A Codeword-Independent Localization Technique for Reconfigurable Intelligent Surface Enhanced Environments Using Adversarial Learning
Abstract
:1. Introduction
- We analyze the localization problem in RIS-enhanced networks in depth and propose a novel paradigm without additional assumptions on the RIS codewords, which also supports online inference without codewords.
- We propose a localization solution based on codeword-independent representation learning using the domain-adversarial neural network framework to solve the DG problem.
- Our proposed solution is extensively evaluated using the DeepMIMO dataset [38]. We designed oracle and baseline cases for comparison, which convincingly demonstrate that our solution achieves accurate localization even for unknown RIS codewords. Additional experiments on the system parameters further demonstrate the rationality and robustness of the proposed solution.
2. Related Work
2.1. Localization in RIS-Enhanced Environments
2.2. Domain Generalization
3. Preliminaries
3.1. Reconfigurable Intelligent Surfaces
3.1.1. RSSI Calculation in RIS-Enhanced Environments
3.2. Fingerprint-Graph Transformation
- Step 1. Abstraction: First, we gather information of all transmitters, including their types and locations. In the example shown in Figure 6, the transmitters are access points (APs), and , which means there are two types of RF signals. We consider transmitters as vertices in a graph. The green vertex is the DOI, whose location is unknown. Then, we assign the vertex features for transmitters by the combination of their locations and RSSI. Note that vertices of different types should be considered per type, which results in heterogeneous graphs.
- Assumption I: Edges between vertices denote all possible signal propagations and interferences.
- Assumption II: A transmitter will only affect other transmitters of the same type.
- Step 2. Connection: Considering Assumption I, since the DOI measures RSSI from all transmitters, there must be edges between the DOI and all transmitters. Note that these edges are unidirectional because the DOI is only a measuring device. Assumption II implies that the RSSI from a transmitter measured by the DOI is a combined result of all transmitters of the same type. Hence, transmitters of the same type will be fully connected. Since transmitters of the same type will affect each other, the edges within each sub-graph are bidirectional.
3.3. Domain Adversarial Neural Network
4. Codeword-Independent Localization
4.1. Codebook Calculation
4.2. Offline Training and Online Inference Pipelines
4.3. Fingerprint-Graph Transformer
4.4. Feature Extractor
4.5. Location Estimator
4.6. Codeword Discriminator
5. Evaluation
5.1. Experimental Setup
5.2. Experimental Parameters
5.3. Dataset Generation and Model Implementation
5.4. Oracle and Baseline Cases for Evaluation
5.5. Performance Evaluation
5.6. Impacts of Experimental Parameters
5.6.1. Impact of Number of Codewords
5.6.2. Impact of Testing Area Size
5.6.3. Impact of Additive White Gaussian Noise (AWGN)
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welkie, A.; Shangguan, L.; Gummeson, J.; Hu, W.; Jamieson, K. Programmable radio environments for smart spaces. In Proceedings of the 16th ACM Workshop on Hot Topics in Networks, Palo Alto, CA, USA, 30 November–1 December 2017; pp. 36–42. [Google Scholar]
- Liang, Y.C.; Chen, J.; Long, R.; He, Z.Q.; Lin, X.; Huang, C.; Liu, S.; Shen, X.S.; Di Renzo, M. Reconfigurable intelligent surfaces for smart wireless environments: Channel estimation, system design and applications in 6G networks. Sci. China Inf. Sci. 2021, 64, 200301. [Google Scholar] [CrossRef]
- Basar, E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Trans. Commun. 2020, 68, 3187–3196. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Zhu, B.O.; Zhao, J.; Feng, Y. Active impedance metasurface with full 360 reflection phase tuning. Sci. Rep. 2013, 3, 3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björnson, E.; Wymeersch, H.; Matthiesen, B.; Popovski, P.; Sanguinetti, L.; de Carvalho, E. Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications. IEEE Signal Process. Mag. 2022, 39, 135–158. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Renzo, M.D.; Debbah, M.; Phan-Huy, D.T.; Zappone, A.; Alouini, M.S.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 129. [Google Scholar] [CrossRef] [Green Version]
- Elayan, H.; Amin, O.; Shubair, R.M.; Alouini, M.S. Terahertz communication: The opportunities of wireless technology beyond 5G. In Proceedings of the 2018 International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 2–4 April 2018; pp. 1–5. [Google Scholar]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Hillger, P.; van Delden, M.; Thanthrige, U.S.M.; Ahmed, A.M.; Wittemeier, J.; Arzi, K.; Andree, M.; Sievert, B.; Prost, W.; Rennings, A.; et al. Toward mobile integrated electronic systems at THz frequencies. J. Infrared Millim. Terahertz Waves 2020, 41, 846–869. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Alkhateeb, A.; El Ayach, O.; Leus, G.; Heath, R.W. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems. In Proceedings of the 2019 IEEE Global communications conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- He, J.; Wymeersch, H.; Sanguanpuak, T.; Silvén, O.; Juntti, M. Adaptive beamforming design for mmWave RIS-aided joint localization and communication. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of Korea, 6–9 April 2020; pp. 1–6. [Google Scholar]
- Karasik, R.; Simeone, O.; Di Renzo, M.; Shitz, S.S. Beyond max-SNR: Joint encoding for reconfigurable intelligent surfaces. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; pp. 2965–2970. [Google Scholar]
- Dargie, W.; Poellabauer, C. Fundamentals of Wireless Sensor Networks: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput. Surv. (CSUR) 2013, 46, 1–32. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef] [Green Version]
- Elzanaty, A.; Guerra, A.; Guidi, F.; Alouini, M.S. Reconfigurable intelligent surfaces for localization: Position and orientation error bounds. IEEE Trans. Signal Process. 2021, 69, 5386–5402. [Google Scholar] [CrossRef]
- Dardari, D.; Decarli, N.; Guerra, A.; Guidi, F. LOS/NLOS near-field localization with a large reconfigurable intelligent surface. IEEE Trans. Wirel. Commun. 2021, 21, 4282–4294. [Google Scholar] [CrossRef]
- Raleigh, G.G.; Cioffi, J.M. Spatio-temporal coding for wireless communication. IEEE Trans. Commun. 1998, 46, 357–366. [Google Scholar] [CrossRef]
- Paulraj, A.J.; Gore, D.A.; Nabar, R.U.; Bolcskei, H. An overview of MIMO communications-a key to gigabit wireless. Proc. IEEE 2004, 92, 198–218. [Google Scholar] [CrossRef] [Green Version]
- Stuber, G.L.; Barry, J.R.; Mclaughlin, S.W.; Li, Y.; Ingram, M.A.; Pratt, T.G. Broadband MIMO-OFDM wireless communications. Proc. IEEE 2004, 92, 271–294. [Google Scholar] [CrossRef] [Green Version]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Trans. Wirel. Commun. 2012, 11, 3292–3304. [Google Scholar] [CrossRef]
- Wu, C.; Yang, Z.; Liu, Y.; Xi, W. WILL: Wireless indoor localization without site survey. IEEE Trans. Parallel Distrib. Syst. 2012, 24, 839–848. [Google Scholar]
- Ibrahim, M.; Torki, M.; ElNainay, M. CNN based indoor localization using RSS time-series. In Proceedings of the 2018 IEEE symposium on computers and communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 1044–1049. [Google Scholar]
- Abbas, M.; Elhamshary, M.; Rizk, H.; Torki, M.; Youssef, M. WiDeep: WiFi-based accurate and robust indoor localization system using deep learning. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kyoto, Japan, 11–15 March 2019; pp. 1–10. [Google Scholar]
- Chen, Z.; Zou, H.; Yang, J.; Jiang, H.; Xie, L. WiFi fingerprinting indoor localization using local feature-based deep LSTM. IEEE Syst. J. 2019, 14, 3001–3010. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, J.; Zhang, H.; Di, B.; Bian, K.; Han, Z.; Song, L. Metaradar: Indoor localization by reconfigurable metamaterials. IEEE Trans. Mob. Comput. 2020, 21, 2895–2908. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Di Renzo, M.; Hao, Y.; Wang, J.; Swindlehurst, A.L.; et al. Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions. IEEE Commun. Mag. 2021, 59, 14–20. [Google Scholar] [CrossRef]
- Huang, S.; Wang, B.; Zhao, Y.; Luan, M. Near-Field RSS-Based Localization Algorithms Using Reconfigurable Intelligent Surface. IEEE Sens. J. 2022, 22, 3493–3505. [Google Scholar] [CrossRef]
- Sauter, M. From GSM to LTE: An Introduction to Mobile Networks and Mobile Broadband; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zhang, H.; Zhang, H.; Di, B.; Bian, K.; Han, Z.; Song, L. Towards ubiquitous positioning by leveraging reconfigurable intelligent surface. IEEE Commun. Lett. 2020, 25, 284–288. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain generalization: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022; ahead of print. [Google Scholar] [CrossRef]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 2030–2096. [Google Scholar]
- Alkhateeb, A. DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications. In Proceedings of the Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 10–15 February 2019; pp. 1–8. [Google Scholar]
- Wymeersch, H.; Denis, B. Beyond 5G wireless localization with reconfigurable intelligent surfaces. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Rissanen, J.J. Fisher information and stochastic complexity. IEEE Trans. Inf. Theory 1996, 42, 40–47. [Google Scholar] [CrossRef]
- He, J.; Wymeersch, H.; Kong, L.; Silvén, O.; Juntti, M. Large intelligent surface for positioning in millimeter wave MIMO systems. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Smith, S. Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds. IEEE Trans. Signal Process. 2005, 53, 1610–1630. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Qin, T.; Lu, W.; Chen, Y.; Zeng, W.; Yu, P. Generalizing to unseen domains: A survey on domain generalization. IEEE Trans. Knowl. Data Eng. 2022; ahead of print. [Google Scholar] [CrossRef]
- Vilalta, R.; Drissi, Y. A perspective view and survey of meta-learning. Artif. Intell. Rev. 2002, 18, 77–95. [Google Scholar] [CrossRef]
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-learning in neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5149–5169. [Google Scholar] [CrossRef]
- Finn, C.B. Learning to Learn with Gradients. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2018. [Google Scholar]
- Huisman, M.; Van Rijn, J.N.; Plaat, A. A survey of deep meta-learning. Artif. Intell. Rev. 2021, 54, 4483–4541. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [Green Version]
- Muandet, K.; Balduzzi, D.; Schölkopf, B. Domain generalization via invariant feature representation. In Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 10–18. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1180–1189. [Google Scholar]
- Li, Y.; Tian, X.; Gong, M.; Liu, Y.; Liu, T.; Zhang, K.; Tao, D. Deep domain generalization via conditional invariant adversarial networks. In Computer Vision—ECCV 2018, Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland, 2018; pp. 624–639. [Google Scholar]
- Shao, R.; Lan, X.; Li, J.; Yuen, P.C. Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10023–10031. [Google Scholar]
- Jia, Y.; Zhang, J.; Shan, S.; Chen, X. Single-side domain generalization for face anti-spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8484–8493. [Google Scholar]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digit. Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Alrabeiah, M.; Zhang, Y.; Alkhateeb, A. Neural Networks Based Beam Codebooks: Learning mmWave Massive MIMO Beams That Adapt to Deployment and Hardware. IEEE Trans. Commun. 2022, 70, 3818–3833. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Di Renzo, M.; Danufane, F.H.; Xi, X.; De Rosny, J.; Tretyakov, S. Analytical modeling of the path-loss for reconfigurable intelligent surfaces—Anomalous mirror or scatterer? In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar]
- Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.S. Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Trans. Wirel. Commun. 2020, 19, 7748–7764. [Google Scholar]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Alexandropoulos, G.C.; Zappone, A.; Debbah, M.; Yuen, C. Energy efficient multi-user MISO communication using low resolution large intelligent surfaces. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Pei, X.; Yin, H.; Tan, L.; Cao, L.; Li, Z.; Wang, K.; Zhang, K.; Björnson, E. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials. IEEE Trans. Commun. 2021, 69, 8627–8640. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Di Renzo, M.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Méndez-Rial, R.; Rusu, C.; González-Prelcic, N.; Alkhateeb, A.; Heath, R.W. Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches? IEEE Access 2016, 4, 247–267. [Google Scholar] [CrossRef]
- Hemadeh, I.A.; Satyanarayana, K.; El-Hajjar, M.; Hanzo, L. Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun. Surv. Tutor. 2017, 20, 870–913. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; Wiatrek, A.; Preußler, S.; Grigat, M.; Braun, R.P. Link budget analysis for terahertz fixed wireless links. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 250–256. [Google Scholar] [CrossRef]
- Zyren, J.; Petrick, A. Tutorial on Basic Link Budget Analysis; Application Note AN9804; Harris Semiconductor: Melbourne, FL, USA, 1998; Volume 31. [Google Scholar]
- Zelst, van, A. MIMO OFDM for Wireless LANs. Ph.D. Thesis, Agere Systems, Allentown, PA, USA, 2004.
- Taha, A.; Alrabeiah, M.; Alkhateeb, A. Enabling large intelligent surfaces with compressive sensing and deep learning. IEEE Access 2021, 9, 44304–44321. [Google Scholar] [CrossRef]
- Luo, X.; Meratnia, N. A Geometric Deep Learning Framework for Accurate Indoor Localization. In Proceedings of the 2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Beijing, China, 5–8 September 2022; pp. 1–8. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seybold, J.S. Introduction to RF Propagation; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Suh, J.; Kim, C.; Sung, W.; So, J.; Heo, S.W. Construction of a generalized DFT codebook using channel-adaptive parameters. IEEE Commun. Lett. 2016, 21, 196–199. [Google Scholar] [CrossRef]
- Henderson, H.V.; Pukelsheim, F.; Searle, S.R. On the history of the Kronecker product. Linear Multilinear Algebra 1983, 14, 113–120. [Google Scholar] [CrossRef]
- Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A. A survey of forecast error measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Y.; Zhang, P.; Liang, W.; Li, M. Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network. Remote Sens. 2019, 11, 2653. [Google Scholar] [CrossRef] [Green Version]
- Alexandropoulos, G.C.; Vlachos, E. A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 9175–9179. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1263–1272. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc. Icml 2013, 30, 3. [Google Scholar]
- Nazarov, I.; Burnaev, E. Bayesian Sparsification of Deep C-valued Networks. In Proceedings of the 37th International Conference on Machine Learning, Virtual, 12–18 July 2020; Volume 119, pp. 7230–7242. [Google Scholar]
- Arjovsky, M.; Shah, A.; Bengio, Y. Unitary evolution recurrent neural networks. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1120–1128. [Google Scholar]
- Venkateswaran, V.; van der Veen, A.J. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans. Signal Process. 2010, 58, 4131–4143. [Google Scholar] [CrossRef]
- Grant, I.S.; Phillips, W.R. Electromagnetism; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Hirose, A. Complex-Valued Neural Networks: Theories and Applications; World Scientific: Singapore, 2003; Volume 5. [Google Scholar]
- Barrachina, J.A.; Ren, C.; Morisseau, C.; Vieillard, G.; Ovarlez, J.P. Complex-valued vs. real-valued neural networks for classification perspectives: An example on non-circular data. In Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2990–2994. [Google Scholar]
- Li, Y.; Luo, Y.; Yang, G. 12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 2017, 6, 344–354. [Google Scholar] [CrossRef]
- Pang, J.; Li, Z.; Kubozoe, R.; Luo, X.; Wu, R.; Wang, Y.; You, D.; Fadila, A.A.; Saengchan, R.; Nakamura, T.; et al. 21.1 a 28GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 344–346. [Google Scholar]
- Pauluzzi, D.R.; Beaulieu, N.C. A comparison of SNR estimation techniques for the AWGN channel. IEEE Trans. Commun. 2000, 48, 1681–1691. [Google Scholar] [CrossRef]
- Bonani, F.; Guerrieri, S.D.; Ghione, G. Physics-based simulation techniques for small-and large-signal device noise analysis in RF applications. IEEE Trans. Electron Devices 2003, 50, 633–644. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, K.; Gao, J.; Harada, H. Antenna space diversity and polarization mismatch in wideband 60 GHz-Millimeter-wave wireless system. In Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September 2009; pp. 1781–1785. [Google Scholar]
- Dietrich, C.B.; Dietze, K.; Nealy, J.R.; Stutzman, W.L. Spatial, polarization, and pattern diversity for wireless handheld terminals. IEEE Trans. Antennas Propag. 2001, 49, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.C.; Stüber, G.L. Polarization division multiple access on NLoS wide-band wireless fading channels. IEEE Trans. Wirel. Commun. 2014, 13, 3726–3737. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; et al. Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks. arXiv 2019, arXiv:1909.01315. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Operating frequency | 3.4 GHz, 3.5 GHz, 28 GHz |
Activated BSs | 1, 2, 3, 4, 5 (RIS), 18 |
Antennas of BSs and RIS | 4 × 4 |
Antennas of DOI | 2 × 2 |
Bandwidth | 200 MHz |
The number of OFDM sub-carriers | 512 |
LoS | NLoS | |||
---|---|---|---|---|
MSE | Var | MSE | Var | |
Oracle case | 0.045 | 0.002 | 0.047 | 0.003 |
Our solution (CV ver.) | 0.050 | 0.007 | 0.090 | 0.018 |
Our solution (RV ver.) | 0.125 | 0.010 | 0.199 | 0.013 |
Baseline case | 2.053 | 0.958 | 2.956 | 1.033 |
Oracle Case () | Our Solution | Baseline Case | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LoS | NLoS | LoS | NLoS | LoS | NLoS | |||||||
MSE | Var | MSE | Var | MSE | Var | MSE | Var | MSE | Var | MSE | Var | |
0.045 | 0.002 | 0.047 | 0.003 | 144 | 0.050 | 0.007 | 0.090 | 0.018 | 2.053 | 0.958 | 2.956 | 1.033 |
324 | 0.368 | 0.554 | 0.394 | 0.312 | 3.202 | 1.692 | 3.737 | 1.296 | ||||
1296 | 0.843 | 2.231 | 1.039 | 0.845 | 3.882 | 0.958 | 4.342 | 2.333 |
Oracle Case | Our Solution | Baseline Case | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[m2] | LoS | NLoS | LoS | NLoS | LoS | NLoS | ||||||
MSE | Var | MSE | Var | MSE | Var | MSE | Var | MSE | Var | MSE | Var | |
51.84 | 0.045 | 0.002 | 0.047 | 0.003 | 0.050 | 0.007 | 0.090 | 0.018 | 2.053 | 0.958 | 2.956 | 1.033 |
92.16 | 0.045 | 0.002 | 0.047 | 0.002 | 0.113 | 0.048 | 0.119 | 0.056 | 2.268 | 1.086 | 3.002 | 0.991 |
144.00 | 0.046 | 0.002 | 0.050 | 0.003 | 0.205 | 0.081 | 0.236 | 0.170 | 2.410 | 0.879 | 3.013 | 1.211 |
Oracle Case | Our Solution | Baseline Case | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[dB] | LoS | NLoS | LoS | NLoS | LoS | NLoS | ||||||
MSE | Var | MSE | Var | MSE | Var | MSE | Var | MSE | Var | MSE | Var | |
0 | 0.045 | 0.002 | 0.047 | 0.003 | 0.050 | 0.007 | 0.090 | 0.018 | 2.053 | 0.958 | 2.956 | 1.033 |
5 | 0.353 | 0.315 | 0.430 | 0.298 | 0.552 | 0.556 | 0.858 | 1.280 | 3.522 | 2.118 | 4.104 | 2.022 |
10 | 0.517 | 0.402 | 0.802 | 0.910 | 1.279 | 3.569 | 1.435 | 2.994 | 4.200 | 2.430 | 4.881 | 3.291 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Meratnia, N. A Codeword-Independent Localization Technique for Reconfigurable Intelligent Surface Enhanced Environments Using Adversarial Learning. Sensors 2023, 23, 984. https://doi.org/10.3390/s23020984
Luo X, Meratnia N. A Codeword-Independent Localization Technique for Reconfigurable Intelligent Surface Enhanced Environments Using Adversarial Learning. Sensors. 2023; 23(2):984. https://doi.org/10.3390/s23020984
Chicago/Turabian StyleLuo, Xuanshu, and Nirvana Meratnia. 2023. "A Codeword-Independent Localization Technique for Reconfigurable Intelligent Surface Enhanced Environments Using Adversarial Learning" Sensors 23, no. 2: 984. https://doi.org/10.3390/s23020984
APA StyleLuo, X., & Meratnia, N. (2023). A Codeword-Independent Localization Technique for Reconfigurable Intelligent Surface Enhanced Environments Using Adversarial Learning. Sensors, 23(2), 984. https://doi.org/10.3390/s23020984