally, the design of experiments is a systematic, efficient and effective way of
a method that enables the study of relationships between multiple input variables (or
factors) and key output variables (or responses). It is a structured approach to collect-
ing data and making discoveries. Our design of experiments is divided into categories
based on the criterion by which the sequences of data and the knowledge we have about
the system being studied. The two major categories are space-filling and optimal DOEs.
This particular problem was treated as an unknown system. Therefore, a space-filling
DOE was selected, and more specifically the Sobol sequence. Sobol sequences, also
known as LPT sequences, are categorized as a space-filling design. This design is a
quasi-random sequence, in which the test sequences generated are randomly planned
in the design boundary. The design boundaries are specified by the user regarding each

Sensors 2023, 23, 896 8 of 22

input variable. However, it is possible for physical restrictions to exist, such as the ge-
ometric properties of the structure, which is visible in our study. Thus the boundaries
set for the x and y coordinates are in the range [0, 300] as the dimensions of the plate,
whereas the height boundary is arbitrarily set. The test sequences are iteratively gener-
ated in a uniform distribution, by utilizing the primitive polynomials over a Galois Field
and gray code encoding. The most fascinating characteristic of Sobol sequences is that
they generate test sequences in a high degree of scattering while avoiding overlapping
of previous test sequences. The deterministic quasi-random characteristic of Sobol se-
quences enables progressive augmentation of the test sequences [34,35]. In Figure 3, we
provide the 2D representation of impact coordinates and fall height combinations based on
Sobol sequences.

In Figure 4, we depict the setup for dropping the steel ball. Specifically, the impact
event is produced by a steel ball B (9.5 mm diameter, 3.53 g weight), which is released
from a height distance that varies from 10 to 20 cm, with 0.5 cm interval, from the P,
and performs a free-fall (the initial state of the sphere has zero acceleration with the
help of the drop driver). The laser device and the drop driver are statically mounted
and the change of impact location takes places by moving the plate in the desired X- and
Y-coordinates, which are verified using the laser beam. We also note that in the experimental
procedure, we do not perform impact events in the square tiles where the sensors are in-
cluded (i.e., in q1,1, q1,5, q5,1, q5,5), as the latter return extreme and noisy values. Overall, each
experiment is repeated at least three times in order to enhance the dataset and ensure the
robustness of the experiment, resulting in a total of 771 experiments (multiple repetitions for
159 distinct impacts).

Figure 3. Two-dimensional representation of impact coordinates and fall height combinations (with
different colors), based on Sobol sequences.

Figure 4. Visualization of the steel ball drop setup.

Sensors 2023, 23, 896 9 of 22

3.3. Monitoring System

In order to monitor the structure, acquire the propagated wave, and make the impact
localization, the piezoelectric sensors are bonded to the structure and connected to a
microcontroller that is responsible to perform impact localization services. Figures 5 and 6
depict this sensing setup. The laptop is used to store the data (for ML training) that the
Arduino device reads from the piezoelectric sensors and the impact identification model
runs on the Arduino device.

The controller is an Arduino NANO 33 BLE (Arduino LLC, Roma, Italy), and it was
selected due to the memory capacity and processor speed it provides. It is also one of
the suggested devices for TinyML applications, while being acceptable to both industry
and the research community. Moreover, it is compatible with the most state-of-the-art
TinyML frameworks. The voltage divider between the sensors and the device shifts the
reference voltage of the idle state to a value greater than zero. This further enables the data
acquisition, since as soon as the impact occurs, the structure flexes, producing positive and
negative output voltage by the PZTs.

Figure 5. Image of the experimental plate setup.

Figure 6. PZT modules connected to Arduino NANO 33 BLE.

For the given and related problems, different types of material and thickness of the
plate will result in different eigenfrequency, thus the sampling rate should be changed
accordingly. The PMMA plate used for the experiment has an eigenfrequency of 30 KHz.
Based on Nyquist’s Theorem, the sampling frequency should be fs ≥ 2 · Eigen f requency
to capture the wave which is propagated without losing important data. The amount of
data, which is acquired, is 5000 per piezo element, thus having 20, 000 values per impact to
describe the phenomenon.

For the data collection task, a couple of low-cost microcontrollers were tested to eval-
uate if they are sufficient for the prerequisites of the experiment. The MCUs that have
been tested are ESP32 (Espressif Systems, China), Nucleo F303RE (STMicroelectronics,

Sensors 2023, 23, 896 10 of 22

Switzerland) and Arduino Nano 33 BLE (Arduino LLC, Italy). The ESP32 microcon-
troller was immediately rejected because the max sampling frequency it could achieve was
around 20 KHz. This frequency is three times lower than the sampling frequency needed.
Despite this fact, the ESP32 in general could provide an elegant solution, considering
its dual-core nature. The dual-core architecture could be utilized to separate the model
inference and the sensing into independent components, avoiding possible bottlenecks and
delays. The STM32 Nucleo F303RE is more than capable to achieve the sampling frequency
needed for the data collection. On the other hand, the memory capacity and the core’s speed
were not sufficient. The Arduino Nano 33 BLE is the best candidate in comparison with
the other options (specs defined in Table 2). First and foremost, it has great compatibility
with the TinyML frameworks, which will be discussed later. In addition, it has a great
memory capacity to store the amount of data that will be collected and a good enough
core speed to create a real-time solution. The core of the MCU is NRF52840 designed by
Nordic Semiconductor and the SAADC (successive approximation ADC) can reach up to
200 KHz sampling rate. However, the development process was not problem-free, which
was highly expected due to the nature of these low-cost products. These types of MCUs are
not designed for specific and demanding experiments.

Table 2. MCU specifications.

Arduino NANO 33 BLE Specifications

Microcontroller nRF52840
Clock Speed 64 MHz

Flash Memory 1 MB
SRAM 256 KB

Analog Input Pins 8
ADC Max Sampling Rate 200 ksps

ADC Resolution 12 bit

4. Data Collection and Processing
4.1. Resource-Constrained Sensing Solution

Every aspect of the sampling procedure is implemented on the hardware level for
efficiency. The data is collected using the microcontroller, which sends over the UART bus
the sensed values from the PZTs to store them permanently in an offline workstation (e.g.,
the laptop). The sensors are connected to the analog inputs of the device and the sampling
frequency of the analog-to-digital converter (ADC) is set at 100 KHz, to ensure that the
impact phenomenon is captured in as much detail as possible. Additionally, the signal that
is captured is a shock wave that stimulates the eigenfrequencies of the structure for a small
period of time, thus the correct way to treat the captured signal for a specific experiment is
to consider it as one instance of 20 k samples (4 sensors × 5 k samples).

The Arduino can achieve up to 200 KHz; however, when sampling a predefined
number of samples with that frequency, important information at the end of the impact
is not captured. For the signal recording, an auto-trigger mechanism is developed on the
device to initiate the acquisition procedure. The primary purpose of the trigger mechanism
is to reduce the power consumption and perform only meaningful model inferences on
the device (i.e., when an actual impact occurs). This has been achieved by reducing the
memory transactions and the processor’s operations during the impact anticipation stage,
by buffering 400 samples (100 per sensor). Initially, the MCU samples 400 values, and
during the impact anticipation phase 400 samples are continuously acquired. However, only
the two most recent batches of 400 samples are stored every time and the only action the
processor performs is to check if the relative change in two successive buffered readings (in
the last values of the batch) is greater than a threshold set to 10%. Then, if this requirement
is met, the impact is detected by preserving the latest batch of 400 samples and sampling
the additional 19,600 values.

Sensors 2023, 23, 896 11 of 22

The collection of the proposed dataset contains a number of challenges, which we
outline below, along with their mitigation measures.

• Data quality. This is addressed by executing multiple repetitions of the same unique
experiments and defining the optimal impact samples using the Sobol algorithm.

• Reliable impact stimulation methodology. This is addressed by our steel ball drop
setup in Figure 4 to ensure consistent labels and reproducible experiments.

• PZT sensor stability. This is addressed by manual testing of each PZT sensor’s re-
sponses before including them in the final experiments.

• High-frequency data sampling with automated acquisition and processing of samples.
Below, we elaborate on how we addressed the last challenge.

The whole process of the sensors reading is implemented on the hardware level,
exploiting the Arduino’s successive approximation ADC (SAADC), and, thus, the processor
is not responsible for enabling the analog channels and storing the values in the memory
repeatedly. Although SAADC’s sampling rate is over the mark of 15 KHz and operates
with multi-channel mode, it is important to note that the Arduino introduces memory
writing abnormalities, due to synchronization problems updating SAADC’s storing buffer
index and size. Hence, the main solution to overcome this problem is to transfer the data to
a second data structure as soon as reading of all the available channels is finished and then
restart the SAADC to reinitialize the buffer.

However, we exploit the programmable peripheral interface (PPI), interconnecting
the SAADC and a timer to synchronize the needed operations to update the size of the
SAADC’s buffer using timer triggers. By using the PPI, the SAADC’s restarting is avoided.
By using the PPI, the SAADC’s restarting is avoided. The SAADC’s internal resistance
is disabled and the gain is set to 1

6 . The reference voltage is 0.6 Volt. This trigger aspect
enables the inferences to run intermittently due to energy limitations, while monitoring the
structure. Overall, the sampling latency (setting and initializing the ADC plus storing the
data) is 8.5 µs. The sampling procedure is outlined in Figure 7.

Figure 7. Sampling procedure.

Sensors 2023, 23, 896 12 of 22

4.2. Dataset Outline

The data used in this paper is published as the Impact Events dataset [12] (available
online: https://zenodo.org/record/7199346 (accessed on 30 December 2022)). Each experi-
ment is denoted by its (x, y, h) coordinates, position (class/tile in the grid) and is repeated at
least three times in order to enhance the dataset, but also ensure the robustness of the exper-
iment. The number of acquired samples for each experiment is 5000 samples for each sensor.
The final dataset includes 771 instances (multiple repetitions for 159 distinct impacts) and
the labels are the corresponding squares qx,y based on the experiment’s (x, y) coordinates.
An overview of the dataset’s format is depicted at Table 3.

Table 3. Dataset format.

SensorA SensorB SensorC SensorD sampleNo typeofimpact x y height position ID

Furthermore, in Table 4 we provide common statistical measures to describe the PZT
sensor measurements, while in Figure 8 we present an example of sensors’ response to
an impact.

Table 4. Descriptive statistics for the four PZT sensor measurements.

Statistic SensorA SensorB SensorC SensorD

count 3,855,000 3,855,000 3,855,000 3,855,000
mean 1790.466 1794.333 1793.815 1792.419

std 86.822 101.574 83.672 100.586
min −357 −385 −352 −371
25% 1775 1781 1780 1782
50% 1796 1799 1799 1797
75% 1810 1812 1812 1809
max 4048 4057 4040 4055

Figure 8. Raw sensor values over the first 1 k samples.

4.3. Feature Extraction and Selection

In this work, we experiment with machine learning models that take as input tabular
data, and, thus, we need to transform the raw signal data from the four PZT sensors

https://zenodo.org/record/7199346

Sensors 2023, 23, 896 13 of 22

into the corresponding tabular representation. We extract numerous statistical measures,
given that they are computationally suitable for the MCU, from the Impact Events dataset.
In Table 5, we outline the 32 extracted feature categories that result to a total of 128 features
(32 features × 4 sensors) per experiment and our aim is to select an optimal number of
features from this set, to speed up the on-device data processing pipeline as well as the ML
model size and inference.

Table 5. List of all the extracted features.

Feature Description

Energy Energy of the time series

Absolute maximum Highest absolute value

Absolute sum of changes Sum of absolute values of consecutive changes

C3 Measurement of nonlinearity

Count above mean Number of values greater than the mean

Count below mean Number of values lesser than the mean

Energy ratio by chunks Ratio of the i-th chunk’s energy over the energy of
N chunks

First location of maximum Index of the maximum value’s first appearance
relative to the length of the time series

First location of maximum Index of the minimum value’s first appearance
relative to the length of the time series

Kurtosis Signal’s tails measurement relative to
normal distribution

Large standard deviation Check if the standard deviation is r times greater than
max−min

Longest strike above mean Number of consecutive values above mean

Longest strike below mean Number of consecutive values below mean

Maximum Highest value

Mean Mean of the time series

Mean of absolute change Mean value of absolute change

Mean change Average of differences of subsequent values

Median Median of the time series

Minimum Lowest value

Skewness Calculates the lack of symmetry

Standard Deviation Measurement of time series’s dispersion relative to
the mean

Symmetry looking Checks the symmetry of the time series

Variance Variability of the time series

Variance larger than standard deviation Checks if the variance is greater than
standard deviation

Usually, only a subset of features is important and representative of the dataset to result
in high accuracy for machine learning models. Therefore, after extracting several statistical
features, we select the features, by performing the following steps. First, we calculate the
Pearson correlation amongst all the features and eliminate those whose correlation exceeds
the threshold of 0.9, in order to keep only uncorrelated features in the dataset. In addition,
we remove all the zero-variance, i.e., features that have the same value in all samples.

Sensors 2023, 23, 896 14 of 22

Afterwards, we calculate the ANOVA (ANOVA is a well-performed and accepted
method for feature importance ranking) F-values for the remaining features. In particular,
the correlations between the extracted signal features and target columns are calculated
by the ANOVA F-test. The results of this test are used for feature selection, where the first
five features that are strongly correlated to each of the target variables (x-coordinate, y-
coordinate and fall height) are found. Each F-test evaluates the hypothesis that the response
values grouped by predictor variable values are drawn from populations with the same
mean against the alternative hypothesis that the population means are not all the same.
A small p-value of the test statistic indicates that the corresponding predictor is important.
The output scores is –log(p). Therefore, a large score value indicates that the corresponding
predictor is important.

Eventually, we select, examining also their computational complexity, the following
feature groups (statistical measures), for each sensor: absolute maximum value, minimum,
standard deviation, kurtosis and skewness. Our processed dataset consists of the target
feature describing the impact area and thus contains 21 classes/areas, as well as 20 input
features in total (5 statistical measures × 4 sensors). For model training, the features are
calculated in the offline workstation (e.g., laptop) using the tsfresh library [36] and for
on-device model inference, they are implemented in C code in the MCU.

5. Machine Learning Models

The proposed solution runs on the extreme edge and in particular on an IoT device,
providing real-time information for impact events on the structure, by specifying the area
of interest they occurred. Thus, the selected model’s size and inference latency should be as
efficient as possible, in order to achieve real-time monitoring, and accurate predictions on
the output. The models that have been tested, considering the inference time and memory
footprint, are a random forest classifier (RF), XGBoost, support vector machines (SVM)
and a shallow neural network. We note that our modeling approach is structure-agnostic,
meaning that the impact localization problem is solved in a purely data-driven fashion and
independently of the material and geometry of the structure, as the models are trained with
the sensor data and do not leverage any physics-based attributes. To train and evaluate the
models, the data is split into training and test sets with a 70% and 30%, respectively.

5.1. Random Forest

Random forest (RF) is an ensemble of two or more decision trees, called estimators,
which focuses on eliminating the disadvantages a decision tree introduces [37]. Such
disadvantages are over-fitting and low predictive accuracy. Each tree, which constructs the
RF, is obtained by randomly selecting a subset from the dataset and creates the decision tree
based on it. Samples of the dataset can be included in more than one subset. Constructing
the decision trees with that procedure ensures that the RF consists of uncorrelated trees,
reducing the risk of over-fitting, and invariability to outliers and noise. This method
is known as bootstrapping. The output that the RF produces is deducted by bootstrap
aggregation (bagging). For a classification task, bagging is, essentially, the majority voting
of each particular estimator.

The general structure of the RF model is defined by three main hyperparameters,
depth of each tree, numbers of estimators and number of sampled data. In general RF’s
complexity scales at a large rate when the estimators and depth of each tree increases.
However, reducing the initial features by feature engineering, translates to a huge reduction
to the needed estimators and depth. Moreover, one major advantage of random forest
over neural networks is the explainability aspect, which provides crucial information
about the factors that determine each prediction. This is especially important for critical
domains such as SHM applications that determine the health status and longevity of
the structures.

Sensors 2023, 23, 896 15 of 22

After experimenting with the hyperparameters of the RF model, the combination
that yields an accuracy over 95% comes from the following setting: (i) estimators: 30,
(ii) depth: 8, and (iii) sampled Data: 280.

5.2. Shallow Neural Network

Overall, the model architecture should have an optimal balance concerning compu-
tational complexity and memory occupation, while keeping an acceptable accuracy ratio.
In general, there are two main approaches to achieve this [38]. The first is to create a small
and sufficient architecture and gradually augment it until the accuracy criteria are met,
while the second approach follows the opposite route, i.e., to create a complex and highly
accurate DNN or CNN and then use TinyML techniques to optimize the model so it fits on
the microcontroller alongside the rest of the operations. As a first step, in the current study
we follow the first approach, and implement a shallow neural network (SNN).

Shallow NNs are NNs that consist of one or two hidden layers, although combining
them with the selected features can provide a trained model with a low number of param-
eters and high accuracy. Since, the inputs are the extracted features, which means their
scales are different, standardization needs to be applied on the data, otherwise the features
are not comparable to one another. If standardization is not applied there are chances of
higher weightage to features with higher magnitude. Given that the number of hidden
layers is decreased, it ensures that inference time and memory footprint are not prohibitive.

The best architecture that provided the highest accuracy is depicted in Figure 9.
The final model consists of 4117 parameters with float 32 precision. The one and only
optimization method we applied is quantization with float 16 (the model is denoted later
on as Q-SNN), in order to convert the model to an MCU compatible and exploitable form.
Quantization is the procedure to reduce the numerical precision, when storing tensors or
executing operations. This yields compact models and lower inference time, whereas the
model’s accuracy reduction is insignificant and this is due to the low number of parameters
at the initial architecture. In addition, one of the main techniques for model reduction is
pruning, as it removes weights from neurons, and this results in less parameters and model
size. However, the application of pruning methods is avoided in our case as we notice in
our experiments a rapid drop in the model’s accuracy.

Figure 9. Shallow neural net architecture.

5.3. Gradient Boosted Trees and Support Vector Machines

The gradient boosted trees model is an ensemble of decision trees, like random forest.
The individual trees are created in a sequential manner and the idea behind these trees is to
combine individual trees with high loss (weak learners), in order to create a decision tree

Sensors 2023, 23, 896 16 of 22

that minimizes the loss function (strong learner). The goal of each tree is to minimize the
error of the previous tree. At each iteration of the algorithm, a decision tree is appended,
until there are no further improvements. Gradient Boosted Trees (GBTs) is one of the
most capable machine learning algorithms; however, it is prone to over-fitting, and the
memory footprint and the inference time is high, due to the size of the ensemble and the
hyperparameters that need to be stored. In this paper, we experiment with XGBoost, 1.7.0
which is one of the fastest implementations of GBTs. It does this by tackling one of the
major inefficiencies of gradient-boosted trees: considering the potential loss for all possible
splits to create a new branch (especially in the case where there are thousands of features,
and therefore thousands of possible splits). XGBoost tackles this inefficiency by looking
at the distribution of features across all data points in a leaf and using this information to
reduce the search space of possible feature splits.

Support vector machines (SVM) is a statistical learning model that aims to provide the
best margins between the discrete classes, in order to classify the data, whereas when used
for regression it provides the best margins that encapsulate the data. When used for high
dimensional data, SVMs map the data to hyperplanes to provide the hyperplane with the
largest separation of the data points. To achieve the data transformation, SVM uses kernel
functions. SVM is very sensitive to noise and is difficult to interpret the final model. A first
assumption is that SVM and XGBoost models will not be optimal solutions in our context
due to their aforementioned disadvantages. However, we opt to benchmark them as they
are one of the most commonly used and effective algorithms for tabular data [39] and thus
they provide a comparison basis for our case.

5.4. On-Device Model Deployment

To realize the on-device ML model operation, we first train the models in our personal
workstation and then deploy them in the Arduino to perform the inference.
Concerning the actual model conversion in an appropriate format for the MCU, there
is not any single library that can be used for both the traditional ML algorithms and the
neural networks.

In specifics, to convert the former models (RF, XGBoost, SVM), we use the micromlgen
library [40]. This library converts the first two models into C++ header file using multiple
IF-ELSE statements to represent the decision graph and for the SVM conversion it also
produces a C++ header file that includes the needed kernel operations. Concerning the
SNN, the TensorFlow Lite (TFLite) library [41] is utilized, which introduces quantization,
pruning and several other optimizations methods. TFLite converts the initial model to an
optimized FlatBuffer format, and the optimizations occur on the converted model. After
the model is in TFLite form, a C++ header file is generated with the hex representation of
the model by using xxd command on Unix. This header file is later manipulated by the
TensorFlow Lite Micro C++ API on the microcontroller to invoke the inference.

Finally, to calculate the footprint metrics, the model size for RF, XGBoost, SVM and
SNN corresponds to the size of the joblib file, since no optimizations occur or size reduction,
and .tflite file, respectively. In addition, for the inference (prediction) time of each model
we average the inference timings over the test set instances.

6. Evaluation and Discussion

To evaluate the models, we focus on quality metrics to assess the models’ accuracy
and footprint metrics to assess the on-device model performance. For the footprint metrics
we benchmark the models deployed in the Arduino based on their model size, the model
inference time for one single instance (impact location prediction), the inference time
plus the time needed to perform the feature extraction (FE), the RAM occupation during
inference and feature extraction, the Flash memory occupation for storing the model and the
associated C code and, lastly, the energy consumption during these operations. Concerning

Sensors 2023, 23, 896 17 of 22

the quality evaluation metrics, we use classification metrics such as accuracy, Matthews
correlation coefficient (MCC), F1-Score, precision and recall, which are defined as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

where TP, TN are the true positives and negatives and FP, FN the false positives and
negatives predicted outcomes of the model.

• MCC is a perfectly symmetric metric that represents the correlation between true
values and predicted ones. Similar to Pearson’s correlation coefficient, it ranges from
−1 to 1. A score of 1.0 means a perfect classifier, while a value close to 0 means the
classifier is no better than random chance.

• Accuracy is intuitively the overall fraction of predictions the model got right.
However, it is not enough to evaluate the models using only this metric, especially for
class-imbalanced datasets.

• F1-Score is a measure of a test’s accuracy. It provides a way to combine both precision
and recall into a single measure that captures both properties.

• Precision represents the proportion of positive identifications that were actually correct.
• Recall represents the proportion of the actual positives that were identified correctly.

The results are summarized in Table 6 for quality metrics and Table 7 for footprint
metrics, while Figure 10 depicts the performance of the models for the localization problem
in the 5 × 5 grid case for both RF and Q-SNN models. The tables are grouped by the
grid cases, i.e., the number of classes in the multi-class classification problem, without
considering the four corner classes which include each sensor, respectively, due to noisy
signals. Thus, based on the 5 × 5 grid description in Section 3.1, the 5 × 5 grid case results
in 21 classes (square tiles in the grid), while the 4 × 4 and 6 × 6 grids result in 12 and
32 classes, respectively. In our initial work [42], we studied the multiclass classification
problem only with the 21 classes (5× 5 plate grid); however, in this paper we also increased
and decreased the discretization of the plate and further studied the 4 × 4 and 6 × 6
grid cases. The rationale behind this analysis was to examine the impact on the models’
performance and thus prove their robustness for the given problem, by solving different
types of classification–impact localization. In addition, we provide the arithmetic mean
and standard deviation results for all the metrics, to prove the statistical smoothness of our
approach. These have been calculated for all the models across all the grid cases, meaning
that we have trained and evaluated the machine learning models for n = 10 times and
evaluated the classification (quality) and performance (footprint) metrics. To calculate the
latter, all the models were re-deployed on-device in the Arduino for each case.

In Tables 6 and 7, we have highlighted in bold the best model per grid case and we
notice that, in general, all the models have similar and satisfactory performance across
the metrics. Examining the average and standard deviation of the results, we can tell that
the models are robust and stable in their predictions since they have very small standard
deviations (across their multiple training cycles). We conclude that the best model to
be selected is the RF, as it has the best overall performance in the quality and footprint
metrics. The Q-SNN comes second, with very close results in all the metrics except the

Sensors 2023, 23, 896 18 of 22

Flash memory, which is on average three times larger than the RF. In addition, another
advantageous aspect of RF is the explainable insights by design (feature importance) which
is an important trustworthiness criterion for real-time industrial applications supported
by embedded intelligence, as the one we study in this paper. In addition, we observe that
in this problem the nature of the data results in higher classification accuracy in the 6 ×
6 grid case which has the most classes (32). This is due to the fact that by increasing the
cell area (and decreasing this way the number of classes) more, less correlated, impacts are
included since they have greater distance between them and, thus, the models’ capability
to distinguish between the classes is less effective.

Table 6. ML models’ quality evaluation metrics. The results from the best model per grid case are
highlighted in bold.

Grid Model Accuracy F1 Score MCC Precision Recall

4 × 4

RF 0.93 ± 0.05 0.925 ± 0.03 0.932 ± 0.04 0.945 ± 0.02 0.925 ± 0.01
SVM 0.905 ± 0.11 0.88 ± 0.10 0.903 ± 0.09 0.91 ± 0.10 0.888 ± 0.10

XGBoost 0.926 ± 0.14 0.925 ± 0.10 0.923 ± 0.11 0.934 ± 0.15 0.921 ± 0.13
SNN 0.926 ± 0.10 0.923 ± 0.10 0.925 ± 0.11 0.93 ± 0.09 0.938 ± 0.09

Q-SNN 0.922 ± 0.13 0.894 ± 0.13 0.921 ± 0.11 0.903 ± 0.11 0.907 ± 0.12

5 × 5

RF 0.922 ± 0.09 0.91 ± 0.09 0.92 ± ± 0.08 0.9 ± 0.08 0.916 ± 0.07
SVM 0.909 ± 0.18 0.89 ± 0.20 0.90 ± 0.19 0.93 ± 0.17 0.898 ± 0.17

XGBoost 0.9 ± 0.11 0.87 ± 0.11 0.89 ± 0.10 0.877 ± 0.11 0.875 ± 0.10
SNN 0.932 ± 0.08 0.934 ± 0.08 0.930 ± 0.07 0.947 ± 0.06 0.93 ± 0.06

Q-SNN 0.949 ± 0.14 0.942 ± 0.13 0.947 ± 0.14 0.948 ± 0.10 0.95 ± 0.10

6 × 6

RF 0.981 ± 0.10 0.981 ± 0.10 0.98 ± 0.11 0.983 ± 0.09 0.98 ± 0.08
SVM 0.90 ± 0.11 0.901 ± 0.11 0.90 ± 0.12 0.91 ± 0.12 0.907 ± 0.12

XGBoost 0.926 ± 0.16 0.925 ± 0.15 0.923 ± 0.16 0.93 ± 0.13 0.921 ± 0.12
SNN 0.979 ± 0.14 0.977 ± 0.16 0.978 ± 0.16 0.984 ± 0.12 0.974 ± 0.13

Q-SNN 0.968 ± 0.06 0.968 ± 0.006 0.967 ± 0.008 0.976 ± 0.004 0.965 ± 0.007

Table 7. On-device footprint evaluation metrics. The results from the best model per grid case are
highlighted in bold.

Grid Model Inference (ms) Inf.+FE (ms) Model Size
(KB) RAM (KB) Flash (KB)

4 × 4

RF 0.086 ± 0.0067 333.85 ± 0.96 15 162 88
SVM 73.614 ± 0.15 394.552 ± 0.46 360 162 836

XGBoost - - 4004 - -
SNN 0.894 ± 0.02 374.36 ± 0.2 24 202 257

Q-SNN 0.254 ± 0.03 318.66 ± 0.03 16 192 247

5 × 5

RF 0.084 ± 0.0049 333.87 ± 0.98 12 162 82
SVM 65.827 ± 0.15 374.662 ± 0.5 227 162 541

XGBoost - - 2457 - -
SNN 0.898 ± 0.01 377.27 ± 0.1 20 199 254

Q-SNN 0.259 ± 0.03 320.67 ± 0.032 16 192 254

6 × 6

RF 0.084 ± 0.0049 333.87 ± 0.98 8 162 78
SVM 54.267 ± 0.10 376.892 ± 0.47 168 162 420

XGBoost - - 835 - -
SNN 0.911 ± 0.01 379.27 ± 0.05 20 199 254

Q-SNN 0.284 ± 0.08 318.091 ± 0.084 12 190 245

Despite the timing differences between the models, the inference time of all models is
still acceptable for the requirements of the studied task (which is application-dependable).
Additionally, the memory demand of RF and Q-SNN models is very low and insignificant
considering the specifications of our MCU. In fact, the present models can be also fitted in
even more resource constrained MCUs. However, the XGBoost model has a huge memory

Sensors 2023, 23, 896 19 of 22

footprint, that makes it unfeasible to deploy on the MCU and benchmark the inference
timings as well as the RAM and Flash memory occupation. Similarly, the SVM model is
very large in this context but it can be deployed on the MCU, although it is not optimal
with respect to MCU’s available memory for other data storing operations. Concerning
the optimization of the shallow NN with the quantization method, we obtain remarkable
results, mainly in the reduction of the inference time but with a very small drop in the
accuracy. Regarding energy consumption, when the Arduino is idle it consumes between
18 and 19 mAh, due to the data acquisition and sampling process that buffers temporary
values until the trigger is enabled (see Section 4.1). However, when the Arduino performs
the models’ inference, the consumption ranges between 22.4 and 23.4 mAh.

Figure 10. Confusion matrices for random forest (left) and shallow neural network (right).

We also wish to note that the high accuracy scores are achieved by using only
540 instances (experimental impacts) for training the models (the rest 231 instances belong
to the test set). This proves that the proposed design of experiment, which defines the
impact experiments to be executed using the Sobol algorithm, results in a representative
data space for the given problem and, thus, contributes to the high ML model accuracy.
According to the results and our experience, using feature engineering and traditional ML
practices is a useful strategy towards real-time TinyML-based IoT systems, even though
it is (justifiably, for the known reasons) not the most popular approach in the literature,
especially for TinyML research. Our rationale, is to examine all possible solutions and keep
the simplest and most effective ones. We suggest following the aforementioned approach
depending on the application and data requirements, complimentary with ANN modeling
and exploration. Indeed, in the future we intend to experiment more with ANNs (using
raw signal data without features as well), given their inherent potential to reach optimal
architectures with the highest accuracy and smallest footprint, by leveraging optimizations
methods such as pruning, quantization, knowledge distillation, etc., whereas conventional
ML models have low potential to be optimized when they are already large in size.

Lastly, concerning the comparison with the state-of-the-art, there are limited works
with polymer composites as they represent specific challenges due to their susceptibility to
impact damage. In addition, it is not quite feasible to directly compare our methodology to
others as they deal with different structures and materials or even sensors. In addition, there
are no public datasets except ours so that researchers can directly benchmark their models.
However, our models’ results are comparable to [18], which studies impact localization

Sensors 2023, 23, 896 20 of 22

problems with classification and reports 94.3% average prediction accuracy. Similarly,
ref. [17] reached accuracy values between 94.3% and 100% when predicting distinct impacts
on similar locations that their models had been trained with. We, therefore, state that our
models achieve comparable accuracy and they are probably more resource-efficient and we
demonstrate this through a material agnostic methodology.

7. Conclusions

In this paper, we aim to integrate effectively the characteristic resource-constrained
nature of sensors into an industrial application characterized by strict real-time specifi-
cations. In particular, we present a low-cost, resource-frugal IoT solution powered by
TinyML technology to solve the impact localization problem of a thin PMMA plate. We
developed and configured the IoT hardware, we conducted feature engineering and data
processing, and finally delivered two models that enable on-device impact localization
services. We also share our dataset to facilitate researchers in studying impact detection
and localization in SHM applications (applying both supervised and unsupervised ML
techniques), as our search for available experimental data did not lead us to any result that
could serve our objectives. The best results come from the random forest model, which
achieves a classification accuracy that ranges from 93 to 98% across the grid cases and
on-device footprint as low as 333 ms for executing the inference (including the data pro-
cessing and feature extraction process), 78–88 KB and 162 KB for Flash and RAM memory
consumption respectively. These results motivate the concept of our implementation for
real-time, embedded intelligence in SHM applications and indicate promising potential for
further exploration in SHM-related problems and associated TinyML research.

Concerning the limitations of this study, we acknowledge the potential limits of Ar-
duino’s maximum sampling frequency capability (up to 200KHZ) that may pose restrictions
in cases where a higher sampling rate might be required. Moreover, other factors such as
(a) the data processing and ML modeling parts have been validated only in one PMMA
plate which has specific geometry and properties, (b) the impact events come from a sin-
gle source (steel ball) that produces specific excitation due to its mass and geometry and
(c) the quality of PZT sensors, might potentially affect the generalizability of the proposed
methodology in different scenarios.

In the future, we plan to extend our dataset by conducting experiments with more
types of impact sources and more setups of the same plate and sensors (as they are not
identical and discrepancies may exist). In addition, we intend to experiment with additional
modeling techniques such as convolutional neural networks with the raw PZT data as well
as generate numerical simulation data and explore the benefits of utilizing hybrid data
for the given problem. Lastly, we consider exploring the application of signal processing
techniques for data cleaning and preprocessing as well as extracting additional features
such as the time of arrival (ToA), i.e., the time that it takes for the in-plane strain waves,
generated by the impact, to arrive at the sensors.

Author Contributions: Conceptualization, I.K. and T.K.; methodology and software, C.T. and S.H.P.;
validation, I.K., T.K., S.H.P. and C.T.; resources, I.K.; data curation, C.T.; writing—original draft
preparation, S.H.P., I.K., C.T. and T.K.; writing—review and editing, I.K. and S.H.P.; supervision,
project administration, funding acquisition, S.E.N. and V.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Ioannis Katsidimas, Thanasis Kotzakolios, Sotiris Nikoletseas, Ste-
fanos H. Panagiotou, Konstantinos Timpilis, and Constantinos Tsakonas (2022). Dataset: Impact
Events for Structural Health Monitoring of a Plastic Thin Plate [https://zenodo.org/record/7199346
(accessed on 30 December 2022)].

https://zenodo.org/record/7199346

Sensors 2023, 23, 896 21 of 22

Acknowledgments: We would like to express gratitude to the Andreas Mentzelopoulos Foundation
that financially supported S.H.P. Ph.D. study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dutta, D.L.; Bharali, S. TinyML Meets IoT: A Comprehensive Survey. Internet Things 2021, 16, 100461. [CrossRef]
2. Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018,

17, 1225–1244. [CrossRef]
3. Goyal, D.; Pabla, B. The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring:

A Review. Arch. Comput. Methods Eng. 2016, 23, 585–594. [CrossRef]
4. Malekloo, A.; Ozer, E.; AlHamaydeh, M.; Girolami, M. Machine learning and structural health monitoring overview with

emerging technology and high-dimensional data source highlights. Struct. Health Monit. 2022, 21, 1906–1955. [CrossRef]
5. Shen, J.; Li, Z.; Cheng, R.; Luo, Q.; Luo, Y.; Chen, Y.; Chen, X.; Sun, Z.; Huang, S. Eu3+-Doped NaGdF4 Nanocrystal Down-

Converting Layer for Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 17454–17462. [CrossRef] [PubMed]
6. Hammam, M.; El-Mansy, M.; El-Bashir, S.; El-Shaarawy, M. Performance evaluation of thin-film solar concentrators for greenhouse

applications. Desalination 2007, 209, 244–250. [CrossRef]
7. Schissel, P.; Jorgensen, G.; Kennedy, C.; Goggin, R. Silvered-PMMA reflectors. Sol. Energy Mater. Sol. Cells 1994, 33, 183–197.

[CrossRef]
8. Blanco, N.; Gamstedt, E.; Asp, L.; Costa, J. Mixed-mode delamination growth in carbon–fibre composite laminates under cyclic

loading. Int. J. Solids Struct. 2004, 41, 4219–4235. [CrossRef]
9. Choi, K.; Chang, F.K. Identification of Foreign Object Impact in Structures Using Distributed Sensors. J. Intell. Mater. Syst. Struct.

1994, 5, 864–869. [CrossRef]
10. Filios, G.; Katsidimas, I.; Nikoletseas, S.; Tsenempis, I. A Smart Energy Harvesting Platform for Wireless Sensor Network

Applications. Information 2019, 10, 345. [CrossRef]
11. Sotiriadis, G.; Kotzakolios, T.; Kostopoulos, V.; Gemou, M. Digital Twin Assisted and Embedded Strain Gauge Monitoring System.

In Proceedings of the Transport Research Arena, Lisbon, Portugal, 14–17 November 2022.
12. Katsidimas, I.; Kotzakolios, T.; Nikoletseas, S.; Panagiotou, S.H.; Timpilis, K.; Tsakonas, C. Dataset: Impact events for Structural

Health Monitoring of a thin plate. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston,
MA, USA, 6–9 November 2022. [CrossRef]

13. Dipietrangelo, F.; Nicassio, F.; Scarselli, G. Structural Health Monitoring for impact localisation via machine learning. Mech. Syst.
Signal Process. 2023, 183, 109621. [CrossRef]

14. Balasubramanian, P.; Kaushik, V.; Altamimi, S.Y.; Amabili, M.; Alteneiji, M. Comparison of neural networks based on accuracy
and robustness in identifying impact location for structural health monitoring applications. Struct. Health Monit. 2022, 22, 417–432.
[CrossRef]

15. Datta, A.; Augustin, M.J.; Gupta, N.; Viswamurthy, S.R.; Gaddikeri, K.M.; Sundaram, R. Impact Localization and Severity
Estimation on Composite Structure Using Fiber Bragg Grating Sensors by Least Square Support Vector Regression. IEEE Sens. J.
2019, 19, 4463–4470. [CrossRef]

16. Hesser, D.F.; Kocur, G.K.; Markert, B. Active source localization in wave guides based on machine learning. Ultrasonics 2020,
106, 106144. [CrossRef]

17. Tabian, I.; Fu, H.; Sharif Khodaei, Z. A Convolutional Neural Network for Impact Detection and Characterization of Complex
Composite Structures. Sensors 2019, 19, 4933. [CrossRef]

18. Jung, K.C.; Chang, S.H. Advanced deep learning model-based impact characterization method for composite laminates. Compos.
Sci. Technol. 2021, 207, 108713. [CrossRef]

19. Karmakov, S.; Aliabadi, M.H.F. Deep Learning Approach to Impact Classification in Sensorized Panels Using Self-Attention.
Sensors 2022, 22, 4370. [CrossRef]

20. Zonzini, F.; Romano, F.; Carbone, A.; Zauli, M.; De Marchi, L. Enhancing vibration-based structural health monitoring via edge
computing: A tiny machine learning perspective. In Proceedings of the Quantitative Nondestructive Evaluation. American
Society of Mechanical Engineers, Virtual, 28–30 July 2021; Volume 85529, p. V001T07A004.

21. Crocioni, G.; Pau, D.; Delorme, J.M.; Gruosso, G. Li-Ion Batteries Parameter Estimation With Tiny Neural Networks Embedded
on Intelligent IoT Microcontrollers. IEEE Access 2020, 8, 122135–122146. [CrossRef]

22. Athanasakis, G.; Filios, G.; Katsidimas, I.; Nikoletseas, S.; Panagiotou, S.H. TinyML-based approach for remaining useful life
Prediction of Turbofan Engines. In Proceedings of the 27th International Conference on Emerging Technologies and Factory
Automation (ETFA), Stuttgart, Germany, 6–9 September 2022.

23. Ren, H.; Anicic, D.; Runkler, T.A. TinyOL: TinyML with Online-Learning on Microcontrollers. In Proceedings of the 2021
International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [CrossRef]

24. Bratu, D.V.; Ilinoiu, R.Ş.T.; Cristea, A.; Zolya, M.A.; Moraru, S.A. Anomaly Detection Using Edge Computing AI on Low Powered
Devices. In Artificial Intelligence Applications and Innovations; Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer
International Publishing: Cham, Switzerland, 2022; pp. 96–107.

http://doi.org/10.1016/j.iot.2021.100461
http://dx.doi.org/10.1177/1475921717750047
http://dx.doi.org/10.1007/s11831-015-9145-0
http://dx.doi.org/10.1177/14759217211036880
http://dx.doi.org/10.1021/am505086e
http://www.ncbi.nlm.nih.gov/pubmed/25269703
http://dx.doi.org/10.1016/j.desal.2007.04.034
http://dx.doi.org/10.1016/0927-0248(94)90207-0
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.040
http://dx.doi.org/10.1177/1045389X9400500620
http://dx.doi.org/10.3390/info10110345
http://dx.doi.org/10.1145/3560905.3567764
http://dx.doi.org/10.1016/j.ymssp.2022.109621
http://dx.doi.org/10.1177/14759217221098569
http://dx.doi.org/10.1109/JSEN.2019.2901453
http://dx.doi.org/10.1016/j.ultras.2020.106144
http://dx.doi.org/10.3390/s19224933
http://dx.doi.org/10.1016/j.compscitech.2021.108713
http://dx.doi.org/10.3390/s22124370
http://dx.doi.org/10.1109/ACCESS.2020.3007046
http://dx.doi.org/10.1109/IJCNN52387.2021.9533927

Sensors 2023, 23, 896 22 of 22

25. Funk, F.; Bucksch, T.; Mueller-Gritschneder, D. ML Training on a Tiny Microcontroller for a Self-adaptive Neural Network-Based
DC Motor Speed Controller. In Proceedings of the IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile
for Embedded Machine Learning, Ghent, Belgium, 14–18 September 2020; Gama, J., Pashami, S., Bifet, A., Sayed-Mouchawe, M.,
Fröning, H., Pernkopf, F., Schiele, G., Blott, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 268–279.

26. Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-driven structural health monitoring and damage detection through deep learning:
State-of-the-art review. Sensors 2020, 20, 2778. [CrossRef]

27. Aabid, A.; Parveez, B.; Raheman, M.A.; Ibrahim, Y.E.; Anjum, A.; Hrairi, M.; Parveen, N.; Mohammed Zayan, J. A Review of
Piezoelectric Material-Based Structural Control and Health Monitoring Techniques for Engineering Structures: Challenges and
Opportunities. Actuators 2021, 10, 101. [CrossRef]

28. De Oliveira, M.A.; Monteiro, A.V.; Vieira Filho, J. A new structural health monitoring strategy based on PZT sensors and
convolutional neural network. Sensors 2018, 18, 2955. [CrossRef] [PubMed]

29. Bechhoefer, E. Data set for Wind Turbine High-Speed Bearing Prognosis example in Predictive Maintenance Toolbox. 2018. Avail-
able online: https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data (accessed on 30 December 2022).

30. Figueiredo, E.; Park, G.; Figueiras, J.; Farrar, C.; Worden, K. Structural Health Monitoring Algorithm Comparisons Using Standard
Data Sets; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2009. [CrossRef]

31. Teloli, R.d.O.; da Silva, S. A new way for harmonic probing of hysteretic systems through nonlinear smooth operators. Mech.
Syst. Signal Process. 2019, 121, 856–875. [CrossRef]

32. Marzani, A.; Testoni, N.; De Marchi, L.; Messina, M.; Monaco, E.; Apicella, A. An open database for benchmarking guided
waves structural health monitoring algorithms on a composite full-scale outer wing demonstrator. Struct. Health Monit. 2020,
19, 1524–1541. [CrossRef]

33. CUI Devices. CEB-35D26 Datasheet. 2020. Available online: https://gr.mouser.com/datasheet/2/670/ceb_35d26-1776373.pdf
(accessed on 30 December 2022).

34. Bratley, P.; Fox, B.L. Algorithm 659: Implementing Sobol’s Quasirandom Sequence Generator. ACM Trans. Math. Softw. 1988,
14, 88–100. [CrossRef]

35. Jiriwibhakorn, S.; Coonick, A. Fast critical clearing time estimation of a large power system using neural networks and Sobol
sequences. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA,
16–20 July 2000; Volume 1, pp. 522–527. [CrossRef]

36. Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time series feature extraction on basis of scalable hypothesis tests (tsfresh—
A python package). Neurocomputing 2018, 307, 72–77. [CrossRef]

37. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Menghani, G. Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better. arXiv 2021.

[CrossRef]
39. Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [CrossRef]
40. Eloquentarduino. Micromlgen Library Repository. 2020. Available online: https://github.com/eloquentarduino/micromlgen

(accessed on 30 December 2022).
41. David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. TensorFlow

Lite Micro: Embedded Machine Learning for TinyML Systems. In Proceedings of the Machine Learning and Systems, Virtual,
5–9 April 2021; Volume 3, pp. 800–811.

42. Katsidimas, I.; Kotzakolios, T.; Nikoletseas, S.; Panagiotou, S.H.; Tsakonas, C. Smart Objects: Impact localization powered
by TinyML. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA,
6–9 November 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s20102778
http://dx.doi.org/10.3390/act10050101
http://dx.doi.org/10.3390/s18092955
http://www.ncbi.nlm.nih.gov/pubmed/30189639
https://github.com/mathworks/WindTurbineHighSpeedBearingPrognosis-Data
http://dx.doi.org/10.2172/961604
http://dx.doi.org/10.1016/j.ymssp.2018.11.044
http://dx.doi.org/10.1177/1475921719889029
https://gr.mouser.com/datasheet/2/670/ceb_35d26-1776373.pdf
http://dx.doi.org/10.1145/42288.214372
http://dx.doi.org/10.1109/PESS.2000.867640
http://dx.doi.org/10.1016/j.neucom.2018.03.067
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.48550/ARXIV.2106.08962
http://dx.doi.org/10.1016/j.inffus.2021.11.011
https://github.com/eloquentarduino/micromlgen
http://dx.doi.org/10.1145/3560905.3568298

	Introduction
	TinyML
	Structural Health Monitoring
	Aim and Motivation

	Related Work
	Impact Localization
	TinyML in Industrial Applications
	Limitations of Existing Datasets

	Methodology
	Thin Plate and Sensors Setup
	Design and Execution of Experiments
	Monitoring System

	Data Collection and Processing
	Resource-Constrained Sensing Solution
	Dataset Outline
	Feature Extraction and Selection

	Machine Learning Models
	Random Forest
	Shallow Neural Network
	Gradient Boosted Trees and Support Vector Machines
	On-Device Model Deployment

	Evaluation and Discussion
	Conclusions
	References

