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Abstract: Mass production of high-quality synthetic SAR training imagery is essential for boosting
the performance of deep-learning (DL)-based SAR automatic target recognition (ATR) algorithms in
an open-world environment. To address this problem, we exploit both the widely used Moving and
Stationary Target Acquisition and Recognition (MSTAR) SAR dataset and the Synthetic and Measured
Paired Labeled Experiment (SAMPLE) dataset, which consists of selected samples from the MSTAR
dataset and their computer-generated synthetic counterparts. A series of data augmentation experi-
ments are carried out. First, the sparsity of the scattering centers of the targets is exploited for new
target pose synthesis. Additionally, training data with various clutter backgrounds are synthesized
via clutter transfer, so that the neural networks are better prepared to cope with background changes
in the test samples. To effectively augment the synthetic SAR imagery in the SAMPLE dataset, a
novel contrast-based data augmentation technique is proposed. To improve the robustness of neural
networks against out-of-distribution (OOD) samples, the SAR images of ground military vehicles
collected by the self-developed MiniSAR system are used as the training data for the adversarial
outlier exposure procedure. Simulation results show that the proposed data augmentation methods
are effective in improving both the target classification accuracy and the OOD detection performance.
The purpose of this work is to establish the foundation for large-scale, open-field implementation of
DL-based SAR-ATR systems, which is not only of great value in the sense of theoretical research, but
is also potentially meaningful in the aspect of military application.

Keywords: automatic target recognition; deep learning; sparse representation; synthetic aperture
radar; training data augmentation

1. Introduction

In recent years, with interest in artificial intelligence (AI) soaring, synthetic aperture
radar (SAR) automatic target recognition (ATR) with deep neural networks (DNNs) has
attracted the attention of researchers in academia from all over the world [1,2]. However,
the SAR images obtained in field experiments that have been manually labeled and can be
used for the DNN-training are very limited. One of the most commonly used measured
SAR imagery datasets is the Moving and Stationary Target Acquisition and Recognition
(MSTAR) SAR dataset, which was collected by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) between 1995 and 1997 [3].
The publicly released version consists of 20,000 SAR image chips covering the self-propelled
howitzer (2S1), the armored personnel carriers (BMP2, BRDM2, BTR60, and BTR70), the
anti-aircraft gun (ZSU23-4), the main battle tanks (T62 and T72), the truck (ZIL131), and the
bulldozer (D7). Another important SAR imagery dataset covering the same set of military
vehicle targets is the QinetiQ (UK) SAR data recorded with the Enhanced Surveillance
Radar (ESR) in 2001, which was used to double-check the performance of the SAR-ATR
algorithms derived based on the MSTAR dataset. Compared with the MSTAR dataset, the
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SAR image samples in the QinetiQ dataset are more realistic and feature neither centered
targets nor sharp-edged shadow regions [4,5]. With the QinetiQ dataset, Schumacher et al.
proved that both the clutter and the shadow region play important roles in SAR target
classification, and that carrying out performance evaluation for the SAR-ATR algorithms
based solely on the limited samples from the MSTAR dataset is potentially biased.

In 2021, Kechagias-Stamatis et al. pointed out that since the backgrounds for the
training and testing images in the MSTAR database are highly correlated and all the
true labels for the test images are known a priori to researchers, a new benchmarking
dataset containing an appropriate number of images with publicly unknown class labels
is needed to evaluate the true effectiveness of the ATR systems proposed in research
papers [6]. To illustrate the effects of clutter background, some representative SAR images
in the MSTAR dataset downloaded from the official website (https://www.sdms.afrl.af.mil,
accessed on 28 November 2022) are shown in Figure 1, which depict 2S1, BRDM2, and
ZSU23 observed at elevation angles of El = 17◦ and El = 30◦. The website offers two
types of files: .JEPG images (for DISPLAY purposes) and the raw data files (contains full
information and can be converted to any type of images of any quality). The .JEPG images
are widely used by researchers in countries having difficulties obtaining access to the
official website, and are illustrated in the two image blocks on the left of Figure 1. It can
be seen that for El = 30◦, the backgrounds of BRDM2 are much brighter than those of 2S1.
With specially tuned and enhanced ResNet18, an average classification accuracy of 97.2%
was achieved in 10 iterations. This result might seem promising. However, for neural
networks, the parameters are automatically adjusted to achieve higher accuracy. As a
result, the high accuracy was much likely contributed by the false feature of “brightness
of clutter backgrounds”. To test this theory, we carried out another experiment: the same
images were used for training, while the images manually generated from the raw data
files with contrast-balancing are adopted as the new test images. As expected, the accuracy
of the same network immediately dropped to 65.3%. It is as if the neural network learned
from the training data that “the brighter ones are more likely to be BRDM2”, but cannot
see this pattern in the well-balanced test data. However, if we use images with contrast-
balancing as our training data from the very beginning, the neural network learns to focus
on the “real features” and we achieve an average 10-iteration accuracy of 88.5% (with the
highest/lowest accuracy being 93.2%/85.4%).
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Figure 1. Clutter backgrounds have a great effect on target classification accuracy.

Actually, to realize wide application of DNN-based SAR-ATR algorithms in the open-
world environment, where a rich variety of vehicle targets could be present, high-quality
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synthetic SAR imagery generated with computational electromagnetic (CEM) methods
based on the computer-aided design (CAD) models of the potential targets would be of
great help. In [7,8], Lewis et al. presented the synthetic and measured paired–labeled
experiment (SAMPLE) dataset, which is complementary to the MSTAR dataset and covers
the same types of targets. According to [7], the SAMPLE dataset has been in use for
many years, and has led to several important research works on transfer learning, neural
network modeling, and generative adversarial networks (GAN) by researchers from the
Massachusetts Institute of Technology, Georgia Institute of Technology, and AFRL [9,10].
The great value of the SAMPLE dataset for the next phase of development in the research
field of SAR-ATR has also been emphasized in the review article by Blasch et al. [11].
However, the publicly released version of the SAMPLE dataset contains only 806 training
images and 539 testing images, which is far from enough for the development of DNNs.
Moreover, the backgrounds of the synthetic imagery in the SAMPLE dataset are obviously
different from the measured ones, which exhibit much higher noise and clutter levels
(see Table 1). Another important research paper on CEM-aided synthetic SAR imagery
generation worth noting is [12], where Yoo and Kim exploited indirect information (i.e., 2D
drawings, multi-aspect photos, and video clips) regarding the targets of interest in the case
when the detailed 3D blueprints of the targets are unavailable. Unfortunately, Yoo and Kim
elect not to share the dataset they generated with the public. Additionally, just like the
SAMPLE dataset, there is an apparent difference between the measured and the synthetic
SAR imagery (see Figures 13 and 14 in [12]).

Table 1. Comparison of measured and synthetic SAR imagery in SAMPLE dataset.

Target Measured/Synthetic Target Measured/Synthetic

2S1
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In [13–15], several classic optical image augmentation methods are leveraged to 

compensate for the limited labeled SAR imagery for DNN training, which include 

noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 
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methods are not effective in modeling the varying SAR image features caused by the 

actual changes in radar parameters, observation angle variations, target articulations, 
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surroundings based on the measurements made by the radar system. Although the res-

Sensors 2023, 23, x FOR PEER REVIEW 3 of 23 
 

 

Figure 1. Clutter backgrounds have a great effect on target classification accuracy. 

Actually, to realize wide application of DNN-based SAR-ATR algorithms in the 

open-world environment, where a rich variety of vehicle targets could be present, 

high-quality synthetic SAR imagery generated with computational electromagnetic 

(CEM) methods based on the computer-aided design (CAD) models of the potential tar-

gets would be of great help. In [7,8], Lewis et al. presented the synthetic and measured 

paired–labeled experiment (SAMPLE) dataset, which is complementary to the MSTAR 

dataset and covers the same types of targets. According to [7], the SAMPLE dataset has 

been in use for many years, and has led to several important research works on transfer 

learning, neural network modeling, and generative adversarial networks (GAN) by re-

searchers from the Massachusetts Institute of Technology, Georgia Institute of Technol-

ogy, and AFRL [9,10]. The great value of the SAMPLE dataset for the next phase of de-

velopment in the research field of SAR-ATR has also been emphasized in the review ar-

ticle by Blasch et al. [11]. However, the publicly released version of the SAMPLE dataset 

contains only 806 training images and 539 testing images, which is far from enough for 

the development of DNNs. Moreover, the backgrounds of the synthetic imagery in the 

SAMPLE dataset are obviously different from the measured ones, which exhibit much 

higher noise and clutter levels (see Table 1). Another important research paper on 

CEM-aided synthetic SAR imagery generation worth noting is [12], where Yoo and Kim 

exploited indirect information (i.e., 2D drawings, multi-aspect photos, and video clips) 

regarding the targets of interest in the case when the detailed 3D blueprints of the targets 

are unavailable. Unfortunately, Yoo and Kim elect not to share the dataset they generated 

with the public. Additionally, just like the SAMPLE dataset, there is an apparent differ-

ence between the measured and the synthetic SAR imagery (see Figures 13 and 14 in 

[12]). 

Table 1. Comparison of measured and synthetic SAR imagery in SAMPLE dataset. 

Target Measured/Synthetic Target Measured/Synthetic 

2S1 

  

M35 

  
BMP2 

  

M548 

  
BTR70 

  

M60 

  
M1 

  

T72 

  
M2 

  

ZSU23 

  

In [13–15], several classic optical image augmentation methods are leveraged to 

compensate for the limited labeled SAR imagery for DNN training, which include 

noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 

purpose. Although the data augmentation methods mentioned above have led to im-

proved classification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these 

methods are not effective in modeling the varying SAR image features caused by the 

actual changes in radar parameters, observation angle variations, target articulations, 

and the signal to clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR im-

age depicts the electromagnetic scattering characteristics of the target of interest and its 

surroundings based on the measurements made by the radar system. Although the res-

M35

Sensors 2023, 23, x FOR PEER REVIEW 3 of 23 
 

 

Figure 1. Clutter backgrounds have a great effect on target classification accuracy. 

Actually, to realize wide application of DNN-based SAR-ATR algorithms in the 

open-world environment, where a rich variety of vehicle targets could be present, 

high-quality synthetic SAR imagery generated with computational electromagnetic 

(CEM) methods based on the computer-aided design (CAD) models of the potential tar-

gets would be of great help. In [7,8], Lewis et al. presented the synthetic and measured 

paired–labeled experiment (SAMPLE) dataset, which is complementary to the MSTAR 

dataset and covers the same types of targets. According to [7], the SAMPLE dataset has 

been in use for many years, and has led to several important research works on transfer 

learning, neural network modeling, and generative adversarial networks (GAN) by re-

searchers from the Massachusetts Institute of Technology, Georgia Institute of Technol-

ogy, and AFRL [9,10]. The great value of the SAMPLE dataset for the next phase of de-

velopment in the research field of SAR-ATR has also been emphasized in the review ar-

ticle by Blasch et al. [11]. However, the publicly released version of the SAMPLE dataset 

contains only 806 training images and 539 testing images, which is far from enough for 

the development of DNNs. Moreover, the backgrounds of the synthetic imagery in the 

SAMPLE dataset are obviously different from the measured ones, which exhibit much 

higher noise and clutter levels (see Table 1). Another important research paper on 

CEM-aided synthetic SAR imagery generation worth noting is [12], where Yoo and Kim 

exploited indirect information (i.e., 2D drawings, multi-aspect photos, and video clips) 

regarding the targets of interest in the case when the detailed 3D blueprints of the targets 

are unavailable. Unfortunately, Yoo and Kim elect not to share the dataset they generated 

with the public. Additionally, just like the SAMPLE dataset, there is an apparent differ-

ence between the measured and the synthetic SAR imagery (see Figures 13 and 14 in 

[12]). 

Table 1. Comparison of measured and synthetic SAR imagery in SAMPLE dataset. 

Target Measured/Synthetic Target Measured/Synthetic 

2S1 

  

M35 

  
BMP2 

  

M548 

  
BTR70 

  

M60 

  
M1 

  

T72 

  
M2 

  

ZSU23 

  

In [13–15], several classic optical image augmentation methods are leveraged to 

compensate for the limited labeled SAR imagery for DNN training, which include 

noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 

purpose. Although the data augmentation methods mentioned above have led to im-

proved classification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these 

methods are not effective in modeling the varying SAR image features caused by the 

actual changes in radar parameters, observation angle variations, target articulations, 

and the signal to clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR im-

age depicts the electromagnetic scattering characteristics of the target of interest and its 

surroundings based on the measurements made by the radar system. Although the res-

Sensors 2023, 23, x FOR PEER REVIEW 3 of 23 
 

 

Figure 1. Clutter backgrounds have a great effect on target classification accuracy. 

Actually, to realize wide application of DNN-based SAR-ATR algorithms in the 

open-world environment, where a rich variety of vehicle targets could be present, 

high-quality synthetic SAR imagery generated with computational electromagnetic 

(CEM) methods based on the computer-aided design (CAD) models of the potential tar-

gets would be of great help. In [7,8], Lewis et al. presented the synthetic and measured 

paired–labeled experiment (SAMPLE) dataset, which is complementary to the MSTAR 

dataset and covers the same types of targets. According to [7], the SAMPLE dataset has 

been in use for many years, and has led to several important research works on transfer 

learning, neural network modeling, and generative adversarial networks (GAN) by re-

searchers from the Massachusetts Institute of Technology, Georgia Institute of Technol-

ogy, and AFRL [9,10]. The great value of the SAMPLE dataset for the next phase of de-

velopment in the research field of SAR-ATR has also been emphasized in the review ar-

ticle by Blasch et al. [11]. However, the publicly released version of the SAMPLE dataset 

contains only 806 training images and 539 testing images, which is far from enough for 

the development of DNNs. Moreover, the backgrounds of the synthetic imagery in the 

SAMPLE dataset are obviously different from the measured ones, which exhibit much 

higher noise and clutter levels (see Table 1). Another important research paper on 

CEM-aided synthetic SAR imagery generation worth noting is [12], where Yoo and Kim 

exploited indirect information (i.e., 2D drawings, multi-aspect photos, and video clips) 

regarding the targets of interest in the case when the detailed 3D blueprints of the targets 

are unavailable. Unfortunately, Yoo and Kim elect not to share the dataset they generated 

with the public. Additionally, just like the SAMPLE dataset, there is an apparent differ-

ence between the measured and the synthetic SAR imagery (see Figures 13 and 14 in 

[12]). 

Table 1. Comparison of measured and synthetic SAR imagery in SAMPLE dataset. 

Target Measured/Synthetic Target Measured/Synthetic 

2S1 

  

M35 

  
BMP2 

  

M548 

  
BTR70 

  

M60 

  
M1 

  

T72 

  
M2 

  

ZSU23 

  

In [13–15], several classic optical image augmentation methods are leveraged to 

compensate for the limited labeled SAR imagery for DNN training, which include 

noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 

purpose. Although the data augmentation methods mentioned above have led to im-

proved classification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these 

methods are not effective in modeling the varying SAR image features caused by the 

actual changes in radar parameters, observation angle variations, target articulations, 

and the signal to clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR im-

age depicts the electromagnetic scattering characteristics of the target of interest and its 

surroundings based on the measurements made by the radar system. Although the res-

BMP2

Sensors 2023, 23, x FOR PEER REVIEW 3 of 23 
 

 

Figure 1. Clutter backgrounds have a great effect on target classification accuracy. 

Actually, to realize wide application of DNN-based SAR-ATR algorithms in the 

open-world environment, where a rich variety of vehicle targets could be present, 

high-quality synthetic SAR imagery generated with computational electromagnetic 

(CEM) methods based on the computer-aided design (CAD) models of the potential tar-

gets would be of great help. In [7,8], Lewis et al. presented the synthetic and measured 

paired–labeled experiment (SAMPLE) dataset, which is complementary to the MSTAR 

dataset and covers the same types of targets. According to [7], the SAMPLE dataset has 

been in use for many years, and has led to several important research works on transfer 

learning, neural network modeling, and generative adversarial networks (GAN) by re-

searchers from the Massachusetts Institute of Technology, Georgia Institute of Technol-

ogy, and AFRL [9,10]. The great value of the SAMPLE dataset for the next phase of de-

velopment in the research field of SAR-ATR has also been emphasized in the review ar-

ticle by Blasch et al. [11]. However, the publicly released version of the SAMPLE dataset 

contains only 806 training images and 539 testing images, which is far from enough for 

the development of DNNs. Moreover, the backgrounds of the synthetic imagery in the 

SAMPLE dataset are obviously different from the measured ones, which exhibit much 

higher noise and clutter levels (see Table 1). Another important research paper on 

CEM-aided synthetic SAR imagery generation worth noting is [12], where Yoo and Kim 

exploited indirect information (i.e., 2D drawings, multi-aspect photos, and video clips) 

regarding the targets of interest in the case when the detailed 3D blueprints of the targets 

are unavailable. Unfortunately, Yoo and Kim elect not to share the dataset they generated 

with the public. Additionally, just like the SAMPLE dataset, there is an apparent differ-

ence between the measured and the synthetic SAR imagery (see Figures 13 and 14 in 

[12]). 

Table 1. Comparison of measured and synthetic SAR imagery in SAMPLE dataset. 

Target Measured/Synthetic Target Measured/Synthetic 

2S1 

  

M35 

  
BMP2 

  

M548 

  
BTR70 

  

M60 

  
M1 

  

T72 

  
M2 

  

ZSU23 

  

In [13–15], several classic optical image augmentation methods are leveraged to 

compensate for the limited labeled SAR imagery for DNN training, which include 

noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 

purpose. Although the data augmentation methods mentioned above have led to im-

proved classification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these 

methods are not effective in modeling the varying SAR image features caused by the 

actual changes in radar parameters, observation angle variations, target articulations, 

and the signal to clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR im-

age depicts the electromagnetic scattering characteristics of the target of interest and its 

surroundings based on the measurements made by the radar system. Although the res-

Sensors 2023, 23, x FOR PEER REVIEW 3 of 23 
 

 

Figure 1. Clutter backgrounds have a great effect on target classification accuracy. 

Actually, to realize wide application of DNN-based SAR-ATR algorithms in the 

open-world environment, where a rich variety of vehicle targets could be present, 

high-quality synthetic SAR imagery generated with computational electromagnetic 

(CEM) methods based on the computer-aided design (CAD) models of the potential tar-

gets would be of great help. In [7,8], Lewis et al. presented the synthetic and measured 

paired–labeled experiment (SAMPLE) dataset, which is complementary to the MSTAR 

dataset and covers the same types of targets. According to [7], the SAMPLE dataset has 

been in use for many years, and has led to several important research works on transfer 

learning, neural network modeling, and generative adversarial networks (GAN) by re-

searchers from the Massachusetts Institute of Technology, Georgia Institute of Technol-

ogy, and AFRL [9,10]. The great value of the SAMPLE dataset for the next phase of de-

velopment in the research field of SAR-ATR has also been emphasized in the review ar-

ticle by Blasch et al. [11]. However, the publicly released version of the SAMPLE dataset 

contains only 806 training images and 539 testing images, which is far from enough for 

the development of DNNs. Moreover, the backgrounds of the synthetic imagery in the 

SAMPLE dataset are obviously different from the measured ones, which exhibit much 

higher noise and clutter levels (see Table 1). Another important research paper on 

CEM-aided synthetic SAR imagery generation worth noting is [12], where Yoo and Kim 

exploited indirect information (i.e., 2D drawings, multi-aspect photos, and video clips) 

regarding the targets of interest in the case when the detailed 3D blueprints of the targets 

are unavailable. Unfortunately, Yoo and Kim elect not to share the dataset they generated 

with the public. Additionally, just like the SAMPLE dataset, there is an apparent differ-

ence between the measured and the synthetic SAR imagery (see Figures 13 and 14 in 

[12]). 

Table 1. Comparison of measured and synthetic SAR imagery in SAMPLE dataset. 

Target Measured/Synthetic Target Measured/Synthetic 

2S1 

  

M35 

  
BMP2 

  

M548 

  
BTR70 

  

M60 

  
M1 

  

T72 

  
M2 

  

ZSU23 

  

In [13–15], several classic optical image augmentation methods are leveraged to 

compensate for the limited labeled SAR imagery for DNN training, which include 

noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 

purpose. Although the data augmentation methods mentioned above have led to im-

proved classification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these 

methods are not effective in modeling the varying SAR image features caused by the 

actual changes in radar parameters, observation angle variations, target articulations, 

and the signal to clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR im-

age depicts the electromagnetic scattering characteristics of the target of interest and its 

surroundings based on the measurements made by the radar system. Although the res-

M548

Sensors 2023, 23, x FOR PEER REVIEW 3 of 23 
 

 

Figure 1. Clutter backgrounds have a great effect on target classification accuracy. 

Actually, to realize wide application of DNN-based SAR-ATR algorithms in the 

open-world environment, where a rich variety of vehicle targets could be present, 

high-quality synthetic SAR imagery generated with computational electromagnetic 

(CEM) methods based on the computer-aided design (CAD) models of the potential tar-

gets would be of great help. In [7,8], Lewis et al. presented the synthetic and measured 

paired–labeled experiment (SAMPLE) dataset, which is complementary to the MSTAR 

dataset and covers the same types of targets. According to [7], the SAMPLE dataset has 

been in use for many years, and has led to several important research works on transfer 

learning, neural network modeling, and generative adversarial networks (GAN) by re-

searchers from the Massachusetts Institute of Technology, Georgia Institute of Technol-

ogy, and AFRL [9,10]. The great value of the SAMPLE dataset for the next phase of de-

velopment in the research field of SAR-ATR has also been emphasized in the review ar-

ticle by Blasch et al. [11]. However, the publicly released version of the SAMPLE dataset 

contains only 806 training images and 539 testing images, which is far from enough for 

the development of DNNs. Moreover, the backgrounds of the synthetic imagery in the 

SAMPLE dataset are obviously different from the measured ones, which exhibit much 

higher noise and clutter levels (see Table 1). Another important research paper on 

CEM-aided synthetic SAR imagery generation worth noting is [12], where Yoo and Kim 

exploited indirect information (i.e., 2D drawings, multi-aspect photos, and video clips) 

regarding the targets of interest in the case when the detailed 3D blueprints of the targets 

are unavailable. Unfortunately, Yoo and Kim elect not to share the dataset they generated 

with the public. Additionally, just like the SAMPLE dataset, there is an apparent differ-

ence between the measured and the synthetic SAR imagery (see Figures 13 and 14 in 

[12]). 
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In [13–15], several classic optical image augmentation methods are leveraged to 

compensate for the limited labeled SAR imagery for DNN training, which include 

noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 

purpose. Although the data augmentation methods mentioned above have led to im-

proved classification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these 

methods are not effective in modeling the varying SAR image features caused by the 

actual changes in radar parameters, observation angle variations, target articulations, 

and the signal to clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR im-

age depicts the electromagnetic scattering characteristics of the target of interest and its 

surroundings based on the measurements made by the radar system. Although the res-
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velopment in the research field of SAR-ATR has also been emphasized in the review ar-
ticle by Blasch et al. [11]. However, the publicly released version of the SAMPLE dataset 
contains only 806 training images and 539 testing images, which is far from enough for 
the development of DNNs. Moreover, the backgrounds of the synthetic imagery in the 
SAMPLE dataset are obviously different from the measured ones, which exhibit much 
higher noise and clutter levels (see Table 1). Another important research paper on 
CEM-aided synthetic SAR imagery generation worth noting is [12], where Yoo and Kim 
exploited indirect information (i.e., 2D drawings, multi-aspect photos, and video clips) 
regarding the targets of interest in the case when the detailed 3D blueprints of the targets 
are unavailable. Unfortunately, Yoo and Kim elect not to share the dataset they generated 
with the public. Additionally, just like the SAMPLE dataset, there is an apparent differ-
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In [13–15], several classic optical image augmentation methods are leveraged to 
compensate for the limited labeled SAR imagery for DNN training, which include 
noise-adding and image rotation, while in [8,16] the GAN is employed to fulfill the same 
purpose. Although the data augmentation methods mentioned above have led to im-
proved classification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these 
methods are not effective in modeling the varying SAR image features caused by the 
actual changes in radar parameters, observation angle variations, target articulations, 
and the signal to clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR im-
age depicts the electromagnetic scattering characteristics of the target of interest and its 
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In [13–15], several classic optical image augmentation methods are leveraged to com-
pensate for the limited labeled SAR imagery for DNN training, which include noise-adding
and image rotation, while in [8,16] the GAN is employed to fulfill the same purpose.
Although the data augmentation methods mentioned above have led to improved clas-
sification accuracy evaluated by the MSTAR/SAMPLE dataset [17], these methods are
not effective in modeling the varying SAR image features caused by the actual changes
in radar parameters, observation angle variations, target articulations, and the signal to
clutter-plus-noise ratio (SCNR). Unlike the optical imagery, a SAR image depicts the elec-
tromagnetic scattering characteristics of the target of interest and its surroundings based
on the measurements made by the radar system. Although the resolution of SAR im-
ages does not deteriorate with distance, the information content per pixel is very limited
and depends highly on the radar waveform properties, the observation angle, the SCNR,
and the SAR imaging algorithms [18]. As a result, addressing the technical challenges in
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SAR-ATR by borrowing completely from the field of optical image recognition is actually
trying to oversimplify a complicated problem. For example, when training a DNN to
recognize optical images containing “handbag”, it is perfectly valid to use GAN to generate
training images featuring handbags with different color and styles based on the rich and
detailed information provided by a dozen of images featuring handbags. However, it is
not appropriate to rely solely on the GAN to synthesize large numbers of SAR images
featuring military/civilian vehicles in the same way without even modeling the target echo
signal based on the radar parameters and the observation scene. Recognizing the problems
mentioned above, physics-based, high-quality SAR data augmentation has become a new
trend. For example, Agarwal et al. proposed a novel method to exploit the sparsity of
the scattering centers for data interpolation in the phase-history domain, which exhibited
promising preliminary results [19].

The majority of the DNN-based SAR-ATR algorithms exploit the convolutional neural
network (CNN) structure, which has made impressive achievement in the field of optical
imagery classification. However, unlike the neural networks trained for RGB image recog-
nition, which can contain as many as 1000 layers [20], the CNN algorithms for SAR-ATR
are relatively “shallow” since the information contained in each pixel is very limited [21].
In [15], Inkawhich et al. compared the performance of small, medium, and large DNN archi-
tectures, which are exemplified by SMPL (a small LeNet-style network [7]), ResNet18, and
Wide-ResNet18, respectively, and proved that large architecture does not lead to superior
SAR-ATR accuracy. Therefore, in this work, we concentrate on developing data augmen-
tation techniques for light-weighted CNNs. Specifically, we use only 20–30 measured
data samples for each type of target included in the MSTAR dataset and achieve a high
accuracy of 97.6% with the SMPL network by employing the data augmentation technique
based on phase interpolation. To evaluate the effect of clutter background on SAR target
classification, we leverage the clutter data in the MSTAR dataset, which are segmented into
1159 clutter chips of size 128 × 128 and divided into two distinctive pools for training and
testing. New training and test image samples are generated by implementing the clutter
transfer technique, based on which the robustness of the target classification algorithms
in clutters with different levels of homogeneity is evaluated. Simulation results show that
the target classification performance of the existing algorithms degrades noticeably if we
employ the original MSTAR image samples for training and apply clutter transfer to the
test samples only. However, by introducing training data with various clutter backgrounds,
the algorithm is robust against the background changes in the test samples.

To effectively augment the synthetic SAR image samples in the SAMPLE dataset,
we propose a novel contrast-based training data augmentation technique. Specifically,
grayscale images with multiple different contrast levels are generated with the complex
image data in “.mat” format. Simulation results show that, by employing 100% synthetic
SAR images with properly set contrast levels for network training, a 10-class classification
accuracy of 95% can be achieved by ResNet18. The main reason behind the success is that
the contrast levels between the target and the background of the measured and the synthetic
SAR images from the SAMPLE dataset are very different. By varying the contrast levels,
we are actually teaching the network that “the background is irrelevant”. Unfortunately, it
also means that if the SAR images involved in network training are 100% real measured
data, the contrast-based data augmentation method will not be effective.

To improve the robustness of the SAR-ATR algorithms in open-world environments,
various types of out-of-distribution (OOD) samples are considered. The same problem
was previously studied in [17], where 59,535 image samples from the SAR-ship dataset
proposed in [22] are used as the outlier exposure (OE) training data for the adversarial
outlier exposure (advOE) procedure. In this work, we introduce another SAR image dataset
for advOE training, the Mini-SAR dataset, which consists of SAR images collected by
the X-band Mini-SAR developed by Nanjing University of Aeronautics and Astronautics
(NUAA-MiniSAR) [23] for ground military vehicle targets. In numerical simulations,
2491 SAR images from the SAR-ship dataset and the MiniSAR dataset are used as the
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OE training data, which is only 4% of the training samples used in [17]. To evaluate the
effect of clutter background on the OOD detection performance, two OOD test datasets are
employed: the MSTAR-O and the MSTAR-P. Both datasets consist of 1290 SAR images of
five types of targets (BRDM2, BTR60, D7, T62, ZIL131) from the MSTAR dataset. However,
the image samples in MSTAR-O are generated based on the official MSTAR raw data, while
MSTAR-P consists of image samples downloaded from a website in the public domain,
which feature a blurred shadow region and partially eliminated clutter background.

The major contributions are summarized as follows:

• The effectiveness of the phase-interpolation-based training data augmentation tech-
nique is demonstrated with the MSTAR dataset, and a novel contrast-based method is
proposed to augment the synthetic training samples in the SAMPLE dataset.

• The effect of the clutter background on SAR target classification is evaluated by
exploiting the clutter data in the MSTAR dataset. It is shown that by introducing
training data with various clutter backgrounds, the algorithm is robust against the
background changes in the test samples.

• By using the MiniSAR images as the OE training samples, diverse CNN models are
designed and trained to detect OOD samples from the MSTAR-O and the MSTAR-P
datasets. It is shown that the contrast-based data augmentation method is also effective
in improving the OOD sample detection performance.

The structure of this work is illustrated in Figure 2. The rest of this work is organized
as follows. In Section 2, the process of data augmentation via interpolation in the phase-
history domain and clutter transfer is presented. In Section 3, effective training methods
are proposed for DNN to achieve an outstanding in-distribution (ID) sample classification
performance while accurately rejecting the OOD samples. In Section 4, experimental results
are provided to demonstrate the performance of the proposed data augmentation methods
and the effectiveness of the OOD detection algorithms. Some final remarks are offered in
Section 5.
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2. Data Augmentation via Interpolation in the Phase-History Domain and
Clutter Transfer

Leveraging hundreds of open-source training datasets containing millions of optical
images featuring objects of interest in numerous places under various light conditions
(e.g., ImageNet, LSUN, etc.), the effect of an object’s surroundings on target recogni-
tion/classification has been thoroughly investigated, and the DNNs for image recognition
have been trained to cope with varying backgrounds and potential camouflage. In contrast,
since the measured and labeled SAR images that could be used for DNN training are very
limited, the robustness of the SAR-ATR algorithms in the open-world environment still
needs improvement. A typical SAR image of a ground-vehicle target consists of two parts:
the target and the clutter. Note that although the shadow region is prominent in the SAR
images from the MSTAR dataset, it is not a common feature shared by all the SAR im-
ages depicting ground targets (e.g., images from the QinetiQ dataset and the MiniSAR
dataset). However, most existing research on data augmentation are focused on the target,
while leaving the clutter unattended or even “completely removed” via target-masking
technique. To enhance the robustness of the SAR-ATR algorithms against heavy clutter of
high heterogeneity, we consider both target and clutter in data augmentation and network
training. Accordingly, this section is divided into two subsections. In Section 2.1, the phase-
interpolation-based SAR-target-feature synthesis technique is introduced. In Section 2.2, a
novel clutter transfer technique is presented by exploiting the clutter data collected during
the MSTAR mission.

2.1. Data Augmentation via Interpolation

For physics-based SAR image dataset augmentation, we adopt the method proposed
in Agarwal et al. [19] and exploit the scattering centers’ spatial sparsity. The working
flowchart of interpolation in the phase-history domain is presented in Figure 3. To begin, a
sparse-representation-based phase-history (PH) model is estimated based on the PH data
extracted from a given SAR image. Suppose that a complex target consists of Kc dominant
scattering centers and the corresponding spatial coordinates and scattering coefficients
are {(xk, yk)} and {hk (θ, φ)}, k = 1, . . . , Kc, respectively, with θ and φ representing azimuth
and the elevation angle, respectively. The (i, m)-th element of the phase-history matrix
S(θ,f) ∈ CNθ×M is given by

s(i, m) = n(i, m) +
Kc

∑
k=1

hk(θi, φ)× exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
, (1)

where n(i, m) is the measurement noise; θi, i = 1, . . . , Nθ are the azimuth angles; and
fm, m = 1, . . . , M are the illuminating frequencies such that M = 2BL/c, with B, L, and c
denoting the bandwidth of the transmitted pulse, the side length of the square-shaped area
of interest centered around the target, and the speed of light, respectively. It is assumed
that {hk (θi, φ)}, i = 1, . . . , Nθ can be represented with a basis set Ψ ∈ CNθ×D as

hk(θi, φ) =
D

∑
ν=1

cν,kψν(θi) + εP (2)

where ψν(θi) is the (ν, i)-th element of Ψ and εP is the estimation error. After PH domain
interpolation, the PH measurements are converted back to an SAR image using the over-
lapping subapertures spanning 3◦ in the azimuth domain, with Taylor window applied for
sidelobe control.

Some preliminary results obtained with this method are shown in Figure 4. In this
example, four subpixel shifts in four directions are performed on each real SAR image sample
(i.e., 1/2 pixel displacement in range/cross-range direction), and subsequently each shifted
image is used to generate 48 extrapolated samples. The synthetic samples at an azimuth angle
θ◦ (i.e., Az = θ◦) are obtained from the real ones corresponding to Az = θ◦ + 5◦. For example,
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the image titled “Syn. Az = 301◦” in Figure 4a is one of the 49 × 4 = 196 synthetic SAR images
generated according to the real SAR image titled as “Real Az = 306◦”. It can be seen that when
there are only a few dominant scattering points, the simulated SAR images are very similar to
the real ones. However, during the experiments, we also noticed that when the target consists
of a number of strong scattering points, the difference between the simulated and the real
SAR images becomes more striking, which might be due to either the scintillation effects or
the robustness of the limited persistence sparse modeling approach when handling complex
targets. In Section 4, we demonstrate that by exploiting the phase-interpolation-based data
augmentation technique, only 20–30 measured data samples for each type of target are needed
by SMPL to achieve a MSTAR 10-class classification accuracy of 97.6%.
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2.2. Data Augmentation via Clutter Transfer

The clutter data collected during the MSTAR mission can be segmented into 1159 clut-
ter chips of size 128 × 128. Each clutter chip belongs to one of the six categories: “C1”
for “cultural isolated object” (e.g., small building, 345 samples); “C2” for “natural isolated
object” (e.g., tree, 310 samples); “C3” for “cultural edge/corner” (e.g., roads, 189 samples);
“C4” for “natural edge/corner” (e.g., streams, 73 samples); “C5” for “cultural homogeneous
area” (e.g., parking lot, 122 samples); “C6” for “natural homogeneous area” (e.g., grass
field, 120 samples). To begin, we select 175 most representative clutter chips and divide
them into two distinctive pools: a “training pool” and a “test pool”. Afterward, the SAR-
Bake pixelwise annotation results for the SAR images in the MSTAR dataset are exploited,
where the target, the shadow, and the clutter pixels are segmented and marked correspond-
ingly [24]. Then, the newly constructed training and test image samples are generated by
implementing the clutter transfer technique, where the clutters in the original SAR images
from the MSTAR dataset are replaced with the random clutter chips from the “training
pool” and the “test pool”.
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Figure 4. The real SAR image samples and the synthetic images obtained via interpolation (the
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(b) BRDM2; (c) BMP2; (d) ZSU23-4.

The original SAR images of five different types of targets (2S1, BMP2, BTR70, T72,
and ZSU23) measured at azimuth angle of 35◦ and elevation angles of 15◦ and 17◦ are
shown in Figure 5, along with the clutter transfer results. It can be seen that with the clutter
background modified, the appearances of the synthesized SAR images in the right column
of Figure 5 are very different from the original SAR image shown in the left column of
Figure 5, which would undoubtedly affect the performance of a CNN-based SAR-ATR
algorithm that has only been trained to manage homogeneous clutters. Note that we are
considering here the pixelwise clutter transfer, which is very different from placing multiple
square-shaped target chips at random locations on a large-scene SAR image corresponding
to a “presumed” observation scenario.

Once the new training and testing datasets accounting for various backgrounds are
constructed, we are ready to investigate the effect of clutter background on SAR target
classification. In Section 4, we demonstrate with numerical simulations that neural net-
works trained only with image samples with ideal backgrounds respond poorly to the
background changes in the test samples. In contrast, by employing training data with
various clutter backgrounds, the neural networks can learn to focus on what matters and
ignore the irrelevant information.
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Figure 5. Original SAR images and corresponding clutter transfer results for five different types of
targets measured at azimuth angle 48◦–50◦ and elevation angles of 15◦ and 17◦. It can be seen that the
clutter backgrounds of the original SAR images for each type of target are highly correlated. (a) Original
2S1 (El =15◦ vs. 17◦); (b) 2S1 with CT (El =15◦ vs. 17◦); (c) Original BMP2 (El =15◦ vs. 17◦); (d) BMP2
with CT (El =15◦ vs. 17◦); (e) Original BTR70 (El =15◦ vs. 17◦); (f) BTR70 with CT (El =15◦ vs. 17◦);
(g) Original T72 (El =15◦ vs. 17◦); (h) T72 with CT (El =15◦ vs. 17◦); (i) Original ZSU23 (El =15◦ vs. 17◦);
(j) ZSU23 with CT (El =15◦ vs. 17◦).

3. Open-World SAR-ATR Algorithm Development and Performance Evaluation

In this section, we consider an open-world environment in which not all the test
samples are from one of the known classes encountered in the network training process.
We employ adversarial outlier exposure (AdvOE) proposed in [17] for network training.
Consider a DNN model with parameter θ. Define x as the input image, y as the truth-
encoded label distribution, f (x;θ) = softmax(g(x;θ)) as the normalized output vector obtained
with the softmax function, and H( f (x; θ), y) as the cross-entropy loss between the predicted
probabilities and y. The output of the DNN is a logit vector over the set of C = 10− J
in-distribution (ID) classes, with J being the number of the holdout/OOD classes. First, we
construct a training dataset consisting of unlabeled OE training samples DOE

ood. To minimize
H( f (x; θ), y) in the 10-J class ID training dataset Did while encouraging the DNN model
to output a uniform distribution over the classes UC for samples from DOE

ood, a reasonable
training objective can be formulated straightforwardly as [25]:

min
θ

E
(x,y)∼Did

[H( f (x; θ), y)] + λ E
x̃∼DOE

ood

[H( f (x̃; θ),UC)], (3)
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which is referred to as the OE method; λ in Equation (3) is a user-parameter adjusting
the weights put on OOD sample detection and ID sample classification. To improve the
robustness of the DNN model against the potential adversarial attacks, Inkawhich et al.
proposed the advOE method in [17] by incorporating adversarial training (AT) into the
OE method. Specifically, a perturbation δ from an allowable set Sid is applied to the input
image x, and the training objective in Equation (3) is modified as:

min
θ

E
(x,y)∼Did

[
max
δ∈Sid

H( f (x + δ; θ), y)

]
+ λ E

x̃∼DOE
ood

[
max
δ∈Sood

H( f (x̃ + δ; θ),UC)
]

. (4)

To constrain the total perturbation to a maximum allowable value, it is assumed that
the lp norm of δ is bounded by a parameter ε, i.e., ||δ||p ≤ ε [15].

In this work, we adopt the advOE method in Equation (4) to train the DNN model
for ID sample classification. Two scenarios are considered: (1) the standard scenario, where
the SAR images from the SAMPLE dataset are used as the ID samples just like [17]; (2) the
open-world scenario, where the clutter transfer technique is employed to test the effect of
clutter background on the OOD detection performance. Since the SAMPLE dataset only
consists of 806 training samples and the clutter backgrounds of the synthesized SAR images
are noticeably weaker than their measured counterparts, we augment the training data
by incorporating SAR images with multiple contrast levels (see Section 4.4 for details).
Additionally, we construct DOE

ood with 2491 SAR images from the SAR-ship dataset and the
MiniSAR dataset, which is only 4% of the number of training samples used in [22]. Some
MiniSAR image examples for nine types of military targets are shown Figure 6, which
include three main battle tanks (62-HT, 63AT, T34-85), a howitzer (54TH), an anti-aircraft
gun (59AG), a cannon (59-1TC), an armored personnel carrier (63APTV), an amphibious
armored vehicle (63CAAV), and a fighter (J6). The resolution of each SAR image chip is
0.1 m × 0.1 m. Moreover, although the image chips from the CVDome [26], the MNIST, and
the CIFAR10 datasets are used as the OOD test samples in [17], we employ the MSTAR-O
and the MSTAR-P instead. Both datasets consist of 1290 SAR images corresponding to
five types of targets (BRDM2, BTR60, D7, T62, ZIL131) included in the MSTAR dataset.
However, the SAR image samples in MSTAR-O are self-generated with Matlab based on
the official MSTAR raw data, while those in MSTAR-P are postprocessed “.jpeg” images
downloaded directly from an online personal blog. The difference between the SAR
images in these two datasets is illustrated in Figure 7. It is easy to observe that the clutter
information of the SAR image in MSTAR-P is partially eliminated and the shadow area
is obscured.
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Figure 7. Difference between the image samples from the MSTAR-P dataset (left) and those from the
MSTAR-O dataset (right). (a) BRDM2 (El =15◦, Az = 95◦); (b) BRDM2 (El =15◦, Az = 105◦); (c) BTR60
(El = 15◦, AZ = 270◦); (d) BTR60 (El = 17◦, AZ = 270◦).

To realize OOD sample detection, two recently proposed OOD detectors, the ODIN
detector and the Mahalanobis detector, are considered. The key idea of ODIN is to separate
ID samples from OOD samples based on a score via temperature scaling as [17,27,28]:

SODIN(x) = max
i∈C

exp(gi(x)/T)
C
∑

j=1
exp(gj(x)/T)

. (5)

where SODIN(x) ∈ [1/|C|, 1] is the ODIN score, and T is the temperature scaling parameter.
In [27], T is set as 1000. If SODIN is greater than a predetermined threshold for a certain
test sample, it reflects high-confidence prediction. In this case, the sample is considered
ID, and a class label is assigned accordingly. Otherwise, the sample is declared to be
OOD and rejected. With T set as 1, Equation (5) reduces to the baseline detector presented
in [25], which is used as the benchmark for OOD detection performance evaluation in
Section 4.4. In contrast, the main idea for the Mahalanobis detector proposed in [28] is
that the OOD samples should belong to the low-density regions of the training data’s
feature distributions conditioned on target class. Therefore, the OOD score for Mahalanobis
detector is calculated based on the proximity of an input sample’s feature to the closest class
distribution measured by Mahalanobis distance, and it is expected that the ID test samples
should reveal themselves via the proximity to the training data’s feature distributions.

Finally, we introduce two performance metrics for OOD detection: the area under the
receiver operating characteristic (AUROC) and the true negative rate corresponding to the
threshold set to achieve a 95% true positive rate (TNR@95TPR), which are also adopted
in [17]. The AUROC describes the tradeoff between true positive rate and false positive
rate, which is independent of the detection threshold, while the TNR@95TPR represents the
TNR when the threshold is set to achieve 95% TPR at identifying ID samples. In Section 4.4,
the AUROC, TNR@95TPR, and ID sample classification accuracy are used together to
evaluate the performance of the OOD detection methods and the fitness of the designated
OE training sample datasets.

In [17], Inkawhich et al. demonstrated that when the SAR images from the SAMPLE
dataset are used as the ID training and test data, the ODIN detector outperforms the
Mahalanobis detector in detecting the holdout OOD data measured by the TNR@95TPR. In
Section 4.4, however, we demonstrate with numerical simulations that when the ID training
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data from the SAMPLE data set are augmented with the contrast-based data augmentation
method and the Mini-SAR images are used as the OE training samples, the Mahalanobis
detector actually offers higher TNR@95TPR than the ODIN detector in most cases. It seems
that the DNN’s capability to detect OOD samples in the feature space is enhanced by the
additional ID training data from which it can learn from.

4. Simulation Results

This section is divided into four parts. In Section 4.1, the SAR-ATR performance
improvement brought by the phase-interpolation-based SAR-target-feature synthesis tech-
nique presented in Section 2.1 is demonstrated with numerical simulations. In Section 4.2,
experiments are carried out to prove that by synthesizing training data with various clutter
backgrounds and the clutter transfer technique proposed in Section 2.2, the robustness of
the DNNs against the background changes in the test samples improves accordingly. Note
that the SAR images from the MSTAR dataset are employed for the numerical simulations
in both Sections 4.1 and 4.2. In Section 4.3, we consider a challenging scenario where the
measured data from field experiments are unavailable, and only the computer-generated
synthetic SAR images are used for DNN training. Exploiting the SAMPLE dataset, the
boosting effects of the contrast-based data augmentation technique proposed in Section 3
on target classification accuracies are demonstrated. Finally, in Section 4.4, simulation
results regarding OOD detection are provided.

Two datasets were used in this section, the MSTAR dataset and the SAMPLE dataset.
The MSTAR dataset can be downloaded from the official website (https://www.sdms.
afrl.af.mil, accessed on 28 November 2022). Unfortunately, the authors do not have the
permission to distribute the public SAMPLE dataset. To obtain access to the SAMPLE
dataset, researchers need to contact the authors of [8]. However, for the convenience of
interested readers, the image samples we presented in Section 2.2 and used to generate
the simulation results in Section 4.2 have been uploaded to Github (https://github.com/
gengzhe2015/SAR-target-recognition, accessed on 11 January 2023). Moreover, readers
who are interested in implementing the network models presented in this section are
referred to the Python codes posted by the first author of [15,17] on https://github.com/
inkawhich/synthetic-to-measured-sar (accessed on 28 November 2022) and https://github.
com/inkawhich/ood-sar-atr (accessed on 28 November 2022).

4.1. Data Augmentation with Phase Interpolation

In this subsection, we demonstrate the effectiveness of the phase-interpolation-based
SAR target feature synthesis technique presented in Section 2.1. Five target types from the
MSTAR dataset are considered, with the SAR images collected at elevation angles of 17◦

and 15◦ used as the training and the testing data, respectively. To simulate a scenario when
the measured samples are scarce, we construct a new dataset, MSTAR-R, by choosing 136
out of 1295 measured SAR images included in the MSTAR dataset. Theoretically, one image
sample could be augmented as many as 49 × 4 = 196 complex-valued images in the ±6◦

neighborhood of that sample’s azimuth angle, with the quality of the synthesized images
deteriorating as the interpolating angle increases. To reduce the computational burden,
we construct two medium-sized training datasets, MSTAR-Aug1 and MSTAR-Aug2, by
choosing synthetic images within the±1◦ neighborhood of the measured sample’s azimuth
angle. The number of training and test samples for each type of target in MSTAR-Aug1
and MSTAR-Aug2 are summarized in Table 2.

https://www.sdms.afrl.af.mil
https://www.sdms.afrl.af.mil
https://github.com/gengzhe2015/SAR-target-recognition
https://github.com/gengzhe2015/SAR-target-recognition
https://github.com/inkawhich/synthetic-to-measured-sar
https://github.com/inkawhich/synthetic-to-measured-sar
https://github.com/inkawhich/ood-sar-atr
https://github.com/inkawhich/ood-sar-atr
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Table 2. Number of training image samples obtained via phase interpolation.

MSTAR-R MSTAR_Aug1 MSTAR_Aug2

Class Train Test Train Test Train Test

2S1 32 274 256 274 448 274
BMP2 24 195 192 195 336 195
BTR70 24 196 192 196 336 196

T72 24 195 192 195 336 195
ZSU23 32 274 256 274 448 274

Number of samples 136 1134 1088 1134 1904 1134

Next, we demonstrate the performance improvement of some commonly used light-
weighted neural networks provided by the data augmentation. Three networks are consid-
ered, the ResNet-18 (Res18), the AConvNet (AConv), and the SMPL [16]. Each model is
trained for 60 epochs with the ADAM optimizer and an initial learning rate of 0.001, which
decays at epoch 50 to 0.0001. The input images are center-cropped to 64× 64 pixels, and the
batch size is set as 128. The five-class classification accuracies provided by each model with
MSTAR-R, MSTAR-Aug1, and MSTAR-Aug2 as the training dataset are presented in Table 3.
Two types of loss functions are considered: the adversarial training (AT) method with ε = 2
and the label-smoothing (LSM) method with lblsm = 0.1 [15]. All results are averaged over
10 iterations. It can be seen that although the classification accuracies of AConv and SMPL
are merely in the range 60–80% when the MSTAR-R is used as the training dataset, the
accuracies jump to 95–98% when the augmented training dataset MSTAR-Aug1 is used.
Once there are enough training samples for feature extraction, including more training data
does not help in further performance improvement. Therefore, although the number of
augmented data samples in MSTAR-Aug2 is approximately twice that in MSTAR-Aug1,
the classification accuracies corresponding to the two training datasets are almost the same.

Table 3. Performance improvement of the neural networks provided by the synthetic images obtained
via interpolation.

Model
5-Class Classification Accuracy

Method
MSTAR-R MSTAR-Aug1 MSTAR-Aug2

Res18 83.7 ± 4.35 97.4 ± 1.00 97.8 ± 0.16
AT (ε = 2)AConv 68.3 ± 1.22 95.6 ± 0.95 96.4 ± 0.69

SMPL 56.6 ± 2.33 96.4 ± 0.59 96.6 ± 0.64

Res18 75.1 ± 8.80 95.1 ± 3.41 95.2 ± 2.61
LSM (lblsm = 0.1)AConv 73.0 ± 5.37 97.0 ± 0.74 97.2 ± 0.35

SMPL 61.3 ± 3.37 97.6 ± 0.63 97.6 ± 0.29

4.2. Clutter Transfer Experiment with MSTAR Dataset

In this section, we test the effect of varying clutter backgrounds on the performance
of the neural networks with the MSTAR dataset. The SAR images corresponding to
elevation angles of 15◦ and 17◦ are used for network training and testing, respectively. The
performance degradation caused by the clutter background change in the test samples and
the performance improvement achieved by incorporating training samples with diverse
clutter backgrounds are summarized in Table 4. “MSTAROR” represents the case in which
both the training and the test samples are untouched. “TrainOR + TestCT” represents the
case in which the clutter backgrounds for the test samples are randomly modified with
the clutter transfer technique, while the original SAR image samples from the MSTAR
dataset are used for network training. It can be seen that having been trained with samples
with homogeneous clutter backgrounds, all the networks experience dramatic performance
degradation when tested against samples with various clutter backgrounds (see Figure 5 for
some examples). “TrainCT + TestCT” represents the case in which the clutter backgrounds
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of both the training and test samples are randomly chosen. It is shown that by introducing
training data with various clutter backgrounds, the classification accuracies provided by
all the networks bounced from the range between 50% and 60% back to higher than 90%.
“TrainCT×2 + TestCT” represents the case in which the clutter background of each training
sample is altered in two different ways, which increases the number of training samples to
twice its original quantity. It is shown that by doubling the training data samples with the
clutter transfer technique, the classification accuracies provided by all the networks become
approximately identical to the baseline case “MSTAROR”. Through these experiments, the
importance of taking into consideration the effect of the clutter background for network
training and testing when addressing the SAR-ATR problem becomes obvious.

Table 4. Improved robustness against the background changes in test samples by introducing training
samples with diverse clutter backgrounds.

Model
5-Class Classification Accuracy (%)

MSTAROR TrainOR + TestCT TrainCT + TestCT TrainCT×2 + TestCT

SMPL7 98.1 ± 0.72 38.6 ± 1.17 91.5 ± 0.93 96.0 ± 1.03
RN18 99.8 ± 0.06 55.2 ± 1.42 97.5 ± 0.65 98.4 ± 0.35

AConv 99.0 ± 0.21 54.2 ± 5.87 94.1 ± 0.60 98.0 ± 0.39
Heiligers 98.4 ± 0.39 54.7 ± 3.39 87.1 ± 1.58 92.5 ± 1.41

4.3. Data Augmentation by Employing Multiple Contrast Levels

Since there are only a small number of samples for each type of target in the SAMPLE
dataset (see Table 5), we employ a novel technique for training data augmentation. Consider
that the clutter background of the synthesized SAR images are noticeably weaker than
their measured counterparts; we produce SAR images with three different contrast levels
for network training based on the complex SAR image data matrix, which are shown in
Figure 8. With data augmentation, 806 × 3 = 2418 training data samples are obtained. Next,
we demonstrate the boosting effects of the proposed contrast-based data augmentation
technique on target classification accuracies with numerical simulations. Define K ∈ [0, 1]
as the fraction of images in the training set that are measured, i.e., K = 1 corresponds to
the case in which all the training data are obtained from field experiments, while K = 0
refers to the case in which the DNNs are trained with 100% computer-generated synthetic
SAR images and tested on measured data. Four representative light-to-medium DNN
models that produced promising results for SAR-ATR are evaluated: ResNet-18, AConvNet,
SMPL [16], and Heiligers’ CNN [29]. For SMPL and A-ConvNet, we set Gaus = Drop = 0.3,
lblsm = 0.08, while for ResNet18 and Heiligers’ CNN, we set Gaus = Drop = 0.4, lblsm = 0.1
for optimum performance.

Table 5. Number of samples for each type of target in the SAMPLE dataset.

Class Train Test

2S1 116 58
BMP2 55 52
BTR70 43 49

M1 78 51
M2 75 53

M35 76 53
M548 75 53
M60 116 60
T72 56 52

ZSU23 116 58
Number of samples 806 539
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Figure 8. Data augmentation by introducing images with various contrast levels.

The classification accuracies provided by these networks before and after training
data augmentation, which are represented by “SAMPLE (Ori.)” and “SAMPLE (Aug.)”,
respectively, are summarized in Table 6 for K = 0, 0.05, and 0.1. The improvement in
classification accuracy brought by the proposed data augmentation technique is prominent,
about 5% on average. It can be seen that with data augmentation implemented, the
ResNet18 offers the highest classification accuracy for K = 0 (94.5%), K = 0.05 (98.1%), and
K = 0.1 (98.9%), among all the networks under evaluation. Additionally, the LeNet-style
SMPL and A-ConvNet exhibit similar performance and provide accuracies slighter lower
than that of the ResNet18. Although Heiligers’ CNN produces the lowest accuracy among
the DNN models for K ≤ 0.1, its performance is the same as other networks (approx. 100%)
when K is large.

Table 6. Effect of contrast-based data augmentation on target classification accuracies.

Model
SAMPLE (Ori.) SAMPLE (Aug.)

Min Max Avg ± std Min Max Avg ± std

K = 0

SMPL7 76.4 93.5 86.7 ± 3.41 89.2 96.3 91.8 ± 2.00
RN18 85.0 95.5 91.9 ± 2.17 92.2 96.3 94.5 ± 1.32

AConv 84.4 89.1 86.5 ± 1.77 87.0 92.6 89.6 ± 1.62
Heiligers 76.6 84.6 80.4 ± 1.96 80.1 87.6 84.5 ± 2.17

K = 0.05

SMPL7 82.2 92.4 89.1 ± 2.56 92.6 97.8 96.2 ± 1.44
RN18 95.4 98.5 96.9 ± 1.02 95.7 99.3 98.1 ± 1.00

AConv 86.5 93.3 90.5 ± 2.13 93.7 97.2 95.7 ± 1.05
Heiligers 83.7 90.4 86.9 ± 1.67 84.6 95.2 90.2 ± 3.24

K = 0.1

SMPL7 88.1 94.1 92.0 ± 1.52 96.5 99.3 97.9 ± 0.08
RN18 96.7 98.9 97.8 ± 0.81 98.1 99.6 98.9 ± 0.54

AConv 88.7 94.6 92.5 ± 1.67 96.8 98.9 98.0 ± 0.74
Heiligers 84.8 93.3 88.4 ± 2.18 89.4 96.7 93.8 ± 1.97

Note that the problem of DNN training on 100% synthetic data from the SAMPLE
dataset was previously studied in [15], where Inkawhich et al. used the ensemble method
with a soft-voting scheme. The predictions made by each of the five ensemble components
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that correspond to five different loss functions (cross-entropy, lblsm, mixup, cosine loss,
AT) are averaged, and the class-labels are designated according to the highest average
confidence. Although this method has been proven to be very effective in enhancing the
SAR-ATR performance, it also leads to higher computational cost than using a single loss
function. It is also worth mentioning that although the AT method provides higher accuracy
than the other four methods, it involves adversarial attacks in multiple iterations and is
strikingly more time-consuming. By using only one type of loss function (label-smoothing),
our method is much more time efficient.

4.4. OOD Detection

In this subsection, simulation results regarding OOD detection are presented. Two sce-
narios are considered, the standard scenario that has been considered in [17], and the
open-world scenario where the clutter transfer technique is employed to test the effect of
clutter background on OOD detection performance.

4.4.1. Standard Scenario

In this case, the SAR images from the SAMPLE dataset are used as the ID samples.
With 2048 SAR images from the SAR-ship dataset and 443 SAR images from the Min-
iSAR dataset as the OE training samples (i.e., OE training dataset #1), the AUROC and
TNR@TPR95 obtained with three different OOD detection methods, i.e., the baseline de-
tector with the standard softmax threshold [25], the ODIN detector [27], and the AdvOE
detector (ε = 8) based on the Mahalanobis distance for J = 1 and J = 3 are compared in
Figure 9a,b, respectively. “Holdout” represents the case in which J classes of the targets
included in the SAMPLE dataset are held out from the training dataset. The results pre-
sented for J = 3 are the average of 10 cases in which three types of targets are held out from
the training dataset (which are the same as the ones that will be shown in Figure 11). It
can be seen that the AdvOE detector based on the Mahalanobis distance offers the highest
AUROC and TNR@TPR95. Moreover, it is also shown that the OOD samples from the
MSTAR-P dataset are easier to detect than the MSTAR-O images, which indicates that
the clutter background has a great impact on the granularity of SAR images and plays a
significant role in OOD sample detection.

In the following, we illustrate how the choice regarding OE training samples affects
the performance metrics for OOD sample detection. With samples from OE training dataset
#1 employed, the AUROC, TNR@95TPR, and classification accuracy corresponding to
different holdout class choices for J = 1 are plotted in Figure 10a. Classes #0–#9 correspond
to 2S1, BMP2, BTR70, M1, M2, M35, M548, M60, T72, and ZSU23, respectively, under the
assumption that K = 0.1. It can be seen from Figure 10a that when #6 (M548) and #8 (T72)
are set as the holdout classes, the average TNR@95TPR are only 19% and 23%, respectively.
Next, we introduce 1146 SAR images of D7 and ZIL131 as the extra OE training samples
(i.e., OE training dataset #2) and plot the performance metrics in Figure 10b. It can be
seen that although the TNR@95TPR for most of Holdout ID increase noticeably compared
with the results shown in Figure 10a, particularly for Holdout ID #0, #3, #5, #6, and #8; the
TNR@95TPR for Holdout ID #9 decreases by about 8%. It indicates that introducing more
OE training samples could have either positive or negative effects on the TNR@95TPR
depending on which class was held out, especially when the granularity of the additional
OE samples highly resembles that of the ID samples and 90% of the ID training samples
are synthetic SAR images of varying quality for different target classes. Since TNR@95TPR
measures the TNR for the OOD dataset to achieve 95% TPR, the similarity between the
ID and the OOD samples could lead to confusion regarding “what makes a sample ID or
OOD”. Although the average TNR@95TPR obtained with OE training dataset #2 is 4%
higher than that for OE training dataset #1, we apply OE training dataset #1 in the following
experiments to reduce the time cost and computational burden for network training.
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To further investigate this phenomenon, the performance metrics corresponding to
different holdout class choices are plotted in Figure 11a,b for J = 2 and J = 3, respectively. It
is easy to notice from Figure 11a that the TNR@95TPR approaches 100% when #5 (M35)
and #6 (M548) are used together as the holdout classes, which is much higher than the
other cases. It is an interesting result since M35 (wheeled) and M548 (tracked) are the only
two trucks in the SAMPLE dataset, and the other targets are tanks (M1, M60, T72), armored
personnel carrier (BMP2, BTR70, M2), artillery (2S1), and air defense (ZSU23). This trend
could also be observed from Figure 11b, where the TNR@95TPR is above 90% for three
cases in both figures, which correspond to holdout classes (3, 5, 6), (4, 5, 6), and (5, 6, 7),
respectively. It indicates that as long as #5 (M35) and #6 (M548) are kept out of the training
dataset together, they would be classified as OOD samples with high confidence. However,
if only one of the two is held out, the TNR@95TPR is not necessarily high.
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Another possible reason behind the unbalanced results associated with each distinctive
choice of holdout class is that some targets just have very different appearance from the
other targets. For example, although both #5 (M35) and #6 (M548) are trucks, the former
is much more distinguishable by appearance. The striking difference between the SAR
images of M35 and M548 are illustrated in Figure 12, which also reflects the quality issue of
some synthesized SAR image samples.

Finally, the effect of K on the detection metrics AUROC and TNR@95TPR correspond-
ing to different holdout class choices for J = 3 are plotted in Figure 13a,b, respectively, with
OE training dataset #1 employed. It can be seen that the AUROC improves dramatically
when K increases from 0 to 0.1. Once K is increased to 0.5, the AUROC for all the cases
surpass 98%, while the performance difference for K = 0.5 and 1 are trivial. When K = 0, the
AUROC is above 85% for three cases, which correspond to holdout classes (3, 5, 6), (4, 5, 6),
and (5, 6, 7), respectively.
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4.4.2. Open-World Scenario

To illustrate the effect of clutter on OOD detection, we consider three special cases with
the holdout classes set as HLD1 = {#3: “M1”}, HLD2 = {#5: “M548”; #6: “M60”}, and HLD3
= {#3: “M1”; #5: “M548”; #6: “M60”}, respectively. Note that these cases correspond to the
holdout class combinations that produce the highest AUROC, TRN@95TPR, and accuracy
shown in Figures 10 and 11. The clutter backgrounds for the SAR image samples of 2S1,
BMP2, BTR70, T72, and ZSU23 taken at the elevation angle of 17◦ are randomly replaced
by the clutter data in the MSTAR dataset, which serve as the new “measured” images
for network testing. Since in this case the major difference between the synthesized and
the “measured” images becomes the homogeneity level of clutter, the training data are no
longer augmented by introducing multiple contrast levels, i.e., we only use the 806 training
samples listed in Table 5. The performance degradation due to clutter variation for K = 1 are
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summarized in Table 7, where “SAMPLE” and “TrainOR + TestCT” represent the results for
the original SAMPLE dataset and the modified dataset composed of test samples with ran-
dom clutter background changes, respectively. It can be seen that the AUROC/TNR@95TPR
for HLD1, HLD2, HLD3 drops dramatically from 99–100% to 83.0%/20.6%, 95.1%/67.0%,
and 91.4/53.9%, respectively. “TrainCT + TestCT” and “TrainCT×2 + TestCT” represent two
levels of data augmentation. The former refers to the case in which 100 SAR image samples
with diverse clutter backgrounds for each target type are produced for network training,
while the latter refers to the case in which 200 training samples are generated for each
target type by using two alternative clutter backgrounds for each image sample. Although
with training data augmentation applied the resulting AUROC and TNR@95TPR remain
lower than the baseline case where the backgrounds of the test samples are untouched, the
performance improvement is still impressive.

Table 7. OOD detection performance degradation due to background changes in ID test samples,
and the positive effect brought by the extra training samples with diverse backgrounds (K = 1).

OOD Detection Performance (AUROC, %)
Holdout

ID Dataset

OOD Dataset

HLD1 HLD2 HLD3
SAMPLE 99.6 ± 0.19 100.0 ± 0.00 99.8 ± 0.04

TrainOR + TestCT 83.0 ± 5.88 95.1 ± 1.95 91.4 ± 1.26
TrainCT + TestCT 95.2 ± 1.12 96.3 ± 0.80 93.2 ± 1.06

TrainCT×2 + TestCT 97.7 ± 0.90 98.4 ± 0.64 98.4 ± 0.56
OOD Detection Performance (TNR@95TPR, %)

Holdout
ID Dataset

OOD Dataset

HLD1 HLD2 HLD3
SAMPLE 98.7 ± 0.92 100.0 ± 0.00 99.6 ± 0.47

TrainOR + TestCT 20.6 ± 11.4 67.0 ± 15.5 53.9 ± 6.52
TrainCT + TestCT 64.4 ± 6.64 70.3 ± 10.9 69.6 ± 5.18

TrainCT×2 + TestCT 86.6 ± 5.24 89.2 ± 6.09 88.5 ± 6.09

5. Conclusions

To effectively improve the target classification accuracy offered by the DNNs in the sit-
uations where the available measured training data are scarce, novel methods are proposed
in this work to augment the SAR image samples included in the MSTAR and SAMPLE
datasets. SAR images corresponding to new azimuth angles are synthesized via sparse
representation and phase interpolation. Hundreds of clutter chips are generated with
measured clutter data included in the MSTAR dataset, and the clutter transfer technique is
employed to synthesize SAR images with various clutter backgrounds. Simulation results
show that when trained only with SAR image samples with the ideal homogeneous clutter
backgrounds, the DNNs respond poorly to the background changes in the test samples for
both ID target classification and OOD sample detection. It has also been proved that intro-
ducing training samples with diverse clutter backgrounds to the network training process
leads to improved robustness and adaptivity against the varying clutter features in the test
samples, even though the clutter backgrounds used to synthesize the new training and test
image samples are completely different. To successfully complete the SAR-ATR missions
in the open-world environment where all kinds of natural and cultural objects (e.g., trees,
buildings, etc.) might be present, the DNN model needs to be capable of handling test
samples with heterogeneous clutter backgrounds. Since the information content per each
pixel for SAR images is much less than that for the optical imagery and corresponds to the
reflectivity attributes of the target of interest and its surroundings, it is very important to
train the DNN models with SAR image samples with diverse clutter data measured in field
experiments rather than employing simple image perturbation or style-transfer techniques.

To realize SAR-ATR in open environments, offline neural network training with a
limited number of annotated SAR image samples for OOD sample detection is far from
enough. Here, we point out two potential research directions in this field. First, the
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problem of super-class labeling for OOD sample needs to be solved by jointly exploiting
the measured and the synthetic SAR imagery as well as multiview information fusion.
According to NATO AAP-6 Glossary Terms and Definitions, “recognition” is about super-
class labeling (i.e., tank), “identification” is fine-labeling (T72), while “characterization”
involves specifying the subclass variants (i.e., T72-32A). It is necessary for a network trained
with SAR imagery for T72 and M1 to recognize that T62 and M2 are also tanks, even if the
network has never seen T62/M2 in the offline network training process. Regarding this
research line, we have submitted a paper to the 2023 International Radar Symposium (IRS),
which is titled as “Super-class labeling for out-of-library targets with deep learning and
multiview information fusion”. Second, we could resort to active learning, cross-domain
transfer learning, and transductive learning to compensate for the lack of annotated SAR
training samples, and organize the scene recognition and the OOD sample detection
problem into a single framework [30]. Regarding this research line, we have submitted
a paper to the 2023 International Geoscience and Remote Sensing Symposium (IGARSS),
which is titled as “SAR image scene classification and out-of-library target detection with
cross-domain transfer learning”. We wish that by leveraging the rapid development of SAR
imagery synthetization technology and the newly proposed active learning and transfer
learning techniques, the bottleneck problems limiting the practical application of the DL-
based SAR-ATR algorithms in real-world scenarios could be solved within this decade.
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