
Citation: Bai, Y.; Sun, H.; Zhang, L.;

Wu, H. Hybrid CNN–Transformer

Network for Electricity Theft

Detection in Smart Grids. Sensors

2023, 23, 8405. https://doi.org/

10.3390/s23208405

Academic Editor: Arshad Arshad

Received: 31 August 2023

Revised: 9 October 2023

Accepted: 10 October 2023

Published: 12 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Hybrid CNN–Transformer Network for Electricity Theft
Detection in Smart Grids
Yu Bai, Haitong Sun *, Lili Zhang and Haoqi Wu

School of Electronical and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China;
yubai@sau.edu.cn (Y.B.); 20052727@sau.edu.cn (L.Z.); wuhaoqi@stu.sau.edu.cn (H.W.)
* Correspondence: sunhaitong@stu.sau.edu.cn

Abstract: Illicitly obtaining electricity, commonly referred to as electricity theft, is a prominent
contributor to power loss. In recent years, there has been growing recognition of the significance of
neural network models in electrical theft detection (ETD). Nevertheless, the existing approaches have
a restricted capacity to acquire profound characteristics, posing a persistent challenge in reliably and
effectively detecting anomalies in power consumption data. Hence, the present study puts forth a
hybrid model that amalgamates a convolutional neural network (CNN) and a transformer network
as a means to tackle this concern. The CNN model with a dual-scale dual-branch (DSDB) structure
incorporates inter- and intra-periodic convolutional blocks to conduct shallow feature extraction
of sequences from varying dimensions. This enables the model to capture multi-scale features in a
local-to-global fashion. The transformer module with Gaussian weighting (GWT) effectively captures
the overall temporal dependencies present in the electricity consumption data, enabling the extraction
of sequence features at a deep level. Numerous studies have demonstrated that the proposed method
exhibits enhanced efficiency in feature extraction, yielding high F1 scores and AUC values, while also
exhibiting notable robustness.

Keywords: electricity theft detection; transformer neural network; convolutional neural network;
smart grids

1. Introduction

With the advancement of smart grid technology and the ongoing expansion of power
system infrastructure, the power industry, as a fundamental sector facilitating national
economic growth, has increasingly emphasized the need to enhance the economic efficiency
and ensure the stable operation of power companies [1]. The categorization of electricity
losses can be divided into two main types: technical losses (TLs) and non-technical losses
(NTLs) [2]. Technical losses are a result of disparities in infrastructure and energy dissi-
pation, whereas non-technical losses emerge from the disparity between the total power
transferred over distribution lines and the power consumed by customers. Electricity theft
is the predominant type of non-technical loss, encompassing a range of techniques includ-
ing private cables, physical manipulation of meter counting components, and destructive
modification of meter facilities resulting in inconsistent meter readings [3]. Electricity theft
not only carries significant economic consequences for the nation but also poses a threat
to public safety, since it heightens the risk of mishaps such as fires and electric shocks.
According to the source cited as [4], the aggregate financial impact of power theft on a
global scale is estimated to be around CAD 100 million per year. This substantial amount
of money, if not lost to theft, might instead be utilized to supply electricity to around
77,000 households for a duration of 1 year.

Numerous potential resolutions to the issue of power theft have been put out in
the existing body of scholarly work [5–7]. The existing body of literature classifies these
solutions into two primary categories: hardware-based solutions and data-driven solutions.
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Hardware-based solutions primarily center around the development of intelligent devices
and sensors with the capability to identify and detect irregularities. Nevertheless, it should
be noted that the aforementioned solutions incur significant maintenance expenses, exhibit
lower levels of efficiency, and require a substantial amount of time [8]. Furthermore,
they demonstrate an elevated false-positive rate (FPR). On the other hand, there exists a
plethora of data-driven methodologies aimed at detecting instances of electricity theft [9].
These solutions utilize methodologies rooted in artificial intelligence (AI) [10], game theory
(GT) [11], and machine learning (ML), which are extensively applied in various fields such
as healthcare, education, and transportation. According to cited source [12], solutions that
are driven by data have enhanced resilience, efficiency, and comprehensibility. Furthermore,
the scholarly literature [13] presents a methodology centered on grid analysis as a means to
examine the identification of abnormal power consumption patterns. This methodology
involves scrutinizing several parameters of the grid, such as current, voltage, and others, in
order to find any atypical usage behavior. Anomaly detection encompasses the utilization
of diverse data types, encompassing network-related data such as the operational state of
switches and circuit breakers, alongside sensor data like voltage and current magnitudes
captured by remote terminal units.

During the early phases of classification research, conventional machine learning tech-
niques [14,15] were employed for the purposes of feature extraction and classification. The
approaches employed in this study encompassed support vector machines (SVMs) [16,17],
decision trees (DTs) [18,19], and nearest neighbors [20,21]. With the advancement of ma-
chine learning algorithms, there has been an increasing adoption of integrated learning
algorithms that consist of several individual learners for the purpose of power theft detec-
tion. Several studies have presented several strategies for detecting instances of electricity
theft, utilizing integrated learning algorithms such as random forest (RF), Adaboost, and
XGBoost [22–25]. The experimental findings provided evidence that the integrated learn-
ing algorithms exhibit superior performance compared to conventional approaches. In
a specific research investigation [26], deep learning models [27] were utilized as binary
classifiers, with the purpose of detecting instances of energy theft. The researchers exam-
ined various deep learning architectures, such as CNN, Multi-Layer Perceptron (MLP),
Long–Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) networks. Pereira
et al. [28] employed a CNN for the purpose of detecting instances of power theft. Addi-
tionally, they conducted a comparative analysis of different oversampling approaches to
investigate the potential effects of dataset imbalance. Zheng et al. [29] utilized a CNN to
extract periodic features from load data that were transformed into a two-dimensional
format. These extracted features were subsequently combined with global characteristics
acquired from one-dimensional load data, which were captured using a fully connected
network. The purpose of this approach was to detect instances of power theft. In a separate
investigation, the authors of study [30] employed a fusion of clustering algorithms and
Long–Short-Term Memory networks in order to identify instances of electricity theft. The
methodology employed entailed forecasting the subsequent electricity usage of a client at
each given time and afterwards evaluating the disparity between the projected values and
the actual data. Deep learning techniques provide the advantage of automated sequence
feature extraction in comparison to conventional machine learning algorithms.

The issue of detecting electricity theft has been extensively explored in academic
research, leading to the development and widespread adoption of several hybrid neural
network models that incorporate deep learning techniques. The study conducted by [2]
introduced a hybrid neural network that integrates Long–Short-Term Memory (LSTM) and
Multilayer Perceptron (MLP) models. This hybrid network demonstrates the ability to
extract characteristics from diverse data sources. The authors Ismail et al. [31] proposed
a hybrid neural network model that combines CNN and GRU to tackle the issue of elec-
tricity theft in distributed generation systems. The researchers in [32] devised a novel
hybrid neural network architecture that integrates the GRU, CNN, and Particle Swarm
Optimization (PSO) algorithms. This model was trained and evaluated using real-time data
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on electricity use. The utilization of the CNN facilitates the reduction of dimensionality
and redundancy within time series data. The classification of consumption patterns into
normal and fraudulent categories is achieved by the utilization of the GRU network and
particle swarm algorithm. The integration of the long- and short-term memory strategies
into CNN technology was found to boost e-fraud detection, as demonstrated in a study
conducted by [33]. The optimal values of the hyperparameters for the CNN–LSTM were
computed using meta-heuristic techniques, namely Black-Widow Optimization (BWO) and
Blue-Monkey Optimization (BMO). The aforementioned works [30–33] have introduced de-
tectors that function as hybrid deep-learning models, specifically designed for the purpose
of feature extraction.

The aforementioned models have demonstrated favorable outcomes in the domain of
electricity theft detection, yet certain concerns persist. The initial approach in many electri-
cal theft detection models relies on CNNs. However, CNNs have limitations in properly
capturing the global characteristics of time series data and calculating the relative corre-
lations among the retrieved features. The excessive dependence on the initial input data
presents a notable limitation. Furthermore, it is possible for the model to experience over-
fitting as a result of the disparity between the amount of data available in the training set
and the intricacy of the model. As a result, the model’s capacity to generalize to real-world
scenarios is constrained. Therefore, it is imperative to consider the importance of mitigating
model overfitting and improving feature extraction capabilities. Ding et al. [34] introduced
a multivariate-branching block (DBB) as a means to extract feature information. The DBB
accomplishes this by integrating several branches with diverse widths and complexities.
The Gaussian-weighted feature-tokenization transformer module (FTT) was introduced
by Sun et al. [35]. The FTT module aims to investigate the transformer’s ability to capture
local spatial semantic information and effectively represents the links between adjacent
sequences. Moreover, Shi et al. [36] introduced a novel methodology for detecting power
theft through an end-to-end approach by utilizing the transformer neural network. This
study presents a novel hybrid model named the DSDB CNN and the Gaussian-weighted
transformer network (DSDBGWT), which integrates a CNN with a DSDB structure and
a GWT network. In contrast to a CNN, the DSDBGWT model demonstrates enhanced
proficiency in extracting global features and determining the relative relationships among
various characteristics. As a result, it diminishes its dependence on the initial input data
when performing classification tasks. In order to augment the model’s ability to extract
features, a GWT module is utilized, which is particularly well-suited for processing se-
quences of extended duration. The present module effectively captures the characteristics
of extended temporal sequences through the computation of attention coefficients, which
are determined by the positional information of the input sequences. As a result, the model
demonstrates enhanced efficacy in the detection of electricity theft. In order to address the
issue of overfitting in the model, the initial step involves incorporating suitable normal-
ization layers (LN) into both the regular block and transformer block. Furthermore, the
dropout regularization technique is utilized to stochastically deactivate a certain proportion
of neurons throughout the training process.

The main contributions of this article are summarized as follows:
(1) We propose a simple and efficient DSDB convolutional module in our network to ex-

tract inter- and intra-periodic features from sequences. This module replaces the traditional
CNN structure, resulting in a lightweight model while improving model accuracy;

(2) We employ a transformer network with Gaussian weighting. The attention weights
in this network can be attenuated based on the distance between related symbols. This
allows for a more rational allocation of the attention mechanism, leading to more efficient
extraction of sequence features and improved model accuracy;

(3) The systematic combination of CNN network and GWT network can fully extract
the electricity consumption information in the sequences and accurately and efficiently
recognize the semantic features, thus significantly improving the classification accuracy.
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Extensive experiments on the China National Grid dataset show that our DSDBGWT model
outperforms other existing methods.

The remainder of this paper is structured as follows. Section 2 presents the framework
of the proposed model and provides specific details on the implementation of its constituent
modules. In Section 3, we elaborate on the dataset processing, conduct comparative
experiments to assess the effectiveness of our framework, and discuss the experimental
results. Finally, Section 4 concludes the paper.

2. Materials and Methods

The overall architecture of the hybrid model for electricity theft detection (DSDBGWT)
based on a CNN with DSDB and a GWT network is shown in Figure 1. The framework
has three distinct modules: a CNN that incorporates a DSDB structure to facilitate shal-
low feature extraction, a GWT network designed specifically for long-distance feature
extraction, and a classification module. Initially, the original sequence is segmented on a
weekly basis using patch [37] to effectively capture the overall characteristics and minimize
computing workload, while still retaining the information from the original sequence.
Following the implementation of the patch, two DSDB structures are employed, possessing
identical structures. This approach enables the extraction of inter- and intra-week features
of electricity consumption information with enhanced accuracy and efficiency. Addition-
ally, this significantly reduces the computational burden associated with the convolutional
operation. Subsequently, the output data generated by the CNN are once again divided
into discrete four-week intervals, employing patches as the input for the transformer model.
The GWT network is capable of extracting a sequence’s global features, which can produce
varying weighting weights based on the input data’s distance. Thus, enhancement in
feature extraction accuracy is achieved. It is important to highlight that this approach
differs from the standard transformer in that it does not incorporate a class token and
position embedding into the transformer’s tokens. Consequently, it does not engage in
MLP processing within the tokens, but instead prioritizes the extraction of deep features
from the tokens. Ultimately, the outcomes of the encoding process for each token are fed
into the classification module.
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Figure 1. The overall architecture of the proposed hybrid neural network, combining DSDB convo-
lutional neural network and GWT network (DSDBGWT). 

2.1. Data Preprocessing 
The suggested approach is used for the smart meter data of consumers’ daily elec-

tricity consumption, which is sourced from the State Grid Corporation of China (SGCC) 
[38]. The dataset provided includes authentic power consumers as well as those engaged 
in electricity theft, with more information about the dataset available in Table 1. Figure 2 
illustrates the electricity consumption patterns of two users within the dataset. User 1 ex-
hibits the highest electricity usage, with a daily consumption reaching close to 2000. In 
contrast, User 2 represents the majority of electricity users, ranging from a few kWh to a 
dozen kWh per day. This discrepancy highlights the significant variation in electricity 
consumption among users. To address this, it is necessary to normalize the data. Normal-
ization not only stabilizes the dataset but also enhances the convergence speed and overall 
efficiency of the model. Furthermore, it is evident that the data from User 2 exhibits dis-
continuity in certain instances. This can be attributed to various intricate factors encoun-
tered during the meter collection process, such as unreliable transmission of data due to 
smart meter faults, irregular system maintenance, occurrence of special events, and other 
multifaceted elements. Consequently, these factors contribute to the absence of electricity 
consumption data. In order to mitigate the impact of data variations on the neural network 
model, it is imperative to employ appropriate data preprocessing techniques. This study 
undertakes the normalization of raw data and addresses the issue of missing values 
through appropriate processing techniques. 

Table 1. Raw data status. 

Description Value 
Total number of electricity consumers 42,372 

Number of abnormal electricity consumers 3615 

Time span 1 January 2014–31 October 
2016 

Proportion of missing data 25.7% 
Maximum daily consumption of electricity by customers 2782.2 

Figure 1. The overall architecture of the proposed hybrid neural network, combining DSDB convolu-
tional neural network and GWT network (DSDBGWT).

The DSDBGWT network model proposed in this paper can be denoted as f =
fc � fe � fs, with parameters ω = {ωs, ωe, ωc}. Here, fs is a convolutional neural net-
work, used for shallow feature extraction, and its output is v = fe(x; ωe); fe is a transformer
network, used for long-distance feature extraction, and its output is z = fe[ fs(x; ωs); ωe];
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and fc is a classifier, used for result categorization, which maps instances from the repre-
sentations to the corresponding logics, which can be transformed into similar classes by
p(y|z; ω) = sigmoid( fc(z; ωc)). We optimize the end-to-end parameters by minimizing the
cross-entropy loss on the set of markers denoted as ∑(x,y)∼Dtrain

[l( fc � fe � fs(x; ω), y)]. We
define x to represent the input data, p(; ) to represent the derived probability value, and
∑(x,y) to represent the sum of the loss functions.

2.1. Data Preprocessing

The suggested approach is used for the smart meter data of consumers’ daily electricity
consumption, which is sourced from the State Grid Corporation of China (SGCC) [38]. The
dataset provided includes authentic power consumers as well as those engaged in electricity
theft, with more information about the dataset available in Table 1. Figure 2 illustrates
the electricity consumption patterns of two users within the dataset. User 1 exhibits the
highest electricity usage, with a daily consumption reaching close to 2000. In contrast, User
2 represents the majority of electricity users, ranging from a few kWh to a dozen kWh
per day. This discrepancy highlights the significant variation in electricity consumption
among users. To address this, it is necessary to normalize the data. Normalization not only
stabilizes the dataset but also enhances the convergence speed and overall efficiency of
the model. Furthermore, it is evident that the data from User 2 exhibits discontinuity in
certain instances. This can be attributed to various intricate factors encountered during
the meter collection process, such as unreliable transmission of data due to smart meter
faults, irregular system maintenance, occurrence of special events, and other multifaceted
elements. Consequently, these factors contribute to the absence of electricity consumption
data. In order to mitigate the impact of data variations on the neural network model, it is
imperative to employ appropriate data preprocessing techniques. This study undertakes the
normalization of raw data and addresses the issue of missing values through appropriate
processing techniques.

Table 1. Raw data status.

Description Value

Total number of electricity consumers 42,372
Number of abnormal electricity consumers 3615

Time span 1 January 2014–31 October 2016
Proportion of missing data 25.7%

Maximum daily consumption of electricity by
customers 2782.2
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(1) The process of normalization.
The act of normalizing the dataset has the effect of increasing the numerical con-

ditions of the dataset, which in turn enhances the stability of the optimization method.
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Consequently, this phenomenon enhances the speed of model training and augments the
efficiency of the algorithm. In addition, the process of normalization serves to standardize
the distribution of data and reduce the influence of outliers on the model, improving its
resilience. We choose the scaling method of MAX −MIN to normalize the data accord-
ing to the following equation. In the normalization process, we leave the missing values
untouched first:

n(x) =
x−min(x)

max(x)−min(x)
(1)

Here, x represents the user’s electricity consumption on a specific day, while min(x )
and max(x ) represent the minimum and maximum values, respectively, across the en-
tire dataset.

(2) Missing value processing.
Missing values are predominantly observed when there is a lack of data at a partic-

ular point in time, typically resulting from mistakes in the measuring instrument. The
inclusion of these omitted values serves to improve the overall quality of the data, en-
hancing its trustworthiness and suitability for analytical and modeling purposes. The
zero-replacement approach is employed to address the presence of missing data that meet
the specified requirements:

f (xt) =

{
0xt ∈ NAN
xtxt /∈ NAN

(2)

where xt indicates the user’s electricity consumption at a given time and xt ∈ NAN
indicates that xt is a null value.

The network encountered difficulty distinguishing between the original value being
zero and the missing value being imputed as zero, due to the preexistence of zero values in
the samples. In order to tackle this matter, we implemented an additional input channel
by using a binary mask [39]. Within the mask matrix, the original data’s missing value
is designated as 0, whereas the normal value of 0 is designated as 1. By employing this
approach, the neural network is capable of differentiating between these two situations,
thereby improving the resilience of the model.

The initial dataset, denoted as X, comprises the electricity consumption data for a
specific electricity user (referred to as M) over a time period of L days in the past. Therefore,
we can represent the original dataset as X ∈ RM×L. The dataset undergoes preprocessing,
which involves normalizing the raw data, processing missing values, and adding binary
masks. These processes transform the dataset from a two-dimensional structure to a
three-dimensional structure for variable X′ ∈ RM×L×2.

2.2. Patch

Due to the considerable length of the sample sequence, it is necessary to employ the
patch technique to partition the data into several subsequences at specific intervals. This
strategy not only maintains the intrinsic properties of sequence but also enables more
effective management and processing of the data for a range of activities, such as model
training, feature extraction, and predictive analytics. The length of the patch is represented
by the variable P. The sampling step is marked as S. The total number of patches is
indicated by the variable N. The electricity usage per user over a period of L days is
symbolized by the variable L. The calculation formula can be expressed as follows:

N =

⌊
(L− P)

S

⌋
+ 1 (3)

Electricity consumption data for normal users are usually more cyclical than for
abnormal users [29,40,41] (detailed analysis in Section 3.3). To effectively process such
periodic data using CNN, we employ the Patch architecture. Taking a specific sample
as an example, the preprocessed data has a spatial size of H ×W. Utilizing the Patch
architecture and considering the weekly periodicity of the data, we set the parameters
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P = 7 and S = 7, thus transforming the data into a three-dimensional space represented
as H ×

(⌊
(L−P)

S

⌋
+ 1
)
× S after Patch processing, as illustrated in Figure 3. Similarly,

as shown in Figure 4, the inputs to the transformer network undergo processing using
Patch. The decision to employ Patch processing on a four-week cycle is motivated by
the transformer network’s exceptional feature extraction capabilities and its proficiency
in capturing distant features. The parameters Patch_size = 28 and Stride_size = 28 were
set to partition the data based on monthly time intervals. This Patch architecture trans-
forms the dimensionality of the output data from U × K × V to U × (K×V), then to
U ×

(⌊(
K×V−P)

S

⌋
+ 1
)
× S. Moreover, the Patch operation reduces the number of input

channels from L to approximately L
S , resulting in a reduction in computational complexity

by a factor of S. Additionally, the Patch operation enables the model to have a stronger
ability to refer back to earlier data, enhancing the network’s learning capability and leading
to significant improvements in prediction performance.
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2.3. Shallow Feature Extraction for DSDB Structures 
After performing data preprocessing, the sequence features of the samples are ex-

tracted using 2D convolution. Figure 5 depicts the implementation of a DSDB structure 
during this phase. Each branch within the structure incorporates a convolution kernel of 
different scales, enabling the extraction of more complete feature information compared 
to a single convolutional network. Taking inspiration from work with ACNet [42], we pro-
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2.3. Shallow Feature Extraction for DSDB Structures

After performing data preprocessing, the sequence features of the samples are ex-
tracted using 2D convolution. Figure 5 depicts the implementation of a DSDB structure
during this phase. Each branch within the structure incorporates a convolution kernel of
different scales, enabling the extraction of more complete feature information compared to
a single convolutional network. Taking inspiration from work with ACNet [42], we propose
the incorporation of asymmetric convolution into our approach. Specifically, we construct
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the convolution kernels for each branch to have dimensions of 1 × s and s × 1, respectively.
The convolution kernel with dimensions s × 1 is utilized for feature extraction within a
singular cycle, whereas the 1 × s convolution kernel is employed for extracting features
across different cycles. The process involves the linear combination of two convolutions
that are applied to the same locations but on different channels. This results in the empha-
sis of the squared convolution kernel in both horizontal and vertical directions, thereby
highlighting distinct locally prominent features from various orientations. After the inte-
gration of the outputs from both branches into a single DSDB output, a 1 × 1 convolutional
kernel is employed to maintain the inherent structure of the original sequence. In order to
accelerate the rate at which the model converges during training and improve the overall
generalization ability of the network [43], a normalization layer is implemented following
the convolutional layer in each branch. The normalization layer is responsible for ensuring
the normalization of the feature mapping in each branch. This process results in the output
features becoming nonlinear and effectively reduces data dispersion. Additionally, it serves
as a preventive measure against problems such as gradient explosion or gradient vanishing.
Following the normalizing procedure, the PReLu activation function is employed to coun-
teract linearity inside the network, so enabling the network to acquire knowledge about
nonlinear mappings in a hierarchical fashion. Ultimately, the utilization of Dropout serves
as a means to change data in order to mitigate the occurrence of overfitting.
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The model employs two distinct DSDB structures, and the subsequent description
pertains to both of these DSDBs. The input data of the DSDB CNN are denoted as ai ∈
RH×W×Ci , where H ×W represents the spatial size and Ci represents the number of input
channels. The mathematical expression for the DSDB convolution at point (h, w) of its jth
channel can be represented by the following formula:

Vh,w
j =

Ci

∑
k

S

∑
h′=0

ωh′ ,0
v1,j,k · a

h+h′−b S
2 c,w

i,k +
Ci

∑
k

S

∑
w′=0

ω0,w′
v2,j,k · a

h,w+w′−b S
2 c

i,k (4)

Here, v1 represents the s × 1 convolution kernel, v2 represents the 1 × s convolution
kernel, k represents the sum of Ci channels, h′ represents the corresponding position ranging
from 1 to s in the s × 1 convolution kernel, and, similarly, w′ represents the corresponding
position ranging from 1 to s in the 1 × s convolution kernel. To maximize data utilization,
it is essential to employ the padding operation by adding zeros around the space H ×W.
The padding size is determined by

⌊
S
2

⌋
; at this point, V ∈ RH×W×CO .
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Following the DSDB structure, a 1 × 1 convolution kernel is utilized to perform the
convolution operation. Consequently, the value at the (h, w) position of the jth channel can
be obtained as follows:

Zh,w
j =

Co

∑
l

ωz,j,l ·Vh,w
l (5)

where l represents the sum of CO channels. At this point, Z ∈ RH×W×CO .
Finally, we perform linear normalization processing and use PReLu activation function

to obtain ao = φ(γZ + β).

2.4. Gaussian-Weighted Transformer Encoder Module

Regarding the detection of electricity theft, past research has predominantly concen-
trated on shallow feature extraction using convolutional neural networks, resulting in
favorable outcomes. However, when addressing the issue of electricity theft, it is crucial
to consider the correlation of data over an extended period. The data samples in this case
consist of long time series. CNN has limitations in representing features for such long-time
series data. The shallow feature extraction of CNN restricts their ability to capture long-
term dependencies, as the extensive use of convolutional operations can only encompass a
limited range of features. Moreover, the sample data contain a small number of anomalous
samples, accounting for only 8.5% of the total. Relying solely on CNNs not only fails to
extract more positive outcomes, but also runs the risk of gradient vanishing. To address
the challenge at hand, this study introduces a transformer network into the framework.
By incorporating the transformer network, the model is able to effectively capture global
dependencies, enabling the extraction of long-distance characteristics. Additionally, the
transformer network offers parallel computing capabilities, enhancing the overall efficiency
of the network. This paper aims to enhance the precision of the model by enhancing
the transformer network’s Gaussian-weighted attention mechanism. The proposed im-
provement involves incorporating a Gaussian-weighted self-attention mechanism into the
original network. This mechanism combines features extracted from WQ, WK, and WV

using a Gaussian-weighted matrix, thereby eliminating the reliance on attention weights
for feature utilization. The weights undergo attenuation based on the proximity of tokens,
with the degree of attenuation being defined by the Gaussian variance. This variance is
acquired through the training process. The proposed method has the capability to compre-
hensively and precisely capture the temporal dependencies on a worldwide scale inside
electricity consumption data. Consequently, this approach has the potential to enhance the
effectiveness of power theft detection to a greater extent.

The module comprises two blocks of multi-head self-attention mechanism (MSA),
as depicted in Figure 1. The residual operation is iterated by using the input channels as
the heads of the first MSA, and mapping the output of the first MSA to the second MSA
as the input heads of the second MSA, with the same dimensions for A0 and A2. The
matrix dimensions of the input and output features are shown in Figure 6. To encompass
the global relationship, the multi-head attention mechanism incorporates three learnable
weight matrices, namely, WQ, WK, and WV . The ith self-attention (SA) is chosen using the
three learnable weight matrices mentioned above. It is then linearly normalized to obtain
Scaled Dot-Product Attention, as depicted in Figure 7. This section introduces the concept of
Gaussian-weighted self-attention, which allows for the utilization of varying weights based
on the proximity of tokens. This feature enhances the accuracy of the findings obtained.

The formula for the SA mechanism is as follows:

SA = Attention(Q, K, V)= so f tmax(
QKT
√

dK

)
V (6)

where dK is the dimension of K.
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The diagram illustrating the internal architecture of Gaussian-weighted self-attention
is depicted in Figure 8. In this context, B represents the size of the batch, T defines the
length of the sequence, D marks the dimension of the input, and E relates to the number
of units in the self-attention mechanism. The matrices for the query, key, and value are
defined in the following manner:

QW
i = WQ Al−1

KW
i = WK Al−1

VW
i = WV Al−1

(7)

where Al−1 is the input to the lth hidden layer (l = 0, 1, 2). WQ, WK, and WV are network
parameters. The score matrix in our proposed method is scaled by utilizing a Gaussian
weighting matrix. This matrix is computed through the multiplication of key and query
matrices, as described below:

Si = Gl
S ◦
(

Qω
i
(
Kω

i )
T

√
d

)
(8)

Vi = Gl
v ◦Vω

i (9)

Oi = so f tmax(Si) ◦Vi (10)

Gl
s is the Gaussian weight matrix.

Within the MSA block, a series of weight matrices in variables Q, K, and V are subjected
to the same operating technique. This results in the calculation of multiple head-attention
values. Afterwards, the outcomes of each individual head attention are combined. The
mathematical representation of this process can be expressed by the following equation:

MSA(Q, K, V) = Concat(O0, O1, ..., Oh−1) (11)

where h represents the number of heads.
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Ultimately, the characteristics acquired within the transformer are afterward inputted
into the classifier for the purpose of categorization. This classifier comprises two fully linked
layers, with the Sigmoid activation function being employed for the output of the final
layer. The function maps the output values within the range of 0 and 1. Individuals with a
value equal to or beyond a threshold of 0.5 are classified as engaging in electro-pilfering,
whilst individuals falling below this threshold are categorized as regular users.

2.5. Overall Algorithm Steps

The overall process of the proposed DSDBGWT is shown in Algorithm 1.

Algorithm 1 DSDBGWT Model

Input: Input a dataset X ∈ R1035×2; patch size s1 = 7; patch size s2 = 28; training sample rate = 80%.
Output: Normal and abnormal prediction of test sets
1: Set batch size to 100, optimizer Adam (learning rate: 10−4), epochs number e to 80.
2: Perform patch1 in the X, available to X ∈ R7×147×2 and divide them into training dataset and
test dataset.
3: Generate training loader and test loader.
4: for i = 1 to e do
5: Perform DSDB convolution layer.
6: Perform patch 2 to change X ∈ R7×147×16 to X ∈ R36×28×16.
7: Perform a transformer network using Gaussian weighting.
8: Spread the transformer output to pass into the classifier.
9: Use the sigmoid function to identify the labels.
10: end for
11: Use test dataset with the trained model to get predicted labels.

3. Experimental Results and Analysis
3.1. Raw Electricity Consumption Dataset

The methodology was evaluated using a genuine dataset acquired from the State
Grid Corporation of China. The dataset consists of a collection of daily power usage
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data series spanning from January 2014 to October 2016. This dataset encompasses a
total of 43,272 customers. Approximately 8.55% of the aforementioned consumers were
detected by the data source as participating in electricity theft operations and, as a result,
were categorized as anomalous. We preprocessed the dataset according to the method
in Section 2.1. It was randomly divided into five separate subsets of equal size while
maintaining the original ratio of abnormal samples to normal samples. Four of these
subsets were used as the training set to train the models, while the remaining subset was
used as the test set to evaluate the models. The aforementioned procedure was iterated
for the five potential choices, wherein a distinct subset was selected as the test set on each
occasion. Consequently, five models are trained, with each model being evaluated on its
respective test set to determine the test error. This process yields five test results, which are
subsequently averaged. By repeating the aforementioned steps three times, the final results
are obtained.

3.2. Experimental Setting

The experiments conducted in this paper were carried out on a server equipped with
an Intel(R) Core (TM) i5-1035G1 CPU operating at a frequency of 1.7 GHz, with a maximum
turbo frequency of 2.19 GHz. The server also had a total of 128 GB of RAM and was
equipped with an NVIDIA GeForce RTX 3090 Ti GPU. The PyTorch 1.10.0 deep learning
framework and Python 3.9 compiler were utilized on an Ubuntu machine to create the
specific software. In the experiments, the batch size was set to 100, the learning rate was
set to 0.001, the epoch was set to 80, and the Adam optimizer was used to make the model
converge quickly.

3.3. Data Description

The chosen dataset is published by the State Grid of China and contains electricity
consumption data of 43,272 electricity users over a period of 1035 days. The dataset contains
electricity consumption data of 42,372 customers over a total of 1034 days from 1 January
2014 to 31 October 2016, of which 38,757 customers are normal electricity users (marked as
0) and the remaining 3615 customers are identified as electricity theft users (marked as 1).
The details of the dataset are shown in Table 1.

The anomalous manifestations of electricity theft are not only shown on the surface
of the data, but their implied patterns and trends are equally characterized. In particular,
Figure 9a gives an example of the electricity consumption data of a normal electricity user
in one year (i.e., 2016), and Figure 9b represents an example of the electricity consumption
data of an electricity theft user in one year. As can be seen from Figure 9, the electricity
consumption data of normal users in July, August, and September are higher than that in
other months (high air conditioning usage in summer), but overall are relatively stable.
The overall data in other months are generally consistent with little fluctuation; the data
of the electricity theft user appear to be abnormally chaotic, and the decline in electricity
consumption in a certain month is particularly high, which is not in line with the normal
pattern of electricity consumption. As shown in Figure 10, the electricity consumption data
for four weeks (February 2015) of normal users and electricity theft users are extracted for
further analysis. Figure 10a shows that, under normal circumstances, normal electricity
users can exhibit significant periodicity, with weekly electricity consumption usually peak-
ing on day 2 or 3, often reaching a low on day 4, and then starting to rise again, whereas the
electricity consumption data for those defined as stealing (Figure 10b) fluctuates cyclically
for the first two weeks (i.e., week 1 and week 2). However, from the second week onwards,
electricity consumption decreases significantly and, thereafter, electricity consumption
remains at a low level.
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In order to better analyze the periodicity of normal customers and the non-periodicity
of electricity theft users, we performed a correlation analysis on the electricity consumption
data. Figure 3 shows the Pearson correlation coefficient (PCC) of the electricity consumption
of the above two users over a four-week period. In this case, Figure 11a shows the PCC
values for normal users and Figure 11b shows the PCC values for electricity theft users.
From Figure 11a, we can find that the electricity consumption data of normal users have a
strong positive correlation. Most of their PCC values are around 0.5, and some even reach
0.9 (a closer PCC value to 1 means that a stronger correlation [30]), whereas the PCC value
of the electricity consumption data of abnormal users is not more than 0.4 (Figure 11b),
and even the phenomenon of negative PCC values occurs, which means that they show a
negative correlation.
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By statistically analyzing the electricity consumption data of normal users and elec-
tricity theft users, we can find that the electricity consumption data of electricity theft users
are usually not periodic or non-periodic compared to normal users. Therefore, weekly,
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monthly, quarterly, and annual electricity consumption data can be used as benchmarks for
feature extraction.

3.4. Evaluation Indicators

In order to evaluate the efficacy of the model, its performance was assessed using
various metrics, including precision, recall, F1 score (F1), Area Under the Curve (AUC),
and Mean Average Precision (MAP). The measurements encompass four primary error
rates, namely, false positive (FP), false negative (FN), true positive (TP), and true negative
(TN) [2,31].

The recall metric is defined as the ratio of accurately recognized instances of electricity
theft by the model to the total number of real electricity theft samples:

recall =
TP

TP + FN
(12)

Precision is a metric that quantifies the proportion of samples accurately identified by
the model as instances of power theft relative to the overall number of samples categorized
as instances of electricity theft across all detection tests:

precision =
TP

TP + FP
(13)

The F1 score, also known as the balanced score, is a statistical measure used to assess
the precision of a binary classification model. The evaluation metric takes into account both
the precision and recall of the classification model:

F1 =
2× precision× recall

precision + recall
(14)

AUC is defined as the area under the ROC curve and is used to measure the over-
all quality of the classifier. The larger the value of AUC, the better the performance of
the classifier:

AUC =
∑i∈positiveClass Ranki −

M(1+M)
2

M× N
(15)

where Ranki denotes the rank value of sample i, M is the number of normal samples, and
N is the number of electricity theft samples.

MAP is a position sensitive indicator; if the abnormal samples are ranked higher than
the normal samples, the higher the value of MAP. It can be calculated as follows:

MAP@K =
1
m

m

∑
i=1

i
pi

(16)

Considering the top K users in the sorted list, m is the number of selected users
who have actually performed a power theft operation and pi(i = 1, 2, 3, ..., m) denotes the
position of each anomaly in the sorted list. In our experiments, we compute this metric for
all samples in a given list and abbreviate the metric as MAP@ALL.

3.5. Comparison with Advanced Methods

In order to demonstrate the efficacy of the suggested model, a selection of representa-
tive methodologies has been chosen to perform comparative tests using the DSDBGWT
model. These methods integrate both representative and high-level scholarly publications
with publicly accessible source code, spanning the period from 2001 to 2022. It is notewor-
thy to emphasize that the aforementioned methods were applied to a preprocessed dataset
in order to ensure a fair comparison:

(1) Random forest (RF) [44]: The RF classifier, also known as random forest, is a machine
learning algorithm composed of several decision trees;
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(2) MiniRocket [45]: The MiniRocket model is a time series classification model that oper-
ates at rapid speeds. It utilizes a concise collection of predetermined convolutional
kernels to convert the input time series data. The extracted features are subsequently
employed in the training of a linear classifier;

(3) Wide and Deep CNN (Wide and Deep) [29]: The Wide and Deep model, which has
a wide component and a deep CNN component, has gained significant traction as a
fundamental approach in various domains;

(4) Hybrid-Order Representation Learning [40]: The electrical behavior classifier employs
a comprehensive representation that combines first-order and second-order variables
to detect occurrences of electricity theft;

(5) Hybrid Attention (HyAttn) [39]: The extraction of features is performed using a
convolutional module that is enhanced by an MSA technique. Subsequently, the
classification of these features is carried out evenly by concatenating convolutional
layers with a kernel size of 1.

To ensure the integrity of the experimental findings, the network architecture and
associated parameters from both classical and contemporary methodologies in the existing
literature are employed to replicate the models for comparison studies. All tests were
conducted using identical hardware configurations and maintained a consistent ratio of
training to testing samples. The empirical findings are shown in Table 2.

Table 2. Performance comparison of different methods.

Methods F1 AUC MAP@ALL

RF [44] 0.386 ± 0.011 0.804 ± 0.018 0.603 ± 0.011
MiniRocket [45] 0.427 ± 0.008 0.829 ± 0.013 0.683 ± 0.009

Wide and Deep CNN [29] 0.468 ± 0.004 0.862 ± 0.011 0.751 ± 0.007
Hybrid-Order Representation

Learning [40] 0.594 ± 0.004 0.895 ± 0.007 0.807 ± 0.006

HyAttn [39] 0.609 ± 0.003 0.907 ± 0.006 0.831 ± 0.006
DSDBGWT (proposed) 0.629 ± 0.002 0.923 ± 0.004 0.834 ± 0.004

Table 2 presents a comprehensive overview of the performance exhibited by all the
approaches that were compared. The classification methods RF and MiniRocket, although
known for their strong performance, are not specifically tailored for the purpose of power
theft detection. The utilization of a Wide and Deep CNN in a CNN-based framework
yields forecasts that are more dependable. The Wide and Deep CNN exhibits the capability
to capture periodicity in weekly patterns through the utilization of deep CNN models
and the integration of global knowledge from wide components. However, the perfor-
mance of the model is constrained by the simplistic approach of stacking convolutional
and fully connected layers, resulting in limited effectiveness for long-distance feature
extraction and consequently leading to its poor accuracy. The HORLN model leverages
first-order information to conduct shallow feature extraction on the sample sequence. Sub-
sequently, the recovered features from the first-order information are employed as input
for second-order processing. Despite the implementation of shallow feature extraction and
long-distance feature extraction, the current model lacks the necessary level of granular-
ity. HyAttn significantly enhances performance by integrating extended convolutional
layers and including a self-attention mechanism. This approach effectively leverages both
CNN and SA to extract shallow features and long-distance features from the input data
simultaneously. However, it lacks selectivity in extracting features across long distances
and does not dynamically adjust the weights of feature extraction across tokens while
considering temporal considerations. The extracted features are not sufficiently complete,
leaving potential for further improvement in accuracy. The model proposed in this article,
known as the DSDBGWT model, incorporates a DSDB structure to enhance the extraction
of comprehensive feature information during shallow feature extraction. Additionally, it in-
corporates Gaussian weighting processing on the token during training, enabling accurate
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and efficient feature extraction and F1 score calculation. The AUC and MAP@ALL metrics
exhibit increases of 3.28%, 1.76%, and 0.36% compared to the highest values achieved by
the aforementioned methods.

3.6. Parametric Analysis

The examination of parameters examines several elements that impact both the perfor-
mance of classification and the process of training. The factors encompassed in this analysis
consist of the number of output channels inside the convolutional network, the count of
tokens, and the number of heads involved in the multi-head attention mechanism.

The augmentation of channels within the convolutional kernel improves the model’s
ability to extract features. However, this augmentation also introduces greater complexity
to the model, which can potentially result in overfitting issues. The discussion revolves
around the number of output channels in the two convolutional layers of the convolutional
neural network. The impact of this parameter on F1, AUC, and MAP@ALL metrics is
illustrated in Figure 12. The number of output channels for the first convolutional layer
is denoted as output_DSDB1, whereas the number of output channels for the second
convolutional layer is denoted as output_DSDB2. Based on the data presented in Figure 12,
it can be observed that F1 achieves optimal performance when the values of output_DSDB1
and output_DSDB2 are set to 32 and 16, respectively, resulting in a performance metric
of 0.629. Additionally, this configuration corresponds to the largest AUC value of 0.923.
In the context of MAP@ALL, the maximum value is observed at output_DSDB1 = 48 and
output_DSDB2 = 32, with a corresponding value of 0.848. In terms of the parameters, if
the number of output channels of output_DSDB1 is doubled, it will lead to a doubling of
the number of input channels of output_DSDB2. Consequently, this will not only increase
the parameters of output_DSDB1, but will also increase the parameters of output_DSDB2.
The excessive number of parameters can negatively impact the efficiency of the model.
Therefore, in order to maintain model accuracy, measures need to be taken. Simultaneously,
it is imperative to minimize the selection of output channels. After considering all relevant
factors and analyzing the experimental findings, we have determined that the optimal
number of output channels is output_DSDB1 = 32 and output_DSDB2 = 16. At this
configuration, the corresponding values for F1, AUC, and MAP@ALL metrics are 0.629,
0.923, and 0.834, respectively.
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The computational cost is directly influenced by the quantity of tokens in MSA. To
regulate the CNN output features at various scales, we employ patching, which ultimately
controls the quantity and dimensions of tokens. The fine-grained characteristics are influ-
enced by the number of tokens, while the receptive field of the token features is determined
by the dimension. The findings shown in Table 3 demonstrate the impact of token count
on F1, AUC, and MAP@ALL within the context of MSA. The observed sample sequence
exhibits periodicity not just on a weekly basis, but also on monthly and quarterly time
scales. When the number of P is 7, 28, or 91, these correspond to the studies conducted in
weekly, monthly, and quarterly patches, respectively. The table presents the performance
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metrics of F1, AUC, and MAP@ALL for different token values. It is seen that, when P = 28,
F1 achieves a value of 0.629 and AUC achieves a value of 0.923. Comparatively, the impact
of P = 7 and P = 28 on MAP@ALL is similar. Therefore, P = 28 (token = 36) is selected as the
input for the transformer network. Based on the findings, it can be inferred that, while the
transformer network exhibits strong capability in handling long-distance dependencies,
its effectiveness is not only determined by the length of the sequence; rather, there exists a
specific range within which the network performs optimally.

Table 3. The impact of the number of tokens in transformer networks on various evaluation metrics.

P, Token F1 AUC MAP@ALL

P = 7, Token = 147 0.570 0.915 0.835
P = 28, Token = 36 0.629 0.923 0.834
P = 91, Token = 11 0.576 0.903 0.816

The primary purpose of employing multiple heads is to concurrently execute numer-
ous independent attention computations, while also connecting their respective outputs.
The use of multi-head attention in neural networks enhances the capacity to capture more
comprehensive feature information. Similar to how raising the number of channels in a
convolutional kernel in a CNN amplifies model complexity, augmenting the number of
attention heads in multi-head attention similarly substantially elevates model complex-
ity. The impact of the number of heads in the multi-head attention mechanism on each
evaluation parameter is depicted in Table 4. Based on the data presented in the table, it
is evident that the F1 score exhibits an upward trend as the number of heads increases,
particularly when the number of heads is relatively small. Notably, the F1 score reaches
its peak value of 0.629 when the number of heads reaches 48. However, a gradual decline
in the F1 score is observed as the number of heads further increases to 64 and 80. This
observation demonstrates that an excessive number of heads is not essential. When a
sufficient number of heads are present, this enables comprehensive utilization of all aspects
of the feature information. However, as the number of heads increases, so does the number
of parameters and the computational load. Consequently, this leads to a decrease in the
efficiency of the model. In conclusion, the value of h = 48 was selected as the designated
quantity of heads for the MSA.

Table 4. The impact of the number of heads in multi-head attention mechanism on various evalua-
tion metrics.

h F1 AUC MAP@ALL

16 0.616 0.922 0.813
32 0.618 0.917 0.833
48 0.629 0.923 0.834
64 0.620 0.921 0.827
80 0.612 0.919 0.816

3.7. Ablation Experiments

To assess the efficacy of the multi-branch component, we substitute it with a conven-
tional two-dimensional convolution kernel for verification purposes. In this particular case,
the substitution of a 1 × 3 and 3 × 1 convolution kernel is made with a 3 × 3 convolution
kernel, while leaving other structures unaltered. The classification results obtained from
the SGCC dataset are depicted in Figure 13. The figure demonstrates that the suggested
model exhibits enhancements in the F1 score, AUC, and MAP@ALL by 4.31%, 1.76%, and
1.33%, correspondingly, in comparison to the model ordinary convolution. This is because
the 1 × 3 convolution kernel in the dual-branch structure we designed efficiently extracts
the intra-week features in the power data, and the 3 × 1 convolution kernel efficiently
extracts the intra-week features in the power data. The experimental results show that the
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proposed dual-branching part can enhance the feature extraction ability of the network
model and that the scheme is feasible.
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The proposed model utilizes a fusion of DSDB CNN and GWT techniques for the
purpose of identifying instances of electricity theft among customers. A series of ablation
experiments were performed on the SGCC dataset to comprehensively evaluate the efficacy
of the approach. These experiments involved testing various combinations of components.
Table 5 examines five combinations and evaluates the influence of various components
on the overall model in terms of classification accuracy. “

√
” indicates that the structure

is added to the model, and “×” indicates that the structure is not used in the model.In
this context, DSDB refers to a CNN with a DSDB structure. The term “conv” denotes
the utilization of a regular 2D convolutional kernel. G.W. symbolizes the incorporation
of Gaussian weighting treatment into the transformer model. Lastly, “tran” refers to the
transformer network without Gaussianization. In Variant (1), the utilization of solely
CNN is limited due to the absence of transformers. Consequently, the receptive field is
restricted, leading to the extraction of primarily local information. As a result, the achieved
F1 score is quite low. Variant (2) refers to the utilization of the tran network exclusively for
long-distance feature extraction, while neglecting the use of CNN for shallow extraction
of samples. Consequently, this approach exhibits limited capability in capturing local
information and is susceptible to the issue of gradient vanishing. As a result, its F1 score is
notably low, measuring only 0.426. Variant (3) entails the fusion of CNN with transformer. It
is evident that the combination of these two models yields significantly improved accuracy
compared to their individual implementations. This finding underscores the importance
of incorporating both local and global temporal dependencies in the context of power
theft detection. Notably, the F1 score of this combined approach reaches a value of 0.597.
In (4), we use CNN with DSDB structure and transformer for combination. One can see
that its accuracy is a little better than (3), which perfectly proves the effectiveness of the
DSDB structure. In accordance with premise (3), we applied Gaussian weighting to the
transformer, as described in (5). This approach considers both shallow and long-distance
feature extraction, while also incorporating Gaussian weighting based on token distance
closeness. As a result, the F1 score exhibits a 1% improvement compared to the approach
outlined in (3). In (6), we once again integrate the CNN with DSDB structure using GWT.
We replace the k × k convolution kernel with 1 × k and k × 1, allowing for simultaneous
extraction of both inter-periodic and intra-periodic features. This modification not only
enhances the model’s efficiency by reducing parameter usage, but also improves its accuracy.
The F1 score exhibits a significant increase of 5.36% when compared to the value obtained
in (3). In conclusion, the examination of the amalgamated experimental findings serves to
reinforce the soundness and credibility of our theoretical framework.



Sensors 2023, 23, 8405 19 of 21

Table 5. Performance of different variants of DSDBCGW.

DSDB conv G.W. tran F1 AUC MAP@ALL

(1) ×
√

× × 0.562 0.874 0.827
(2) × × ×

√
0.426 0.830 0.737

(3) ×
√

×
√

0.597 0.909 0.816
(4)

√
× ×

√
0.599 0.897 0.815

(5) ×
√ √ √

0.603 0.907 0.823
(6)

√
×

√ √
0.629 0.923 0.834

4. Conclusions

This research presents a novel approach for power usage anomaly identification by
proposing a hybrid network that combines a DSDB CNN with a GWT network. The pro-
posed model incorporates a DSDB to perform shallow feature extraction on the sample
sequence. This approach not only enables the extraction of more comprehensive features
but also efficiently decreases parameter usage and enhances efficiency. The GWT network
is capable of extracting characteristics from long-distance sequences in a more reasoned
manner by utilizing the Gaussian-weighted technique. To assess the efficacy of the ap-
proach, a comparative experiment was undertaken, employing DSDBGWT alongside other
classification methods. The experiment was performed on the publicly available dataset of
SGCC. The experimental findings demonstrate that the approach described in this research
study is capable of effectively extracting the abnormal characteristics of power consumption
from the provided training samples. Moreover, the method exhibits a notable enhancement
in F1 performance, surpassing the current state-of-the-art method by a margin of 3.28%.
This improvement signifies a significant advancement over the existing advanced method.
The technique described in this study is limited to feature extraction from data on electricity
consumption. In actuality, a variety of complex factors, like the weather, holidays, the
economy, etc., also influence how much power people use. The proposed DSDBGWT has
good scalability in the high-level semantic feature extraction of multimodal data. In the
future, we will build on the DSDBGWT model by fusing the model with more modes
of data to extract high-level features of electricity consumption sequences, thus further
improving the classification accuracy.
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