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Abstract: The high-density Industrial Internet of Things needs to meet the requirements of high-
density device access and massive data transmission, which requires the support of multiple-input
multiple-output (MIMO) antenna cognitive systems to keep high throughput. In such a system,
spectral efficiency (SE) optimization based on dynamic power allocation is an effective way to enhance
the network throughput as the channel quality variations significantly affect the spectral efficiency
performance. Deep learning methods have illustrated the ability to efficiently solve the non-convexity
of resource allocation problems induced by the channel multi-path and inter-user interference effects.
However, current real-valued deep-learning-based power allocation methods have failed to utilize
the representational capacity of complex-valued data as they regard the complex-valued channel data
as two parts: real and imaginary data. In this paper, we propose a complex-valued power allocation
network (AttCVNN) with cross-channel and in-channel attention mechanisms to improve the model
performance where the former considers the relationship between cognitive users and the primary
user, i.e., inter-network users, while the latter focuses on the relationship among cognitive users,
i.e., intra-network users. Comparison experiments indicate that the proposed AttCVNN notably
outperforms both the equal power allocation method (EPM) and the real-valued and the complex-
valued fully connected network (FNN, CVFNN) and shows a better convergence rate in the training
phase than the real-valued convolutional neural network (AttCNN).

Keywords: spectral efficiency optimization; deep complex networks; IloT

1. Introduction

The high-density Industrial Internet of Things [1-3] needs to meet the requirements
of multiple device access and massive data transmission, especially in fields such as
augmented reality and wide-area connectivity for fleet maintenance [4,5], which requires
the support of multi-antenna technology and network optimization strategies such as
radio resource management. Massive multiple-input multiple-output (MIMO) technology
enables the users to multiplex in the spatial domain by transmitting their signals as beams.
However, the reflections in the wireless channel cause inter-user interference, turning the
resource allocation problem into the non-convex (The non-convexity refers to the existence
of a multitude of local maxima in the function range. It needs an exhaustive search to
find the optimal solution. With such a case, systematic mathematical approaches such
as the interior point method [6] are computationally too expensive to handle real-time
communications.) formulation, which is hardly solvable.

In such a system, the quality of the power allocation plan will significantly affect
spectral efficiency (Spectral efficiency is the normalization of the Shannon bound, which
refers to the channel capacity and how many bits per second can be achieved in 1 Hz of
the system bandwidth.) (SE). This motivates us to build a highly efficient power allocation
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plan to optimize the spectral efficiency so that we can improve the network throughput.
However, the growth of the network scale and the expansion of radio resources place
improving spectral efficiency and fairness processing as a crucial requirement to keep high
throughput and low access latency.

Cognitive radio (CR) with multiple-input multiple-output (MIMO) systems is a po-
tential candidate for the industrial domain [7] since CR attempts to minimize the conflict
and interference between heterogeneous users creating a peaceful coexistence, as well as
higher area throughput. Furthermore, in the industrial domain, the regulatory author-
ities of developing countries manage and coordinate the peaceful coexistence between
the heterogeneous industrial networks manually. As an example, the German Federal
Agency of Networks (BNetzA) has specified the band 3.7-3.8 GHz according to [8] for
industrial wireless networks and imposes strict application procedures to grant licenses
to the stakeholders. It is worth pointing out that such coexistence management can be
automated effortlessly by means of CR technology. Therefore, the combination of massive
MIMO and CR is ideal to meet the high throughput yet massive connectivity requirements.

Regarding the power optimization theory, systematic mathematical approaches
such as interior point methods [6] are computationally expensive as they take centric
iterations within a complex Newton step. Besides, the solution quality of these methods
highly depends on the initial guess within the domain of the objective function. Heuristic
algorithms are also widely used for these problems. Reference [9] used the modified
lion algorithm (LA) for power allocation. The ant lion optimizer (ALO) employed
in [10] achieved a good performance in fault location for power system state estimation.
However, their many iterative calculations brought a great computational burden. In
current real implementations, existing techniques in massive MIMO (e.g., specified
in [11]) address the non-convexity issue with the equal assignment of power among
users, which is obviously a sub-optimal, but time-efficient solution.

Recently, machine learning has been a hot research direction to address several wireless
and networking issues [12], such as deep reinforcement learning for traffic puncturing [13],
an adversarial network for adaptive antenna diagram generation [14], energy harvesting
tactics [15], channel estimation of mmWaves [16], and many others. Regarding SE optimiza-
tion, Reference [17] implemented a deep neural network (DNN). The authors of [7,18] used
a fully connected neural network (FNN) to estimate the best power allocation solution to
maximize SE, and Lee et al. [19] proposed a convolutional neural network for power control;
however, their method cannot strictly control constraints, and the FNN has the problem of
unfair power allocation. Hence, Sun et al. [20] proposed the attention-based deep convolu-
tional neural network, which has also a better time and storage space complexity. However,
they all utilized real-valued neural networks to process the complex-valued channel data,
which generally take the complex-valued input data as two separate parts of real-valued
data. Obviously, they failed to fully take advantage of the representational capacity of
complex-valued data. Furthermore, real-valued neural networks are not friendly with the
non-circular complex-valued dataset (In signal processing, the complex-valued channel
data are assumed circular, which is a stochastic simplification, but not always the case
in reality), as they provide less accuracy and result in more overfitting compared to the
complex-valued counterparts [21].

With the advent of complex-valued neural networks (CVNNSs), this problem can
be well addressed. Chiheb et al. [22] proposed several key components for complex-
valued deep neural networks. Reference [23] proposed complex non-parametric activation
functions for CVNNSs. Reference [21] implemented a tensorflow-based python library,
which enabled the training and implementation of CVNNSs. Yihong et al. [24] generalized
meta-learning and an attention mechanism to the complex domain for signal recognition.
Reference [25] proposed a sparse CVNN to acquire the downlink channel state information
in the frequency division duplexing massive MIMO system.

To the best of our knowledge, no current techniques have ever applied complex-valued
neural networks on power allocation for maximizing SE. Therefore, this paper proposes a
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complex-valued power allocation network with a complex attention mechanism (AttCVNN)
to accomplish this task. Please note that the focus of this contribution is confined to the
neural network design, not the beamforming processing. In more detail, our contributions
are summarized as follows:

1.  We propose a complex-valued convolutional neural network with a complex atten-
tion mechanism (AttCVNN) to implement the per-antenna power allocation task in
massive MIMO systems.

2. Complex-valued attention mechanisms are implemented in our model, which are
the complex cross-channel attention network and the complex in-channel attention
network, where the former considers the relationship between cognitive users and
the primary user, while the latter focuses on the relationship among cognitive users.

3. Four power allocation benchmarks are implemented to show the superiority of our
model. They are the equal power allocation method (EPM), the real-valued fully
connected network (FNN) [7], the complex-valued fully connected network (CVENN),
and the real-valued convolutional network (AttCNN) [20].

2. System Model

We assumed a system model, illustrated in Figure 1, that has a cognitive radio base
station (CB) of N antennas coexisting with a primary radio base station (PB) with a single
antenna. The CB communicates with K cognitive users (CUs) via hy € C™N where
k € [1,K], and interferes with the primary user (PU) via hg € C'*N. The PB communicates
with a single PU via gy and interferes with CU k through gi, where k € [1,K].

PB CB

Figure 1. System model.

Based on the system model, our target is to optimize the SE of the CB via a low-
complexity power assignment design, which is crucial for massive connectivity applications.
We formulated the optimization problem as maximizing the summation of all single CU’s
SE, which must meet two constraints: C1 is used to limit the CUs consumed sum-power
under the power budget of the CB (Pr), and C2 controls the actual interference Icp under
the interference limit at the PU (Iy;). Ppp denotes the power budget of the PB. Then, the issue
of SE optimization is formulated as follows.



Sensors 2023, 23, 951 4 of 14
112
K szN—l hyiPE;
SE = max Z;log2 1+ 2
P,Nk,i k=1 5 2
i} O+ Kt | SNy PR | + 6P
K N
st.Cl: Y. Y P;<Pr
k=1i=1
K[| N Rk
C2: Icp =) || Y hoiPd|| <Im 1
k=1||i=1

where 02 denotes the Gaussian white noise variance which is the noise power, ||g¢||*Pps
is the interference from PB to CU k, and ||.|| denotes the 2-norm. P € RX*N is the power
allocation solution which collects the power of K CUs distributed spatially over N trans-
mit antennas.

3. Mathematical Basis for Complex-Valued Network

Compared to real-valued neural networks, a typical complex-valued neural network
should possess the ability to process complex-valued inputs, which means it would contain
several complex layers, such as complex dense, complex convolution, complex dropout,
complex batch normalization, and others, besides that the complex-valued activation
functions should also be supported.

3.1. Complex Convolution

For the complex-valued convolution layer with a complex-valued convolution kernel
K = K; + jK; and a complex-valued input matrix X = X, +;jX;. The complex convolution
performed on them can be defined as:

Your =X * K=(X; %K, — X;*K;) +j( Ky« KX % W) 2)

where Y, denotes the output matrix. Ky, Kj, Xy, and X]- are real-valued matrices. * denotes
the real-valued convolution.

3.2. Complex Dense

For the complex-valued dense layer with complex-valued weight matrix W =W, +jW;
and complex-valued bias vector b =b,+jb;, the output vector y,,; can be calculated as:

Yout = Wx+b= (Wrxr —Wix; +br) +j(Wrxz+Wixr+bi) 3)
where x = x,+jx; denotes the input vector.

3.3. Complex-Valued Activation Functions

A complex-valued activation function is needed to realize nonlinear transformation
on the complex tensor. Many complex-valued activation functions have been proposed to
process complex variables. They can be classified into two types, Type A would process the
real part and the imaginary part of the complex variable z = x+jy separately, while Type B
works in the phase and magnitude domain.

The following complex-valued activation functions proposed in this section will be
used in our network; these are CRELU, RSigmoid, and RSoftmax. The complex variable z
is defined as z=x+jy:

*  CReLU would apply ReLU on the real and the imaginary part of z, respectively:

CReLU(z)=ReLU(x) + jReLU(y); 4)
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*  RSigmoid would apply Sigmoid on the magnitude of z:
RSigmoid(z) = Sigmoid(|z|) (5)

where |z| denotes the magnitude of z;
*  RSoftmax would apply Softmax on on the magnitude of z:

RSoftmax(z)=Softmax(|z|). (6)

Note that the output of CRELU is a complex-valued number, while RSigmoid and
RSo ftmax would produce real-valued outputs. That is because the latter two are used to
generate a real-valued output power p in our model. Section 3.4 shows that a complex-
valued activation function does not need to satisfy the Cauchy-Riemann equation, so a
complex-valued neural network utilizing the above-mentioned activation functions can be
trained properly in the complex domain.

3.4. Complex Backpropagation

Before the backpropagation phase, a loss function needs to be defined so that we can
calculate the gradient on each parameter in the network. Although the loss function takes
complex numbers as the input, the output of it must be real-valued, as complex numbers
are not comparable. This fact means a real-valued complex loss function is non-analytic,
so we must find another way to perform a complex derivation on it. Using Wirtinger
calculus [26], we can calculate the complex gradient for non-holomorphic functions.

The main idea of it is considering the complex function f(z) as a function of z and
z*, denoted as f(z,z*), where z* = x—jy is the complex conjugate of z = x+jy. If f is
real-differentiable, then f(z, z*) will be analytic with respect to z when taking z* as constant
and vice versa [27]. Thus, we can define the following partial derivatives:

afél(af .8f> 7)

Jz 2 a_]@
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We can define the complex gradient of f by the two partial derivatives [28]:

_,9f
Vaf=25% )

The chain rule of the loss function L composition with the other complex function
g(z) =r(z) + js(z) can be calculated as:

dLog OLJr  dL ds

dz*  oJroz* * 0s 9z* (10)

Therefore, we can train the complex-valued neural network using the equations above.

4. Attention-Based Complex Neural Network

We propose a complex-valued convolutional neural network with an attention
mechanism for the above-mentioned SE optimization problem, i.e., the AttCVNN. The
AttCVNN directly takes complex-valued channel data as the input, taking complex-
valued network layers as its building blocks, using complex cross-channel and in-channel
attention mechanismes, i.e., the complex cross-channel attention network and the complex
in-channel attention network, to improve model performance. As shown in Figure 2, the
AttCVNN has a proposed data process network and three sub-networks; by multiplying
the outputs of each sub-networks, we will finally obtain the allocated power for each
CB user per antenna. To support complex inputs, the AttCVNN not only extends each
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layer to the complex domain, but realizes complex-valued attention layers, which are
ComplexHyAtt and ComplexHy Att.

Pri.

P,
k Pk

Py

ComplexDense
Flatten

ComplexDense
Flatten

ComplexDense
Flatten

ComplexConv2D ComplexHAtt ComplexHAtt

Reshape

Reshape

ComplexConv2D

ComplexHAtt

Reshape

ComplexHpAtt

asuagxajdwo)

——

Att-CVNN

Figure 2. The structure of the complex-valued power allocation neural network (AttCVNN).

The input data are the channel coefficients, denoted as H = [[hy, gl]T, [ho, gz]T, .,
[h[(,gK]T, [ho,go]T]T, and Hb = [h{, h%, ey hi]T.

4.1. Complex-Valued Attention

The attention mechanism is a technique that mimics the cognitive attention of human
beings, which is widely used in computer vision, natural language processing, and other
fields in deep learning. This mechanism would generate a weight matrix from the input
data, which can be used to strengthen some parts of the input data while weakening others,
making the network concentrate more on the minute, but crucial details of the data.

To employ this technique in our network, we need to extend it to support complex-
valued data. Given the input matrix X, we can compute matrices Q, K, and V by linear
transformations, which are generally implemented as fully connected layers in neural
networks. The real-valued attention can be written as [29]:

RAtt(Q,K,V):Softmax<?/I;_:>V (11)
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where Softmax(-) takes the cross product of Q andK as the input and, then, acts on each
row of the matrix QK. d is a scaling factor, which denotes the row dimension of K.

For a complex-valued matrix Z, we can use a complex linear transformation to obtain
complex-valued matrices Q,, K, and V. RSo ftmazx is introduced to map the complex-valued
matrix Q,K to the real domain. Then, the complex-valued attention can be written as:

Vi

where RSo ftmax(-) takes a complex-valued matrix as the input and generates a real-valued
weight matrix, which is defined in Section 3.3.

T
Can(Q, K, V;)=RSoftmax ( Q.K; )Vz (12)

4.1.1. Complex Cross-Channel Attention Network

The complex cross-channel attention network, i.e., ComplexHyAtt, is designed to pay
more attention to hy, since it is strongly related to C2 and has not yet appeared in the loss
function. As shown in Figure 3, the inputs hy and Hj, are, respectively, fed into a complex
dense layer and a complex Conv1D layer. Their cross product with a complex Softmax
operation cross products back to Hj, as a new Hj. Here, the complex dense layer is a fully
connected layer, and the complex Conv1D layer is a 1D convolutional layer.

ComplexConv1D

ComplexHoAtt ComplexHAtt

Figure 3. The structure of the complex-valued attention network (CVATT).

4.1.2. Complex In-Channel Attention Network

The complex in-channel attention network, i.e., ComplexHj Att, focuses on the rela-
tionship with hy, because the definition of SE shows that the channel gain relationship
among users also influences the result of SE. The input Hj, is fed into three complex Conv2D
layers, respectively, to generate Q H] s K H}/ and V H] - The cross product between Q H] and

K H] would be fed into RSoftmax. Then, H} is calculated by the cross product between the
value of RSoftmax and Vi

4.2. Power Allocation

The AttCVNN obtains the channel gain matrix H as the input, which will be separated
into two parts, hyp and Hj,. H;, will be fed into a complex dense layer to be preprocessed
before calculating the relationship with ko, then the two parts are fed into ComplexHy Att
to generate Hj. After this, the rest of the networks are split into three parts, each of them
containing a ComplexHy Att as their first layer and Hj, as their input. Their last layer is the
activation functions, which will map complex-valued outputs into real values, so that their
outputs can represent meaningful physical quantities. Finally, it produces Ny, Na, N3, and
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N, after the operations of RSoftmax, RSigmoid, RSoftmax, and RSigmoid, respectively.
Considering the result range of the four operations, the outputs Nj, Np, N3, and Ny can be
represented as:

P, -
N1 _ k,i
II;k
Ny = —¢
P )
Py (13)
N3 = ——
ZklePk B
Ny — Zk:1 Pk
4= 5 K o
Pr — Zk:1 )\k

where A; means a user’s minimum power and P,L = Ay + DBy
Hence, the allocated power of the ith antenna serving the k CUs can be obtained as:

Pk,i = Nl * N2 *
k=1

K
)Lk+N1*N2* (PT_ ZAk>] (14)

Then, we build the loss function to optimize the neural network parameters as follows.

112
K HZf\il hyiPe;
L :—Z"log2 1+ 2 (15)
k= 02 4Y 1k Zf\ilhk,ipfi +18k/1*Prs

where Py ; = Py ;/([Icp/ Iy — 1]7 + 1) to meet C2.

5. Evaluation
5.1. Assessment Metric and System Configuration

The employed evaluation metric in this article is the spectral efficiency mentioned
in (1) as SE. This metric corresponds to the objective of the optimization, which is the major
demand in augmented reality and machine vision scenarios and applications.

We define a channel model on the basis of [30] that takes the path loss and Rayleigh
fading into consideration. Regarding the model configuration, we set the path loss ex-
ponent as 2.5 and treated the distance between the CUs/PU and CB/PB as a random
variable uniformly distributed ranging in [10,200]. The dataset contains the channel blocks.
Specifically, the training examples have 1000 H’s, while the test set is 10% of the training
set, where H € C10x100 3nq H, € C2%%9. Note that K was set to 9 in this contribution as
the purpose was just to prove the concept. Then, 100 Monte Carlo realizations were per-
formed, and the simulation curves thereof were averaged. Noise is generated as a random
variable following a complex Gaussian distribution with zero mean and ¢? = 1 x 1077,
where 0 collects thermal and ambient noises. The parameters of the neural network are
configured as follows: epoch = 150, batch size = 100, and learning rate = 1.5 x 10~. Then,
five benchmarks were built, namely, EPM, FNN, CVFNN, AttCNN, and AttCVNN. To

P
compare the performance, SNRcp, SNRpp, and INR are defined as follows: SNR¢cp = a—g,
SNRpg = 72, and INR = 1
o o

1.  The EPM treats each CB user equally, and the allocated power Py ; of the EPM is
calculated as follows:

A Py ;
Py = - (16)

s lleN 2 -
[KPk,z- £ o /Ith—l] +1
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where Py ; = %

2. The FNN is a real-valued fully connected power allocation network, which was
proposed in [7].

3. The CVENN uses the complex dense layers as its building blocks. The input data
are directly fed into three consecutive complex dense layers, then the output will
be flattened and fed into four complex dense layers with the complex activation
functions: RSoftmax, RSigmoid, RSo ftmax, and RSigmoid, respectively, to generate
the final result.

4.  The AttCNN is a real-valued attention-based power allocation network, which was
proposed in [20].

5. The AttCVNN is defined in Section 4, which realizes the complex-valued layers and
complex-valued attention mechanism. Equations (13) and (14) are used to calculate
the allocated power ﬁk,i.

5.2. Training Performance for AttCVNN and AttCNN

Figures 4 and 5 show the training curve of the AtCNN and AtCVNN with different INRs
and SNRpgs. We fixed the noise to 02 = 1 x 10~? W and the CB transmit power to Pr = 10 mW.
This resulted in SNRcp = 70 dB. The interference threshold Ith was set as 1 x 1073 mW and
1 x 1072 mW, which correspond to an INR equal to 30 dB and 40 dB, respectively.

6 T T T T T T T T T
N
T 4|
S~
[72)
8,
=3
m
o L0
—o— AttCNN —— AttCVNN
s
| | | | | | | | |
10 20 30 40 50 60 70 80 920 100
Epoches
(a)
8 T T T T T T T T T
6 |

SE [bps/Hz]
S

2 - —e— AttCNN —— AttCVNN =

\ \ \ \ \ \ \ \ \
10 20 30 40 50 60 70 80 90 100

Epoches

(b)
Figure 4. Convergence rate for the configuration INR= 30 dB: (a) SNRpp = 60 dB; (b) SNRpp = 50 dB.

Throughout the experiments, although their SE curves converged to a similar value
eventually, the AttCVNN has a faster convergence rate than the AttCNN. In Figure 4a,b,
the SE curves of the AttCVNN reach the steady states 5 bps/Hz and 7 bps/Hz, respectively,
at Epoch 20, while the AttCNN needs around 35 epochs to reach it. Figure 5a,b illustrate a
similar convergence behavior, but at a higher INR setting, which relaxes the constraint C2
and allows the SE to attain larger values, i.e., 6 bps/Hz and 8 bps/Hz, respectively.

The comparison results show that the proposed AttCVNN has a faster convergence rate
than the AttCNN in the training stage, which is an advantage in real-time communications.
In terms of the model design, our model holds a similar structure as the AttCNN scheme.
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Regarding the layer size inflation, the complex-valued implementation doubles the number
of layer parameters for the sake of a rapid convergence.

T T
6 |
N
T
=,
==
wn
2 —e— AHCNN —a— AHCVNN
¢
\ \ \ \ \ \ \ \ \
10 20 30 40 50 60 70 80 90 100
Epoches
(a)
10 T T T T T T T T T
8 |
N
T 6l
2]
8,
=3
m 4
7!
2 —o— AttCNN —a— AttCVNN
s
\ \ \ \ \ \ \ \ \
10 20 30 40 50 60 70 80 90 100
Epoches

(b)
Figure 5. Convergence rate for the configuration INR= 40 dB: (a) SNRpp = 60 dB; (b) SNRpp = 50 dB.

5.3. Power Allocation Performance

We conducted two sets of comparative experiments, using the AttCVNN, EPM, FNN,
CVENN, and AttCNN, to make a comparison of their power allocation performance, where
the SNR¢p and INR would vary from 20 to 50 dB to compare their SE performances. We
assumed that 02 =1 x 1072, A, = 0.

5.3.1. SE against SNR¢p

Figure 6 demonstrates the SE against SNR¢p with different INRs. In Figure 6a, we set
SNRpp = 60 dB and INR= 20 dB. The EPM has the lowest SE since it allocates the power
equally among CB users without being able to relax the constraints and the limitations,
so that the entire power budget is fully distributed among CB users. The SE performance
becomes better when introducing the FNN, CVFNN, AttCNN, and AttCVNN, which use
the channel knowledge H as the input to allocate and optimize the power assignment to
the CB users. When the SNR¢p keeps increasing, the SE increases monotonically at the
same time. Furthermore, the proposed AttCVNN always outperforms the EPM, FNN,
and CVFNN. Note that the gap between the AttCVNN and EPM became obvious when
SNR(cp = 40 dB. The gap reached almost 0.7 bps/Hz at SNRcp = 50 dB. The AttCVNN
and AttCNN have almost identical performance when the SNR¢p varies from 20—40 dB.
However, our proposed AttCVNN is superior from the convergence rate perspective, as
revealed in the previous experiments.

In Figure 6b, we set the INR at a higher value 30 dB. All curves trend monotonically,
and the AttCVNN still has the best performance. Note that the EPM begins to diverge from
the AttCVNN at SNR¢cp = 35 dB. The gap reached almost 0.7 bps/Hz at SNR¢p = 50 dB.
The AttCVNN breaks the limitation of the FNN and CVFNN with an improvement of
0.5 bps/Hz. Like Figure 6a, for SNRcp < 40 dB, the trends of the AttCVNN and AttCNN
are quite similar from the SE perspective. At SNRcp = 45 dB, the AttCVNN outperforms
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the AttCNN with an SNRcp gain of 2 dB. This refers to a 37% reduction in the transmit
power enabled by our approach.

——EPM —o— FNN
—e— CVFNN —— AttCVNN .
AttCNN

2 I I I I I T T T T T T T T T

1.5

SE [bps/Hz]

0.5 -

20 22 24 26 28

—— EPM —o— FNN
—e— CVFNN —— AttCVNN _
AttCNN

1.5

SE [bps/Hz]

20 22 24 26 28 30 32 34
SNRcp [dB]

(b)
Figure 6. SE versus SNRcy for the configuration SNRpg = 60 dB: (a) INR= 20 dB; (b) INR= 30 dB.

5.3.2. SE against INR

Figure 7 introduces the results of the SE versus the INR in the range between 0 and
70 dB. The transmit power of the CB was set to Pr = 10 mW, which is equivalent to
SNRcp = 70 dB. Figure 7a illustrates the SE performance for SNRpp = 60 dB. It shows
that the CR network spectral efficiency becomes high at a large INR, referring to a more
relaxed upper bound for the constraint C2. In other words, the SE of the CR network
increases monotonically with relaxed interference thresholds. It is worth noting that the
proposed AttCVNN has always greater performance than the FNN and the CVFNN and
even outperforms the EPM with a remarkable gain, e.g., 0.571 bps/Hz at INR= 0 dB
increasing all the way to 4.905 bps/Hz at INR= 50 dB. This refers to a significant gain
possibility with our proposal with an idle PR network. In Figure 7b, the same experiment
is conducted, but for SNRpp = 50 dB. It demonstrates that the SE becomes higher due to
the lower SNRpp, which induces less interference at the CB users. Note that the proposed
AttCVNN does not have a remarkable SE gain over the FNN and CVENN in Figure 7, but it
has significant horizontal or INR gain, which attains 5 dB. This implies the superiority of
the AttCVNN in tighter interference conditions. Therefore, the AttCVNN and AttCNN
are not distinguished in the SE performance, but in the convergence rate in favor of the
proposed AttCVINN.
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Figure 7. SE versus INR for the configuration SNRcp = 70 dB: (a) SNRpp = 60 dB; (b) SNRpp = 50 dB.

5.3.3. Discussion

All the above experiments revealed the potential of the proposed model compared
to the existing benchmarks. Moreover, all the neural-network-based methods are a huge
improvement over the EPM scheme, since it does not employ any optimization theory;
it only equally allocates power for the users without the consideration of interference
among them. the FNN and CVFNN schemes have reasonable performance, however,
associated with a large number of parameters, leading to severe overfitting. This limits
their performance improvement. The AttCVNN and AttCNN use the convolutional
layers to reduce the amount of parameters to prevent overfitting, and the introduc-
tion of the attention mechanism significantly improved their performance. However,
the complex-valued implementation speeds up the process of training, which is a major
advantage in real-time communications.

5.4. Computational Complexity

In practice, we generally use floating-point operations per second (FLOPs) to measure
the time complexity of neural network models. With the experiment configuration, the time
complexity of our model is 17.92 million FLOPs. As a comparison, the MobileNetV3-
Small [31], proposed for mobile phone CPUs, has a time complexity of 59 million FLOPs.
With more powerful processors, our model can support industrial applications with lower
computational complexity.

6. Conclusions

This paper proposed a novel attention-based complex-valued power allocation
network, the AttCVNN, to optimize the power allocation performance, where complex
in-channel and cross-channel attention networks were implemented. We performed
comparative experiments by varying the SNRcp and INR. Compared with the designed
benchmarks (i.e., EPM, FNN, CVENN, and AttCNN), it was shown that the proposed
AttCVNN outperforms the EPM, the FNN, and the CVFNN notably regarding SE. The
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proposed model has faster convergence than the AttCNN in the training phase, which is a
major advantage in real-time communications. The AttCVNN is a promising method for
enhancing the throughput performance via radio resource management and optimization
in the IoT scenarios of Industry 5.0.
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