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Abstract: Power line inspection is one important task performed by electricity distribution network
operators worldwide. It is part of the equipment maintenance for such companies and forms a
crucial procedure since it can provide diagnostics and prognostics about the condition of the power
line network. Furthermore, it helps with effective decision making in the case of fault detection.
Nowadays, the inspection of power lines is performed either using human operators that scan the
network on foot and search for obvious faults, or using unmanned aerial vehicles (UAVs) and/or
helicopters equipped with camera sensors capable of recording videos of the power line network
equipment, which are then inspected by human operators offline. In this study, we propose an
autonomous, intelligent inspection system for power lines, which is equipped with camera sensors
operating in the visual (Red–Green–Blue (RGB) imaging) and infrared (thermal imaging) spectrums,
capable of providing real-time alerts about the condition of power lines. The very first step in power
line monitoring is identifying and segmenting them from the background, which constitutes the
principal goal of the presented study. The identification of power lines is accomplished through
an innovative hybrid approach that combines RGB and thermal data-processing methods under a
custom-made drone platform, providing an automated tool for in situ analyses not only in offline
mode. In this direction, the human operator role is limited to the flight-planning and control
operations of the UAV. The benefits of using such an intelligent UAV system are many, mostly related
to the timely and accurate detection of possible faults, along with the side benefits of personnel safety
and reduced operational costs.

Keywords: power line inspection; deep neural networks (DNNs); UAVs remote sensing; RGB-thermal
semantic segmentation

1. Introduction

One of the main maintenance tasks of electricity distribution network operators is
power line inspection, since power transmission networks sustain a wide coverage area
and complex terrain, while they are heavily exposed to harsh natural environments, with
the hidden risks of defects and line failures threatening the safety and stable operation of
the power grid. This task is a crucial step for the early detection of faults prior to damage in
the network. Moreover, it is necessary in the case of network damage to find the accurate
location of the fault and take appropriate restoration actions fast. Regular inspections
and timely maintenance involve on-the-ground staff and low-flying Unmanned Aerial
Vehicles (UAVs) and/or helicopters. In many cases, power line inspections still take place
by personnel on foot, which is very time-consuming, complicated (due to the high volume
of equipment required to be transferred), and prone to human error during the visual data
collection. The drawbacks of these kinds of inspection procedures include human safety
hazards due to challenging terrain and weather conditions, and delay in the detection of
faults in the case of missing power lines, since the inspection of the network by human
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observers is too slow, etc. On the other hand, forward-thinking grid operators adopt
manned helicopters equipped with high-resolution cameras for data collection, which
proves to be expensive and difficult to scale up. An end-to-end system that combines UAVs,
optical sensors, and automated image data analysis using machine learning methods
can cover each step of the inspection process in an accurate and robust way and may
provide real-time alerts to relevant stakeholders for possible faults along with their exact
location. The potential benefits of adopting drone technology as an attractive alternative
for power line inspection also include reduced work time and labor costs, access to hard-
to-reach areas, availability for more frequent monitoring, an improved overall carbon
footprint, a reduced complexity, an increased reliability, platform portability, adaptability,
and expandability through the incorporation of different sensors and data sources, along
with focus on different segments of the power grid to detect multiple types of defects [1].

According to the “Drones in Energy Industry Report 2022” [2], the commercial drone
market will globally reach USD 41.3B by 2026, with UAVs in the energy industry making
up the biggest percentage of the corresponding market (estimated as approximately USD
6 billion), revealing the potential and challenges of this edge technology with direct appli-
cations in the inspection of oil, gas, electricity systems, and other critical infrastructures.
The industry-wide shift towards renewable energy along with the direct need to monitor
extended frameworks to link solar and wind parks to power grids is another ongoing
challenge and potential of drone technology.

The use of UAVs equipped with camera Red Green Blue (RGB) and thermal sensors
may help in developing an effective fault detection procedure. The independent operation
of a UAV on pre-defined routes and the ability to analyze, in real time, the thermal and RGB
optical data of the power lines in situ are challenging, since only few similar attempts are
available. Our work focuses on the methodologies for analyzing optical data collected by
HEDNO S.A. (Hellenic Electricity Distribution Network Operator S.A.) in both the Athens
and Chania areas in Greece. The terrain inspected is quite diverse, with non-uniform
wild vegetation covering the power lines across the video recording. The outputs of the
presented methodologies are the structure and exact location of power lines, with the
execution speed being relatively high so as to enable real-time, in situ processing and
inspection procedures.

The primary objective of our study is to accurately locate electrical power lines. In
the current status, we identify the absence of a power line as a fault. Furthermore, we
exploit the meta-level information on the existence of three consecutive lines as an indicator
of the normal power line concatenation. At this point, we emphasize that other types of
faults on the lines, such as the existence of foreign objects or irregular wire formations,
result in excessive heat generation or irregular temperature profiles, so the detection of
such faults become feasible from the additional consideration of data/images from the
thermal camera.

Recent quality review works [3–5] indicate the limitations, challenges, advances,
trends, and prospects of the application of UAVs in the electrical industry and monitoring
applications in general. Based on the conclusions extracted from the targeted study of
this referenced literature, the contribution and novelty of our work can be summarized in
the following:

(a) The study proposes a joint approach of algorithms processing RGB and thermal video
sequences detecting the presence of power lines and their exact geo-locations. This
enables human operators to carry out repairs and maintenance work in a more timely
and efficient matter, while decreasing safety hazards.

(b) An improved version of our previous work [6] is presented, incorporating opti-
cal information from the infrared spectrum (apart from the visible one) and addi-
tional training from other real-scenario datasets in order to remove artifacts and
outliers from the output images, leading to an even more robust and accurate line
detection methodology.
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(c) A carefully designed methodology is adopted for drone-based data capturing through
vigilant flight planning and vehicle navigation, taking into consideration the power
line network surroundings and geo-location mapping of the pylons for executing
missions under pre-loaded routes in the ground station, which is extremely important
in mountainous areas, where high elevation differences between lines and wind
corridors can complicate flights.

(d) A custom-made drone architecture is developed fusing different kind of sensors and
microcomputer edge technology for advanced in situ and on-board data processing.
The developed prototype is among the very limited devices to combine both visual
light and infrared cameras under a robust quadrotor vehicle-type to operate with
an increased payload relatively close to the power grid, even under moderate wind
speed conditions.

(e) An adaptive and functionality expandable power infrastructure-monitoring UAV-
based prototype is created, since the same hardware setup can be utilized for identify-
ing different electrical components of the power network under a modified algorithmic
scheme (i.e., the training of the deep neural model with different data and the utiliza-
tion of temperature profiles from the thermal camera). In addition, the development
and setup of the UAV platform are based on open-source software.

(f) Benchmark unbiased datasets based on real data under different terrain and envi-
ronmental conditions are created in both the visual and infrared spectra, providing
a unique collection of registered and fully synchronized imagery that can be used
to train and test machine learning algorithms and further improve their accuracy
and efficiency. Limited open-access datasets fusing thermal and visual data, such as
in [7], suffer from a low resolution of images and asynchronous, non-registered image
samples for each scene.

The remainder of the manuscript is ordered as follows. Section 2 provides a short
presentation of the related work on similar applications using either RGB or thermal data.
The specifics of the proposed work are detailed in Section 3, while our results from two
different case studies are presented in Section 4. Finally, the conclusion of this study is
presented in Section 5.

2. Related Work
2.1. Detection of Power Lines Using RGB Data

Numerous attempts have been presented in research studies to apply deep learning
algorithms for detecting power lines. The usual approach involves training models with a
dataset that includes power line images and their corresponding binary masks. Following
this, the pretrained model can generate a binary mask for any new images it encounters.

Most of studies with RGB UAV images utilize optimizations of the already avail-
able neural networks and/or image-processing methodologies. These optimizations in-
clude adding extra modules or modifying several parameters to achieve better results.
Solilo et al. [8] utilized a color transformation framework for power line detection, fusing
information from both the Hue Saturation Lightness (HSL) and Hue Saturation Value (HSV)
color spaces, applying the Perspective Transform to UAV optical data to extract a bird’s eye
view perspective binary image of the lines, and finally fitting polynomials between these
lines. Although the proposed method efficiently estimated the position at which the power
line changed direction relative to the UAV route and line tracking was achieved, it proved
sensitive to brightness alterations. In addition, the validation procedure was performed
on emulated data. Another interesting work is presented in [9] for autonomous power
line detection using a drone framework based on open-source platforms. It compared
a Vision–LiDAR and a Dual-LiDAR-based system, analyzing data in situ using on-board
sensors. The system proved efficient for both line detection and autonomous navigation
between pylons, yet the initial results provided were extracted within a new power line
simulation validation environment before being brought into the physical UAV platform
for outdoor testing. Current state-of-the-art UAV and 2D data-based power line inspection
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approaches were reviewed in [10], also addressing the potential of incorporating Lidar tech-
nology and its 3D information for supporting intelligent power line detection frameworks.
However, the overall cost and complexity of such systems are increased. Diniz et al. [11]
applied the YOLOv4 object detection model for developing an online drone navigation
and path-planning framework, identifying power transmission lines and their relative
positions to the UAV. Validation was performed on both synthetic and real-scenario data,
aiming at recognizing or not any of the three key elements/classes of power transmission
lines (simple circuit, double-circuit, or real circuit) and keeping the drone aligned with
the power transmission lines under a relative constant height of about 35 m, for secu-
rity reasons. However, this approach did not take fault diagnosis and alert notification
into consideration.

In their work, J. Gubbi et al. [12] used Histogram of Gradient features, rather than an
actual image, to accurately capture line features. This approach yielded a robust F-score of
84.6%, outperforming the 81% achieved with the GoogleNet model. In another method [13],
the final layer output and feature maps were combined to create high-level predictions.
This involved using a convolutional neural network, integrating feature maps, extracting
structured data from the coarsest feature map, and merging it all for a clear-background
result. V. N. Nguyen et al. [14] introduced LS-Net, a fully convolutional design, which
comprised three modules. This feed-forward architecture achieved a performance of 21.5
frames per second on a cutting-edge Graphics Processing Unit (GPU). L Yang et al. [15]
proposed a novel vision-based power line detection network which used an embedded
attention block to solve the problem of class imbalance and an attention fusion block
for multi-scale feature fusion, improving the segmentation precision of power lines from
aerial images. Another approach is that of G. Han et al. [16], who introduced G-UNets,
a lightweight power line segmentation algorithm. This algorithm combined traditional
convolution with a Ghost bottleneck in the encoder section and adopted a multi-scale
input fusion strategy to minimize information loss. Furthermore, it incorporated Shuffle
Attention (SA) in the decoding stage, aiming to boost the accuracy of the segmentation. To
tackle the class imbalance issues in power line segmentation, Jaffari et al. [17] introduced
a generalized focal loss function. The proposed loss function’s efficacy was evaluated
using an enhanced U-Net model (ACU-Net), which included an additional convolutional
auxiliary classifier head. Gao et al. [18] introduced an effective two-part network made
up of a context branch and a spatial branch. The purpose of the context branch was to
achieve more efficient, short-range feature extraction and provide a large receptive field,
while the spatial branch was designed to keep detailed, high-resolution segmentation
details. DUFormer, proposed by Deyu An et al. [19], is a specialized semantic segmentation
algorithm utilized for detecting power lines in aerial imagery. This involves a process that
starts with a token encoder for comprehensive feature extraction, subsequently employs a
Transformer block for global modeling, and finally fuses the local and global features in the
decode head to achieve the final segmentation result.

2.2. Detection of Power Lines Using Thermal Data

Thermal imaging enables the illustration of the otherwise invisible infrared spectrum,
which covers wavelengths between visible light (the only part of the electromagnetic
spectrum that human eye can “see”) and microwaves. An infrared (IR), or also referred to as
thermal, camera works by detecting and measuring the infrared radiation emanating from
objects (i.e., heat signature) and offers an easy, yet effective way of detecting temperature
differences in industrial three-phase electrical circuits and networks, quickly spotting
performance anomalies on the power transfer grid [20]. Combined with remotely controlled
drone technology, it constitutes a great and fast tool for enhancing general recon capabilities
in dangerous or difficult-to-observe conditions [21].

A detailed review of infrared thermography (IRT) for electrical energy infrastructure
monitoring was presented in [22,23], describing theoretical aspects, state-of-the-art ap-
proaches, technical specifications, concerns, and challenges with respect to thermographic
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processes for electrical energy applications. It was emphasized that more robust and au-
tomated solutions for detecting the key components of electrical equipment need to be
developed, since most of the existing approaches include manual segmentation based on
trivial and widely established image-processing and computer vision methods. Another
challenge lies in removing the noise and artifacts that usually impact the collected im-
agery in the field. Although several deep learning thermal-image-based defect detection
approaches in electrical equipment and energy distribution networks have been developed,
very limited ones focus on the recognition of power lines instead of other key components
such as power transformers, circuit breakers, surge arresters, cutout switch bus fuse connec-
tions, and insulations [24–27]. He et al. [28] used the temperature information of infrared
images to diagnose the fault of power transmission lines, applying the cellular automaton
technique for separating the regions of interest and the background, the Hessian matrix
for detecting the image transmission lines, and thresholding temperature information for
deciding the power lines’ defects. The validation results indicated a true-positive rate of
93.56% and false-positive one of 2.38%, yet this algorithmic framework is not suitable for
near-real-time and in situ assessments. A thermal-imaging-based convolutional neural
network was described in [29] for fault diagnosis in high-voltage equipment, controlled
by a threshold level based on outside conditions such as temperature and humidity. The
method achieved an improved rate of detection compared to the reference once, However,
the validation was performed on a limited dataset. A combination of RGB and infrared data
was proposed in [30] to track power lines and detect faults and anomalies when analyzing
UAV image data. The algorithmic scheme included edge detection approaches applied
on intensity images, yet broken edges and artifacts introduced results in non-connected
segments to represent powerlines. In addition, image registration from the two different
input sources was not taken into consideration.

3. Proposed Methodology

In order to perform power line network inspection operations, several processes and
tasks need to be completed. Our proposed framework combines artificial intelligence,
different kinds of sensors, a custom-made UAV, and a data management platform to cover
each step of the monitoring process, ensuring a harmonic and synchronized communication
and information exchange through and between each stage.

To obtain the binary mask required for segmenting the power lines from their back-
ground, a combination of two distinct processing methods is employed. One method
involves the processing of RGB data, while the other method focuses on the processing of
thermal data. Initially, a binary mask is predicted for every power line image via a trained
deep neural network. The thermal image is processed based on the Hough Transform
for the detection of power lines, while the binary output obtained from this processing
technique is employed as a complementary component to the RGB processing in order
to improve the line detection accuracy. To achieve consistency of image information at
the same time, both image registration and synchronized sensor triggering are required.
The latter is performed through the drone navigation software of the ground control sta-
tion, and the first is algorithmically achieved through image interpolation at a common
image resolution (the “higher” one, that of the RGB camera) and image registration to
ensure a commonly viewed image scene based on the a priori known sensor topology
(distance of sensor centers in all three axes of the real-world space, flight height indicating
distance from the ground) and characteristics (field-of-view and pixel size of each sensor).
A more detailed description on the image registration procedure developed in the proposed
framework is available in Appendix A.

The RGB binary output precisely delineates the lines of interest, but there are also
artifacts present in the image, such as small regions or gaps between the lines. On the other
hand, the segments extracted in the binary thermal image cover a wider area, resulting in
thicker yet connected lines of an increased number compared to the actual power ones,
under potentially various and multiple directions. This difference in thickness can be
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exploited to serve as a post-processing filtering mechanism for non-connected components
and noise.

The fusion of RGB and thermal binary images is achieved by combining the binary
masks resulting from the two procedures using a logical AND operator. Since only those ar-
eas where potential power lines are present in both the RGB and thermal images contribute
to the final output, the pixel-wise logical AND operation helps in reducing artifacts in
the background.

In addition, image morphology can be employed to deal with any slight gaps that
might have occurred in the binary line structure during the entire segmentation process.
More specifically, the two basic mathematical operations, opening and closing (under a
five pixel-sized and square-shaped structuring element parameter setup), are utilized in
sequential mode to first remove small noise fragments and finally bridge minor gaps in the
structure, while maintaining the form and shape of the line.

The synthesis of RGB and thermal images, enhanced by the application of morphologi-
cal operators, enables the effective and accurate identification of power lines, by combining
the advantages of each segmentation method and imaging modality while overcoming
their limitations. In Figure 1, a flowchart of the proposed method is presented.
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The proposed algorithmic framework focuses on the detection of power lines and
not of other types of electrical equipment, which is part of the future improvement of
the presented study and will be attempted using other image segmentation approaches.
Towards this direction, the flight plan along with the camera topology are specifically
designed for capturing the image data of the proper setup to sustain specific requirements:

• The drone is flying over the power network at a relatively close distance (~15–20 m
above the ground), so that power lines are clearly visible and positioned as close as
possible to the center of the captured image.

• The drone speed is relatively slow to facilitate time-efficient video processing across
the entire route without “empty” and “unprocessed” segments of the power network,
while pillar Global Positioning System (GPS) coordinates are loaded in the flight
mission plan to enable the smooth navigation of the vehicle.

• The camera sensors are positioned vertically with respect to the ground under a
gimbal topology.

3.1. RGB Data Processing
3.1.1. Architecture

The D-LinkNet Architecture is the most appealing method for the purpose of this work,
since it demonstrates an excellent performance on image segmentation tasks, especially
when it comes to linear structures. D-LinkNet consists of three main parts, an encoder,
center part, and decoder, as can be seen in Figure 2. The major advantage of this network is
the dilated convolutional layers in its center part. ResNet34 [31], which is pretrained on
ImageNet [32], is used as the encoding part. The decoder part remains the same as in the
LinkNet architecture [33]. The center part contains dilated convolution, both in cascade
mode and parallel mode. The dilation rates of the dilated convolution layers are 1, 2, 4, 8,
and 16.
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3.1.2. Datasets, Equipment, and Data-Capturing Framework

In preparation for an inspection and data-capturing flight, available Geographic Infor-
mation System (GIS) data on pylons and terrain mapping are loaded into the UAV ground
station to create an optimal drone route path over the area of interest at an approximate
height of 5 m above the power transmission lines. In addition, the designed flight plan
is submitted to the Civil Aviation Service for approval, keeping with all the safety rules
and regulations.

The proposed custom-made UAV platform is based on a quadcopter framework,
capable of carrying increased loads and providing the necessary functionality for the needs
of the proposed application, such as an increased autonomy, expandability, proper power
supply for microeletronics, smooth navigation, and motor management under low speeds.
In addition, it meets all the requirements for operating in accordance with the applicable
regulatory framework and can be adjusted to a variety of big infrastructure inspection
missions under varying weather conditions. The main processing core of the drone is an
NVidia GPU-enabled microcomputer, providing an increased time efficiency towards the
in situ data processing and proper handling of the attached sensors’ information. The
flight mission is separately manipulated by the own micro-computer control unit of the
aerial vehicle, which communicates with the ground control station. The optical system
consists of a high-resolution RGB camera and a thermal one attached to the drone skeleton
under a gimbal topology and fixed/known distances (this enables the registration of the
captured imagery), assuring that both image sensors are always placed in parallel with each
other and vertically with respect to the ground, independent of the drone flight angle and
movement pattern. To ensure video synchronization, the two cameras are simultaneously
triggered by the ground station software. The technical specifications of the a onboard
processing units and camera sensors are summarized in Table 1. The key components of
the UAV platform along with the connection topology are illustrated in Figure 3.

Table 1. Technical characteristics of proposed custom-made UAV-based power lines inspection
platform sensor load.

Component Model Specifications/Functionality

On-board processing unit NVIDIA Jetson AGX Xavier

• Micro-computer system for in situ data processing and
control of video streaming to ground station for drone
manipulation

• GPU enabled for increased Artificial Intelligence
performance and reduced processing time

RGB camera Sony Cyber-shot DSC-HX90V • Small-sized travel zoom category camera
• 1080 p, 30 fps selected functionality mode

Thermal camera FLIR Vue Pro

• Lightweight compact infrared imaging camera for precise
thermographic and radiometric aerial imaging

• Connectivity to MAVlink compatible autopilot and/or
R/C PWM outputs

• 640 × 512 resolution, 30 fps selected functionality mode

Additional units Raspberry PI 4 Model 4 GB

• Intermediate connectors between cameras and main
data-processing unit

• Two units attached to drone skeleton, one for each camera
• Enable data streaming to multiple sources under different

connectivity ports/modules
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Our custom-made vehicle prototype is a long-range and long-endurance quadcopter.
It uses four 6S 22,000 mAh lithium polymer semisolid-state batteries in a 2 in series first
and then the two 12S sets are in parallel, giving a total of a 12S (50 V) and 44,000 mAh
capacity. With the existing payload of the dual cameras, synchronized camera triggers, four
in total processing units, video convertors, and a number of DC-to-DC Power Supply Units
(PSUs) for all the processing units, the UAV-platform achieves an average consumption
of 40–45 amp, which gives it a rough flight time of 50 min and even a little more under a
coverage distance of nearly 10 km with a low speed of 2.5 m/s.

The Ground Control Station (GCS) uses 2.4 GHz Industrial, Scientific, and Medical
(ISM) communication with the UAV, from which there is actual remote control of the vehicle,
a Mavlink stream for telemetry data, and a live high-definition (HD) video stream. The
image resolution is cable @720p @30 fps|1080p @30/60 fps and currently uses 1080 at
30 frames. In addition, the Handheld GCS Bluetooth/WIFI/GPS module is used to stream
the Mavlink to Mission Planner 1.3.84, a Laptop GCS software, for the operators’ spotter to
also receive detailed information on the UAV performance.

The UAV outputs pulse-width modulation (PWM) and Mavlink commands for camera
control. Due to the fact that the FLIR thermal sensor is PWM-activated and the SONY visual
light one is capable of being activated over its Multiport using Precision Time Protocol
(PTP), we use a single PWM signal for both triggers and tune the PTP trigger in order for
both cameras to start simultaneously. From all the testing so far, for the moment, a trigger
command is given from the handheld GCS, and the average reaction time is estimated at
300 ms. It is noteworthy that a completely non-commercial custom cable is built, as is the
corresponding firmware for the connectivity of the RGB image sensor to the main drone
computer board, in order to achieve the dual-camera functionality and synchronization.

To achieve good detection results in diverse terrain, we choose to train the D-LinkNet
model on datasets that contain power lines in both mountain and urban scenes. The
datasets, named “Power Line Dataset of Mountain Scene” (PLDM) and “Power Line
Dataset of Urban Scene” (PLDU), were initially introduced in [10] and are available online
for free. To further enhance the training process, additional data are used, resulting
in a dataset of 771 training samples and 185 testing samples in total, all presenting a
“healthy” power network of 3 lines. These data are provided by the HEDNO S.A. (Hellenic
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Electricity Distribution Network Operator S.A.) department that administers the network
in the Chania area, Crete Island, Greece. The proposed algorithmic scheme focuses on
the accurate segmentation of power lines, however, an easy-to-use fault detection rule is
incorporated into the monitoring procedure to produce alarm messages when only two or
one power lines are detected.

As an additional improvement of the training stage, data augmentation strategies
are utilized to artificially expand the data availability. Data augmentation is performed
dynamically, creating varied versions of each image in the dataset during each epoch of
training. Specifically, during each epoch of the training process, every individual image is
subjected to a series of augmentation techniques, resulting in an augmented dataset that is
771 times larger than the original dataset. The techniques used include random rotation,
flipping, zoom, contrast, and brightness adjustment. Table 2 provides detailed information
about both the training and testing datasets.

Table 2. Dataset details.

Dataset Training Samples Testing Samples

PLDU 453 120
PLDM 237 50

HEDNO S.A. Video Frames 81 15
Final Dataset 771 185

Augmented Dataset Epoch Number * 771 185

Enhancing the dataset with the use of a data augmentation technique substantially
increases the diversity within the training data, which enables the model to identify lines
in a broader range of conditions, significantly improving its performance on unseen data
and mitigating the risk of overfitting.

3.1.3. Segmentation Process

We propose segmenting the power line images using a grid approach. The DLink-Net
divides the input image of size into a grid and predicts an output mask for each grid cell
separately. In the current study, we test a 4 × 5 grid approach. As the grid size decreases,
the thickness of the detected power lines increases. Using a bigger grid, the detected line
is thinner and more precise to its actual size. The grid size can be adjusted based on the
distance between the UAV camera and the power lines that need to be identified.

3.1.4. Implementation

The network was implemented in Python using Pytorch, on an NVIDIA GeForce GTX
1650 Ti GPU. A learning rate of 0.001 was set, an optimal value for achieving steady training
progress. To further fine-tune the model, the Adam optimizer was employed. Binary Cross-
Entropy (BCE) loss function was used to gauge the error between the prediction output
and the provided target value. The model was trained for six epochs, which was enough
for it to accurately recognize the structure of the power lines. Furthermore, ResNet18 was
adopted as the encoder in D-LinkNet.

3.2. Thermal Data Processing

An analysis of the thermal images for extracting power lines is performed, applying
Probabilistic Hough Transform [35,36], a widely established yet effective and robust ap-
proach for detecting known shapes that can be represented through mathematical formulas.
Compared to the initial Hough Transform, the Probabilistic one constitutes an improved
and advanced version of it, capable of identifying both the start and end points of line
segments and allowing for a more accurate detection of complex shapes in images and
continuous line following, connecting gaps and holes between extracted segments. In
our proposed implementation scheme, the Transform is applied to a thresholded output
of the V component of the Hue Saturation Value (HSV)-transformed instance of a ther-
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mal drone-captured image sequence. The parameter setup of the algorithm is as follows:
(a) distance resolution of the accumulator = 1 pixel, (b) accumulator threshold parameter = 50,
meaning that only those lines that get enough votes are returned (larger than the threshold),
(c) angle resolution of the accumulator = π/180 radians, (d) minimum line length = 200 pixels,
meaning that line segments shorter than this value are rejected, and (e) maximum allowed
gap between points on the same line to link them = 10 pixels. The resulting image of
this algorithmic stage represents the ideal and long line segments present in the scene
and serves as an indicative guide for smoothing the contours, connecting the gaps, and
removing the outliers present in the RGB deep-learning-based extracted sample of the
previous processing step.

4. Results

At first, the proposed method was evaluated on multiple frames extracted from the
UAV-captured videos, provided to us by the HEDNO S.A. department. To measure the
performance of the approach, 35 video frames were annotated using the LabelMe annotation
tool [37], which is available online for free. All the annotated images were converted into
binary ground truth masks. A sample frame of the videos acquired by HEDNO S.A. is
shown in Figure 4, along with its corresponding generated ground truth mask.
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Table 3 presents metrics, such as Accuracy, Precision, Recall, F1-Score, and Specificity,
which are calculated using Equations (1)–(5), respectively, to demonstrate the effectiveness
of the method after validation on four different real-scenario datasets containing 35 images
under different terrain and lighting conditions.

Accuracy = (TN + TP)/(TN + FP + TP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1-Score = 2 (Recall · Precision)/(Recall + Precision) (4)

Specificity = TN/(TN + FP) (5)
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Table 3. Model performance metrics.

Architecture Accuracy Precision Recall F1-Score Specificity

D-LinkNet 0.97 0.67 0.98 0.75 0.97
D-LinkNet + Thermal Processing 0.99 0.80 0.96 0.86 0.99

The accuracy measure evaluates the overall efficiency of the model’s predictions by
considering both positive and negative samples. The F1-score is an index used to measure
the predictive performance of a model. It combines precision and recall, which are two
otherwise competing metrics. Specificity measures the model’s ability to correctly identify
negative samples out of all the actual negative samples. It focuses on minimizing false
positives. The TP, FP, and FN stand for true positive, false positive, and false negative,
respectively. These values are calculated using confusion matrices.

The results in Table 3 show that the proposed method combining both RGB and
thermal processing outperforms the single-modality RGB processing utilizing the trained
D-LinkNet for binary mask generation. The higher accuracy indicates that the combined
processing provides an higher overall correctness in its predictions. The lower precision of
the sole D-LinkNet model suggests that it is more likely to produce false positives, which is
indicative of artifacts or noise present in its predictions. The presence of artifacts and noise
in the predicted binary masks is evident upon a visual inspection of Figure 5, which displays
the generated outputs from both D-LinkNet and D-LinkNet combined with Thermal
Processing. Examples of “clearly” detected power lines using our proposed methodology
are depicted in Figure 6. Apart from detecting power lines, the overall implementation
framework measures the number of parallel lines detected in the scene and, in the case of
missing one(s), produces an alert/notification for fault presence due to cable damage. By
matching the timestamp of each defect detection event through an online/offline video
analysis with the log file of the flight (containing, among others, the GPS data recordings),
the exact geolocation of the “faulty” power lines network segment is recovered, which is
crucial for proper and immediate actions by stakeholders. It is important to mention that
the average processing time for each frame under the programming code deployment on
the GPU-enabled board and preliminary testing is about 2.3 s, revealing the potential of
this proposed power line inspection methodology for in situ and/or on-board assessments.
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(b) thermal video frame, (c) ground truth image (d) D-LinkNet output mask, (e) proposed method
output mask, and (f) final segmented frame.
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5. Conclusions

The combination of two different data-processing methods applied to the data ob-
tained from UAVs appeared to improve fault detection results. Specifically, these two
processing methods act in a complementary manner, where one method (RGB Processing)
accurately identified the lines in detail, while the other method successfully eliminated in-
correct artifacts of the processing. Through the proposed custom-made UAV platform and
integrated optical data analysis framework, a robust, accurate, cost-effective (both in terms
of intelligent drone platform development and service provision costs for end-users under
a long-scale and long-term utilization basis), and adaptive tool for power lines inspection
was developed and validated, revealing its potential for automated assessments in the
field. Regarding the time consumption, preliminary tests on the execution time of the initial
version of the python code developed for the proposed power-lines-monitoring frame-
work revealed an average time of 100 s per frame on a CPU (Intel(R) Core(TM) i5-8300H
CPU @ 2.30 GHz), 14 s per frame on a Field Programmable Gate Array (FPGA—KV260
Xilinx model) module, and 2.3 s per frame on a proposed GPU-enabled microcomputer
system (Nvidia Jetson AGX Xavier, Nvidia, Santa Clara, CA, USA), revealing the potential
of our system for in situ data analysis applications. Our study based on drone inspec-
tion and fused optical data analysis built and provided a dataset of historical, unbiased
imagery records, facilitating the identification of critical areas and enabling a study on
power grid status alterations over time and the quick dispatch of service teams upon
fault event detection. The challenges of applying and adopting this technology include:
(a) actions for involving licensed and trained personnel who officially know Federal Avia-
tion Administration (FAA) drone regulations, (b) intensive electrical safety training when
dealing with high-voltage electrical networks, (c) the proper calibration and usage of cam-
era sensors to capture quality imagery data, and (d) adaptation to the new era coming soon
when flight regulations are relaxed and allow drones to cover bigger areas and eventually
operate largely autonomously, leading to Beyond Visual Line Of Sight (BVLOS) flights
under limited human intervention and at low altitudes over pipelines and power lines.
The future improvement of our work includes decreasing the processing time through
parallelization and code optimization, thermal image processing based on temperature
profiles extracted through properly selected raw image formats, and fault detection on
additional components of power transmission networks other than power lines.
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