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Abstract: A pattern reconfigurable antenna, composed of eight elements, is proposed for energy
harvesting applications. Pattern reconfigurable antennas are a promising technique for harvesting
from different wireless sources. The radiation pattern of the proposed antenna can be steered
electronically using an RF switch matrix, covering an angle range from 0 to 360 degrees with a step
size of 45 degrees. The proposed antenna primarily consists of an eight-dipole configuration that
shares the same excitation. Each dipole is excited using a balun comprising a quarter-wavelength
grounded stub and a quarter-wavelength open-circuit stub. The proposed antenna operates in the
frequency range of 4.17 to 4.5 GHz, with an impedance bandwidth of 7.6%. By switching between
the different switches, the antenna can be steered with a narrower rotational angle. In addition, the
antenna can work in an omnidirectional mode when all switches are in the ON state simultaneously.
The results demonstrate a good agreement between the numerical and experimental findings for the
reflection coefficient and radiation characteristics of the proposed reconfigurable antenna.

Keywords: dipole antenna; electronically steering; energy harvesting; reconfigurable antenna; RF
switch matrix

1. Introduction

Reconfigurable antennas are a type of antenna that can change their operating pa-
rameters, such as frequency, polarization, radiation pattern, and impedance, in real-time
or under specific conditions [1–8]. This reconfigurability allows the antenna to adapt to
different communication standards, frequency bands, or user requirements. Reconfigurable
antennas are gaining popularity due to their flexibility and potential to enhance the perfor-
mance of wireless communication systems. They can improve network coverage, increase
the data rate, reduce interference, and provide seamless connectivity. This technology has
significant implications for emerging applications, such as the Internet of Things (IoT), 5G
networks, and satellite communication.

Pattern reconfigurable antennas are capable of dynamically changing their radiation
patterns to accommodate varying operational requirements [9–12]. This type of antenna
holds the advantage of electronically adjusting its radiation beams in different directions,
eliminating the need for physical movement. With their ability to adapt to different direc-
tions, pattern reconfigurable antennas are gaining popularity in wireless communication
systems, offering a flexible solution for improving network coverage, enhancing signal
quality, and mitigating interference.

In this study, we propose a design for a pattern reconfigurable antenna specifically
tailored for energy harvesting applications. Energy harvesting involves converting am-
bient energy from the surrounding environment, such as electromagnetic waves, into
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electrical energy that can power small electronic devices [13–20]. Consequently, recon-
figurable antennas offer several advantages over conventional antennas when it comes
to energy harvesting. They can be optimized to efficiently harvest energy from various
sources and frequencies. By adjusting the antenna’s radiation pattern, polarization, or
frequency response, the harvested energy can be maximized even in dynamic and varying
environments. Moreover, reconfigurable antennas can be integrated with other energy
harvesting components, including rectifiers, impedance matching networks, and energy
storage devices, to form a comprehensive energy harvesting system. Considering these
aspects, the utilization of reconfigurable antennas in energy harvesting applications has
the potential to revolutionize wireless power transfer and facilitate the development of
self-powered and autonomous devices.

Multiple antennas are typically required to harvest from different RF sources [21–23],
which results in a larger system size. However, a pattern reconfigurable antenna offers a
suitable solution for harvesting energy from various sources located at different positions.
Depending on the signal intensity, the antenna can steer its direction using a dedicated DSP
control unit. The operational concept of using a pattern reconfigurable antenna for energy
harvesting is demonstrated in Figure 1. The reconfigurable antenna is connected to a control
unit, which in turn can determine the direction in which the antenna operates. Additionally,
the antenna is connected in parallel with a rectifying circuit through a matching circuit,
forming the rectenna structure. This rectenna can be connected to a rechargeable battery
or directly to a load. Reconfigurable antennas hold great promise for achieving reliable
and efficient energy harvesting systems. In this study, we focused on the receiving pattern
reconfigurable antenna and its electronic steering capability. To the best of our knowledge,
the proposed structure is the first to suggest a steerable pattern in energy harvesting
applications for scavenging from various RF sources.
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2. Antenna Configuration

Figure 2a illustrates the configuration of the proposed antenna design. It comprises
an eight-dipole configuration designed on the ground plane (bottom layer). The dipoles
are connected to a common feeding point, and each dipole has a director to provide a
better directional characteristic of the antenna. On the opposite side of the substrate,
the top layer has eight open-circuited stubs positioned to excite the dipoles. Each stub
excites a corresponding dipole through a coaxial probe feed. Photographs showing the
top and bottom views of the fabricated prototype for the proposed antenna are displayed
in Figure 2b,c. A balun, depicted in Figure 3a [24], is utilized for feeding the different
dipoles. However, in the proposed design, we deviate from directly connecting the feed
line to the other terminal of the dipole. Instead, we incorporate a λ/4 L-shaped open-
circuited stub, which provides greater flexibility in adjusting the resonance frequency for
the dipole structure. Consequently, the feeding structure comprises two parts, as illustrated
in Figure 3b. Part (a) represents the feed line, with a width of 0.5 mm, utilized for exciting
the dipole. Part (b) consists of an L-shaped open stub with a double width of the part (a),
which connects the feed line to the other terminal of the dipole antenna. At the open-ended
section of the L-shaped stub (at point o), the impedance is infinity. Thus, at a distance of
λ/4 from this open-end point, the stub functions as a short circuit with the ground plane,
connecting the feed line (at point f) with the other terminal of the dipole antenna on the
ground plane.
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Figure 2. (a) The 3D assembly configuration of the proposed antenna, (b) top view of the antenna’s
fabricated prototype, and (c) bottom view of the antenna’s fabricated prototype; a = 7 mm, b = 17 mm,
c = 4 mm, d = 10.5 mm, S = 2 mm, L1 = 12 mm, L2 = 2 mm, L3 = 1 mm, W1 = 7 mm, W2 = 2.5 mm,
W3 = 21 mm, W4 = 16 mm, W5 = 1 mm, and W6 = 0.5 mm.
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Figure 3. Configuration of (a) coaxial balun structure, and (b) balun used with the proposed antenna.

In Figure 2, eight switches (SW1, SW2, SW3, SW4, SW5, SW6, SW7, and SW8) are
strategically placed along the feeding lines to enable pattern reconfigurability. Initially,
during the simulation, the RF HPND-4005 diode series was employed to achieve the desired
reconfigurability. To replicate the behavior of physical diodes, an equivalent circuit model
consisting of a series R-L circuit in the ON state and a parallel R-C circuit in the OFF state
was utilized. However, for the actual measurements, an RF switch matrix (Mini-Circuits
USB-8SPDT-A18 [25]) with low insertion loss (0.2 dB) and high isolation (85 dB) was
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employed. Therefore, we substituted the equivalent circuit model with the S2P files of the
switch matrix during the full-wave simulation analysis, yielding nearly identical results.

The proposed antenna was fabricated on a thin Rogers RT/duroid 6002TM substrate,
featuring a thickness (h) of 0.76 mm, a dielectric constant (εr) of 2.94, a dielectric loss tangent
(tanδ) of 0.0012, and a copper thickness (t) of 0.0035 mm. The optimized geometrical
parameters of the proposed antenna are listed in the caption of Figure 2.

An equivalent circuit model is illustrated in Figure 4 to provide a more detailed
explanation and is proposed to simplify the operation of the proposed antenna. Initially,
the excitation is distributed among eight branches, each equipped with an RF switch. The
feed line is symbolized with an inductor denoted as Lf. Additionally, we adopted a four-
element equivalent circuit model [26] to represent the dipole antenna, which consists of
a parallel connection involving Rd, Ld, and Cd1 arranged in series with Cd2. Furthermore,
each λ/4 open-circuit stub, linked to every feed line, can be effectively described as a series
LC circuit (Lst, and Cst), as depicted in Figure 4.
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Figure 4. Equivalent circuit model of the proposed antenna structure.

3. Results and Discussion
3.1. Reflection Coefficient Results

To verify the reconfigurability property of the proposed antenna, the antenna was
designed and optimized using a full-wave analysis simulation (ANSYS High Frequency
Structure Simulator (HFSS)). Subsequently, the antenna was fabricated and measured
to validate the simulation results. Figure 5 shows a comparison between the numerical
and experimental results of the antenna’s reflection coefficient when SW1 is in the ON
state, while the remaining switches are in the OFF state. Notably, the proposed antenna
exhibited consistent reflection coefficient characteristics during pattern steering across
various dedicated radiation directions. For this study, a frequency range of 4 to 4.5 GHz
within the sub-6 GHz band was selected as the operational range. Nonetheless, the antenna
parameters can be adjusted to accommodate different frequency bands. The proposed
antenna operates within the range of 4.17 to 4.5 GHz, offering an impedance bandwidth
of 7.6%. Parametric studies were performed to investigate the impact of various antenna
parameters, such as the length of the λ/4 L-shaped open stub, dipole length, and feeding
location, as depicted in Figure 6.
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Figure 5. Numerical and experimental findings of the proposed pattern reconfigurable antenna when
SW1 is in ON state while the other switches are in OFF state.
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lengths of the dipole (Ld), and (c) different positions of the feed point.

By adjusting the length of the λ/4 open-circuit stub (LOS), the matching can be achieved
at different values of the operating frequency of the dipole, as shown in Figure 6a. When the
stub length is shorter, it achieves the matching at a higher frequency for the dipole antenna.
Conversely, increasing the stub length allows for matching adjustment at a lower frequency.
Furthermore, the operating frequency can be adjusted by controlling the length of the
dipole (Ld), as displayed in Figure 6b. Additionally, altering the feed position has an impact
on the input impedance and consequently the antenna matching. The study of the feed
location started when the feed point was at dipole as a reference position (when the feeding
is at point f, i.e., Lf = 0 mm), shown in Figure 6c. Subsequently, the feeding position shifted
away from the dipole towards the excitation position. This shift has a slight effect on the
resonance frequency, as demonstrated in Figure 6c, where the currents in the two parallel
lines of the ground plane counterbalance each other. However, it primarily influences
the matching, as the input impedance changes with the alteration of the feed location.
Therefore, the operating frequency and antenna matching can be adjusted by manipulating
these parameters (LOS, Ld, and Lf). As shown in Figure 6a, by adjusting the length of the
open stub we can tune the frequency of the proposed antenna from approximately 3.7 GHz
to 4.6 GHz. This frequency range falls within the proposed sub-6 5G spectrum for several
countries, such as the US (3.7–3.98 GHz), Canada (3.65–4 GHz), South Korea (3.7–4 GHz),
and Japan (3.6–4.1 GHz) [27]. We conducted our study around 4.3 GHz; however, the
frequency can be easily adjusted to different bands. Figure 7 presents the surface current
distribution for different states of the switches, revealing the concentration of current at
each branch when its corresponding switch is in the ON state.
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During the measurements, we utilized the Mini-Circuits USB-8SPDT-A18 RF switch
matrix, as depicted in Figure 8. This switch matrix is capable of operating from DC to
18 GHz and offers low insertion loss (0.2 dB) and high isolation (85 dB). It served a dual
function, both enabling ON/OFF switching operation and functioning as the control unit
for the electronic steering process. With this switch matrix, we can electronically switch
between different directions of the main beam of the proposed reconfigurable antenna,
providing flexibility and adaptability to the system. Below is a summary of the sequence
for performing the simulation and measurements:

• We initiated the simulation by employing an equivalent circuit model of a PIN diode
(HPND4005) [6].
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• During the measurements, we utilized a switch matrix instead of soldering the PIN
diodes. In this new scheme, the switch matrix replaced the use of PIN diodes, and the
antenna was connected to the switch matrix using only connecting wires. Figure 9 shows
the circuit diagram of the switch matrix, illustrating how the switches were connected.

• In order to consider the effect of using the switch matrix during the simulation, we
utilized the S2P files provided by the manufacturing company of the switch matrix.
These files characterize both the ON and OFF states of the switch matrix. To achieve
this, we removed the PIN diodes and substituted them with S2P blocks at the position
between the two terminals of each switch. Each S2P block was used to read the S2P
file for its respective switch.

• To incorporate the S2P blocks in the simulation model, we utilized the Keysight ADS
simulator by conducting a co-simulation between the schematic and momentum,
as illustrated in Figure 10. To switch between the different switching states in the
simulation, two S2P files were loaded into the S2P block (one for the ON state and the
other for the OFF state). For example, if only SW1 needed to be ON while the others
were OFF, we loaded the S2P block assigned to SW1 with the S2P file for the ON state,
while the other S2P blocks were loaded with the S2P file for the OFF state.

• On the other hand, to achieve the switching operation during the measurements, the
matrix’s software was used to control the states of the switches.

3.2. Radiation Characteristics

The numerical and measurement results for the 2D normalized radiation patterns
(E-plane and H-plane) of the proposed reconfigurable antenna, under various switch
configurations, are provided in Tables 1 and 2. In Table 1, the radiation results when
switches SW1, SW2, SW3, and SW4 are in the ON position are displayed. Meanwhile,
Table 2 showcases the results for the remaining four cases, where switches SW5, SW6,
SW7, and SW8 are in the ON position. The graphs clearly demonstrate that by altering the
states of the switches, a rotatable radiation pattern can be obtained. Through control of the
switching matrix states, the radiation pattern can be steered at angles of 0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, and 315◦. The antenna provides an average antenna gain of 4.2 dBi and a
radiation efficiency of 80%.
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Table 1. The 2D normalized polar plots of E-plane and H-plane radiation patterns when switches
SW1, SW2, SW3, and SW4 are in the ON position.

Switch
State

Plane

E-Plane H-Plane

SW1 is ON

SW2 is ON

SW3 is ON

SW4 is ON
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Table 2. The 2D normalized polar plots of E-plane and H-plane radiation patterns when switches
SW5, SW6, SW7, and SW8 are in the ON position.

Switch
State

Plane

E-Plane H-Plane

SW5 is ON

SW6 is ON

SW7 is ON

SW8 is ON
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Furthermore, by activating more than one switch in the ON state, the radiation pattern
can be steered with a smaller angular step. For instance, when both SW1 and SW2 are
simultaneously in the ON state, the main radiation pattern can be directed towards the
midpoint between the dipoles of these two switches (at φ = 22.5◦). A case study showcasing
the connection of multiple switches is depicted in Figure 11. The figure displays the
radiation patterns achieved by connecting SW1 and SW2, as well as SW3 and SW4, resulting
in radiation patterns directed at φ = 22.5◦ and φ = 112.5◦, respectively. Moreover, when all
switches are set to the same state, i.e., all switches are simultaneously in the ON state, the
antenna operates in an omnidirectional mode, as demonstrated in Figure 12. The proposed
dipole antenna exhibits linear polarization characteristics, as depicted in Figure 13. The
antenna’s axial ratio values in the main direction of the radiation pattern fall within the
range of 30 to 40 dB. The radiation pattern measurement setup that was employed to assess
the radiation characteristics of the proposed antenna is illustrated in Figure 14.
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Figure 11. The 3D radiation patterns when: (a) SW1 and SW2 are ON, and (b) SW3 and SW4 are ON.
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4. Conclusions

We propose a pattern reconfigurable antenna specifically designed for energy har-
vesting applications. This antenna possesses the ability to electronically steer at various
rotational angles, covering a full 360◦, enabling it to effectively scavenge energy from
diverse sources located at different positions. To achieve matching, a balun comprising a
λ/4 open-circuit stub was employed. The fabricated antenna was validated by verifying its
performance at different directions using an RF switch matrix. The comparison between
the numerical and measurement results demonstrates a high level of agreement, affirming
the accuracy and reliability of the proposed antenna design.
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