Estimating the Below-Ground Leak Rate of a Natural Gas Pipeline Using Above-Ground Downwind Measurements: The ESCAPE−1 Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Above-Ground Measurements
2.2. Surface Emission above a Leak
2.3. Uncertainty Analysis
2.4. The ESCAPE−1 Model Input
3. Results
3.1. Data Quality Control
3.1.1. Wind Direction
3.1.2. Wind Speed
3.2. Uncertainty Analysis
3.3. Methane Mixing Ratios, Surface Emissions, and Calculated Leak Rates
3.4. Effect of Time Averaging on Calculated Leak Accuracy
3.5. Effect of Wind Speed on the Calculated Leak Accuracy
3.6. Effect of Atmospheric Stability on Calculated Leak Accuracy
4. Discussion
4.1. Instrumentation: The Remote Methane Leak Detector (RMLD)
4.2. Performance of the ESCAPE−1 Model
4.3. Effect of Wind Speed
4.4. Effect of Atmospheric Stability
4.5. Suggested Improvements to the Modeling Approach
4.6. Measuring in More Complex Environments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EIA. Natural Gas and The Environment-U.S. Energy Information Administration (EIA). 2023. Available online: https://www.eia.gov/energyexplained/natural-gas/natural-gas-and-the-environment.php (accessed on 30 August 2023).
- EIA. U.S. Energy Information Administration-EIA-Independent Statistics and Analysis. 2022. Available online: https://www.eia.gov/todayinenergy/ (accessed on 30 August 2023).
- Howard, T. University of Texas study underestimates national methane emissions at natural gas production sites due to instrument sensor failure. Energy Sci. Eng. 2015, 3, 443–455. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Available online: https://boris.unibe.ch/71452/ (accessed on 30 August 2023).
- U.S. Department of Transportation, Pipeline and Hazardous Material Safety Administration. Small_Natural_Gas_Operator_Guide_(January_2017).pdf. Available online: https://www.phmsa.dot.gov/sites/phmsa.dot.gov/files/docs/Small_Natural_Gas_Operator_Guide_%28January_2017%29.pdf (accessed on 30 August 2023).
- United States Environmental Protection Agency. US-GHG-Inventory-2023-Main-Text.pdf. Available online: https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf (accessed on 4 September 2023).
- Lowry, D.; Fisher, R.E.; France, J.L.; Coleman, M.; Lanoisellé, M.; Zazzeri, G.; Nisbet, E.G.; Shaw, J.T.; Allen, G.; Pitt, J.; et al. Environmental baseline monitoring for shale gas development in the UK: Identification and geochemical characterisation of local source emissions of methane to atmosphere. Sci. Total Environ. 2020, 708, 134600. [Google Scholar] [CrossRef]
- Phillips, N.G.; Ackley, R.; Crosson, E.R.; Down, A.; Hutyra, L.R.; Brondfield, M.; Karr, J.D.; Zhao, K.; Jackson, R.B. Mapping urban pipeline leaks: Methane leaks across Boston. Environ. Pollut. 2013, 173, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Down, A.; Phillips, N.G.; Ackley, R.C.; Cook, C.W.; Plata, D.L.; Zhao, K. Natural Gas Pipeline Leaks Across Washington, DC. Environ. Sci. Technol. 2014, 48, 2051–2058. [Google Scholar] [CrossRef]
- Weller, Z.D.; Hamburg, S.P.; Von Fischer, J.C. A National Estimate of Methane Leakage from Pipeline Mains in Natural Gas Local Distribution Systems. Environ. Sci. Technol. 2020, 54, 8958–8967. [Google Scholar] [CrossRef]
- 49 CFR Part 192—Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards. Available online: https://www.ecfr.gov/current/title-49/part-192 (accessed on 4 September 2023).
- Heath Consultants Inc. 101515-0-RMLD-MANUAL-REV-F.pdf. Available online: https://heathus.com/assets/uploads/101515-0-RMLD-MANUAL-REV-F.pdf (accessed on 30 August 2023).
- von Fischer, J.C.; Cooley, D.; Chamberlain, S.; Gaylord, A.; Griebenow, C.J.; Hamburg, S.P.; Salo, J.; Schumacher, R.; Theobald, D.; Ham, J. Rapid, Vehicle-Based Identification of Location and Magnitude of Urban Natural Gas Pipeline Leaks. Environ. Sci. Technol. 2017, 51, 4091–4099. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.A.; Kang, M.; Bressler, K.; Chu, C.; Gum, C.D. Measuring methane emissions from abandoned and active oil and gas wells in West Virginia. Sci. Total Environ. 2019, 651, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Lamb, B.K.; Edburg, S.L.; Ferrara, T.W.; Howard, T.; Harrison, M.R.; Kolb, C.E.; Townsend-Small, A.; Dyck, W.; Possolo, A.; Whetstone, J.R. Direct Measurements Show Decreasing Methane Emissions from Natural Gas Local Distribution Systems in the United States. Environ. Sci. Technol. 2015, 49, 5161–5169. [Google Scholar] [CrossRef]
- Kang, M.; Kanno, C.M.; Reid, M.C.; Zhang, X.; Mauzerall, D.L.; Celia, M.A.; Chen, Y.; Onstott, T.C. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. Proc. Natl. Acad. Sci. USA 2014, 111, 18173–18177. [Google Scholar] [CrossRef] [PubMed]
- American Gas Association. ANSI-GPTC-Z380-1-2022-Addendum-2-02_02_23.pdf. Available online: https://www.aga.org/wp-content/uploads/2023/02/ANSI-GPTC-Z380-1-2022-Addendum-2-02_02_23.pdf (accessed on 30 August 2023).
- USDOT Announces Bipartisan PIPES Act Proposal to Modernize Decades-Old Pipeline Leak Detection Rules, Invests in Critical American Infrastructure, Create Good-Paying Jobs, and Improve Safety|PHMSA. Available online: https://www.phmsa.dot.gov/news/usdot-announces-bipartisan-pipes-act-proposal-modernize-decades-old-pipeline-leak-detection (accessed on 30 August 2023).
- Riddick, S.N.; Bell, C.S.; Duggan, A.; Vaughn, T.L.; Smits, K.M.; Cho, Y.; Bennett, K.E.; Zimmerle, D.J. Modeling temporal variability in the surface expression above a methane leak: The ESCAPE model. J. Nat. Gas Sci. Eng. 2021, 96, 104275. [Google Scholar] [CrossRef]
- Colorado State University. PRCI-REX2022-020_Jayarathne.pdf. Available online: https://energy.colostate.edu/wp-content/uploads/sites/28/2022/12/PRCI-REX2022-020_Jayarathne.pdf (accessed on 30 August 2023).
- Hendrick, M.F.; Ackley, R.; Sanaie-Movahed, B.; Tang, X.; Phillips, N.G. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments. Environ. Pollut. 2016, 213, 710–716. [Google Scholar] [CrossRef]
- Weller, Z.D.; Roscioli, J.R.; Daube, W.C.; Lamb, B.K.; Ferrara, T.W.; Brewer, P.E.; von Fischer, J.C. Vehicle-Based Methane Surveys for Finding Natural Gas Leaks and Estimating Their Size: Validation and Uncertainty. Environ. Sci. Technol. 2018, 52, 11922–11930. [Google Scholar] [CrossRef]
- Mitton, M. Subsurface Methane Migration from Natural Gas Distribution Pipelines as Affected by Soil Heterogeneity: Field Scale Experimental and Numerical Study. M.S., Colorado School of Mines, United States—Colorado. Available online: https://www.proquest.com/docview/2129711130/abstract/4877DE588E184AE4PQ/1 (accessed on 30 August 2023).
- Tian, S.; Smits, K.M.; Cho, Y.; Riddick, S.N.; Zimmerle, D.J.; Duggan, A. Estimating methane emissions from underground natural gas pipelines using an atmospheric dispersion-based method. Elem. Sci. Anthr. 2022, 10, 00045. [Google Scholar] [CrossRef]
- Gao, B.; Mitton, M.K.; Bell, C.; Zimmerle, D.; Deepagoda, T.K.K.C.; Hecobian, A.; Smits, K.M. Study of methane migration in the shallow subsurface from a gas pipe leak. Elem. Sci. Anthr. 2021, 9, 00008. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Hadi, D.F.A. Diagnosis of the Best Method for Wind Speed Extrapolation. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2015, 4, 8176–8183. [Google Scholar]
- Crenna, B. An introduction to WindTrax. J. Environ. Prot. 2016, 7. [Google Scholar]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial. J. Appl. Meteorol. Climatol. 2004, 43, 487–502. [Google Scholar] [CrossRef]
- Flesch, T.; Wilson, J.; Harper, L.; Crenna, B. Estimating gas emissions from a farm with an inverse-dispersion technique. Atmos. Environ. 2005, 39, 4863–4874. [Google Scholar] [CrossRef]
- Pasquill, F. The estimation of the dispersion of windborne material. Meteoro Mag. 1961, 90, 20–49. [Google Scholar]
- Stull, R.B. Practical Meteorology: An Algebra-based Survey of Atmospheric Science; University of British Columbia: Vancouver, BC, Canada, 2015; Available online: https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/405 (accessed on 30 August 2023).
- Deaves, D.M.; Lines, I.G. The nature and frequency of low wind speed conditions. J. Wind Eng. Ind. Aerodyn. 1998, 73, 1–29. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D. Estimating Tracer Emissions with a Backward Lagrangian Stochastic Technique. In Agronomy Monographs; Hatfield, J.L., Baker, J.M., Eds.; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2005; pp. 513–531. [Google Scholar] [CrossRef]
- Lines, I.G.; Deaves, D.M.; Atkins, W.S. Practical modelling of gas dispersion in low wind speed conditions, for application in risk assessment. J. Hazard. Mater. 1997, 54, 201–226. [Google Scholar] [CrossRef]
- Bai, M.; Loh, Z.; Griffith, D.W.T.; Turner, D.; Eckard, R.; Edis, R.; Denmead, O.T.; Bryant, G.W.; Paton-Walsh, C.; Tonini, M.; et al. Performance of open-path lasers and Fourier transform infrared spectroscopic systems in agriculture emissions research. Atmospheric Meas. Tech. 2022, 15, 3593–3610. [Google Scholar] [CrossRef]
- Breedt, H.J.; Craig, K.J.; Jothiprakasam, V.D. Monin-Obukhov similarity theory and its application to wind flow modelling over complex terrain. J. Wind Eng. Ind. Aerodyn. 2018, 182, 308–321. [Google Scholar] [CrossRef]
Experiment No: | Controlled Release Rate (kg h−1) | Duration (h) | CH4 Mixing Ratios (ppm-m) | Wind Speed (m s−1) | PGSC |
---|---|---|---|---|---|
1 | 0.2 | 6 | 73 | 2.6 | B |
2 | 0.4 | 6 | 83 | 1.3 | B |
3 | 0.4 | 3 | 89 | 3.4 | D |
4 | 0.4 | 6 | 89 | 2.1 | B |
5 | 0.4 | 4 | 85 | 1.2 | A |
6 | 0.4 | 5 | 75 | 1.8 | A |
7 | 0.8 | 4 | 73 | 1.0 | A |
8 | 0.8 | 3 | 109 | 2.0 | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheptonui, F.; Riddick, S.N.; Hodshire, A.L.; Mbua, M.; Smits, K.M.; Zimmerle, D.J. Estimating the Below-Ground Leak Rate of a Natural Gas Pipeline Using Above-Ground Downwind Measurements: The ESCAPE−1 Model. Sensors 2023, 23, 8417. https://doi.org/10.3390/s23208417
Cheptonui F, Riddick SN, Hodshire AL, Mbua M, Smits KM, Zimmerle DJ. Estimating the Below-Ground Leak Rate of a Natural Gas Pipeline Using Above-Ground Downwind Measurements: The ESCAPE−1 Model. Sensors. 2023; 23(20):8417. https://doi.org/10.3390/s23208417
Chicago/Turabian StyleCheptonui, Fancy, Stuart N. Riddick, Anna L. Hodshire, Mercy Mbua, Kathleen M. Smits, and Daniel J. Zimmerle. 2023. "Estimating the Below-Ground Leak Rate of a Natural Gas Pipeline Using Above-Ground Downwind Measurements: The ESCAPE−1 Model" Sensors 23, no. 20: 8417. https://doi.org/10.3390/s23208417
APA StyleCheptonui, F., Riddick, S. N., Hodshire, A. L., Mbua, M., Smits, K. M., & Zimmerle, D. J. (2023). Estimating the Below-Ground Leak Rate of a Natural Gas Pipeline Using Above-Ground Downwind Measurements: The ESCAPE−1 Model. Sensors, 23(20), 8417. https://doi.org/10.3390/s23208417