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Abstract: Skin cancer is considered a dangerous type of cancer with a high global mortality rate.
Manual skin cancer diagnosis is a challenging and time-consuming method due to the complexity of
the disease. Recently, deep learning and transfer learning have been the most effective methods for
diagnosing this deadly cancer. To aid dermatologists and other healthcare professionals in classifying
images into melanoma and nonmelanoma cancer and enabling the treatment of patients at an early
stage, this systematic literature review (SLR) presents various federated learning (FL) and transfer
learning (TL) techniques that have been widely applied. This study explores the FL and TL classifiers
by evaluating them in terms of the performance metrics reported in research studies, which include
true positive rate (TPR), true negative rate (TNR), area under the curve (AUC), and accuracy (ACC).
This study was assembled and systemized by reviewing well-reputed studies published in eminent
fora between January 2018 and July 2023. The existing literature was compiled through a systematic
search of seven well-reputed databases. A total of 86 articles were included in this SLR. This SLR
contains the most recent research on FL and TL algorithms for classifying malignant skin cancer.
In addition, a taxonomy is presented that summarizes the many malignant and non-malignant
cancer classes. The results of this SLR highlight the limitations and challenges of recent research.
Consequently, the future direction of work and opportunities for interested researchers are established
that help them in the automated classification of melanoma and nonmelanoma skin cancers.

Keywords: transfer learning; federated learning; melanoma; dermoscopy; skin cancer

1. Introduction

Skin cancer is the most common type of cancer. Clinical screenings are performed first;
then, biopsy, histological tests, and dermoscopy are performed to confirm the diagnosis [1].
Skin cancer appears when the normal growth of skin cells is affected, causing a mutation in
the DNA and eventually leading to skin cancer. Exposure to ultraviolet rays is considered
to be the main cause of skin cancer. However, several other factors, such as a light skin
tone, exposure to radiation and chemicals, severe skin injuries/burns, a weak immune
system, old age, and smoking, also lead to skin cancer [2]. According to data compiled
by the WHO, cancer is the main cause of death globally. They reveal that cancer cases
are increasing rapidly, with one in six deaths occurring due to this deadly disease. In
2018, 18.1 million people had cancer globally, and approximately 9.6 million died from this
disease. It is predicted that these statistics will nearly double by 2040 and approximately
29.4 million people will be diagnosed with cancer [3]. The most frequently diagnosed
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cancers worldwide are stomach, lung, liver, skin, cervix, breast, and colorectal [4]. This
disease is the most severe and critical issue in all generations of populations, regardless
of social status or wealth. At an early stage, the treatment and diagnosis of cancer can
significantly decrease the number of deaths [5]. Researchers are mainly concerned with
diagnosing cancer early by employing artificial intelligence-based approaches [6]. There
are several classes of skin cancer that are considered nonmelanoma cancers. Basal cell
carcinoma (BCC), Merkel cell carcinoma (MCC), and squamous cell carcinoma (SCC) are
examples of nonmelanoma skin malignancies. These nonmelanoma cancers are considered
to be less aggressive than melanoma. Furthermore, these nonmelanoma cancers are more
treatable than melanoma [7].

The most malignant type of skin cancer is melanoma, which has a high misdiagnosis
rate due to its potential for metastasis, recurrence, and vascular invasion [8]. It is the 19th
most common cancer among human beings. In 2018, approximately 300,000 new cases of
the disease were found. Moreover, 4740 males and 2490 females died from melanoma in
2019 [9]. A report issued by the American Cancer Society in 2022 calculated that about
99,780 people will be infected with melanoma in the U.S. and approximately 7650 human
beings are expected to die from it [10]. The actual cause of melanoma has still not been
found, but various factors like environmental and genetic factors and ultraviolet radiation
are the primary causes of skin cancer. Melanoma cancer originates in skin melanocytes,
which make dark pigments in the hair, eyes, and skin [11]. Over the last few years,
melanoma cancer cases have been gradually increasing. If the cancer is detected at the initial
level, a minor surgical process can increase the possibility of recovery. The dermoscopy
imaging technique is a popular non-invasive technique widely used by dermatologists to
evaluate pigmented skin lesions [12]. Through dermoscopy, the structure becomes more
visible for examination by the dermatologist because it enlarges the lesion’s position or
surface [13,14]. However, this imaging technique can only be effective if it is used by trained
and expert dermatologists because it is wholly based on the physician’s experience and
optical acuteness [15]. These challenges and issues stimulate researchers to discover new
strategies and methods for diagnosing and visualizing melanoma and nonmelanoma skin
cancer. A computer-aided diagnosis (CAD) system, applied as a traditional process, due
to its convenient and user-friendly procedure which assists young and non-experienced
dermatologists in diagnosing melanoma. A proficient and experienced dermatologist
can achieve 65% to 75% precision in classifying melanoma cancer through dermoscopy
photographs [16]. The automated process of melanoma diagnosis from medical imaging
can help dermatologists in their clinical routine. The challenges in the field of dermatology
drive research groups to place their primary attention on the diagnosis of melanoma by
using AI-based tools. The utilization of artificial intelligence (AI) for the diagnosis of skin
cancer has recently gained a great deal of attention.

Researchers have attained many advancements using AI, mainly in finding patterns
of diseases from medical imaging [17]. AI-based tools and applications in the field of
dermatology are being designed to analyze the severity of psoriasis [18], and these AI-
based tools involve the development of a computer algorithm that can self-learn specific
dermatological tasks, such as classifying skin lesions as melanoma or nonmelanoma skin
cancer [19,20]. Implementing federated learning-, deep learning-, and transfer learning-
based technologies yields massive benefits for patients and dermatologists in predicting
and diagnosing suspicious skin lesions. In one meta-analysis report, an AI-based tool’s
diagnostic true positive rate was more significant than the dermoscopy technique (91%
versus 88%) [21].

In this SLR, we pursued different federated and transfer learning algorithms, bench-
mark public databases, and private and non-listed datasets for melanoma classification. We
conducted this SLR to provide a comprehensive literature source on transfer and federated
learning [22] techniques for the diagnosis of malignant melanoma and nonmelanoma skin
cancer [23,24]. Over the past few years, substantial research has been conducted on the
automatic diagnosis of melanoma and other cancers by using transfer learning and deep
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learning techniques [23,25–27]. To our knowledge, no SLR is available on diagnosing
melanoma disease through CNN-based pretrained models. Only one research paper was
on deep learning approaches for classifying malignant melanoma skin cancer. Collecting
information and assessing, summarizing, and classifying state-of-the-art models remain
crucial for SLRs [28]. The primary purpose of this comprehensive SLR is to provide a
state-of-the-art summary representing the scope of transfer learning [29,30] and federated
learning models [31] for the detection of melanoma and nonmelanoma skin cancer, and also
to demonstrate the primary inadequacy of existing approaches and fields of research where
further enhancement should soon be carried out. A taxonomy diagram of melanoma and
nonmelanoma skin cancer is proposed by exploring and investigating recent state-of-the-art
studies. Furthermore, this study identifies the challenges, open issues, opportunities, and
modern research trends for melanoma and nonmelanoma skin cancer diagnosis.

The present study is organized as follows: In Section 2, we provide a thorough descrip-
tion of the research method utilized to search, screen, and select the literature. Section 3
presents relevant review works conducted for diagnosing melanoma and nonmelanoma
skin cancer using federated and transfer learning methods. In Section 4, we present a
performance evaluation of different methods. Section 5 describes the available datasets
for the diagnosis of skin cancer. Section 6 provides the results and discussion. Section 7
contains the taxonomy. In Section 8, the main findings and research gaps are discussed.
Finally, in Section 9, we conclude this study.

2. Materials and Methods

According to Petersen et al. [32], the main objective of an SLR is to provide an overview
of a research area and types of research studies and identify the results available. The
primary goal of an SLR is to map the number of research publications over time to identify
various research trends; the secondary goal is to explore the research publication forum.
The first step of this study was to set up an SLR process. This helps to identify the search
strategy for published related articles. This procedure includes research objectives, research
questions, keywords of the search string for the identification of the research publications,
publication sources such as conferences, journals, and symposiums, and the study selection
process based on exclusion and inclusion criteria. Figure 1 shows an overview of this SLR.
This SLR aimed to find the techniques, federated and transfer learning classifiers, and
various datasets for diagnosing melanoma and nonmelanoma skin cancer.
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2.1. Research Objectives (ROs)

The overall objective of this SLR was to summarize and gain insight into the latest pre-
trained and federated learning techniques for the detection of melanoma and nonmelanoma
skin cancer. The ROs of conducting this SLR were:

• To emphasize the latest research trends in TL and FL methods for detecting melanoma
and nonmelanoma cancer;

• To explore the existing approaches and present an SLR of these approaches based on
classification performances;

• To explore different types of available datasets for melanoma and nonmelanoma diagnosis;
• To propose a taxonomy to emphasize effective frameworks for melanoma diagnosis;
• To explore the state-of-the-art research trends, opportunities, and challenges for other

researchers in diagnosing melanoma.

2.2. Research Questions (RQs)

This systematic mapping study aimed to summarize and gain insight into the latest
pretrained and federated learning techniques for detecting melanoma and nonmelanoma
skin cancer. This systematic mapping study consists of three research questions to obtain
a comprehensive review of this topic. The possible answers to these research questions
were extracted through the published literature, as stated in the proposed methodology by
Kitchenham et al. [33]. The research questions along with the corresponding motivations
are illustrated in Table 1.

Table 1. Research questions (RQs).

No. Research Question Motivation

RQ1

What types of the best available methods
are used for the detection of melanoma and
nonmelanoma skin cancers from clinical
and dermoscopic images?

To explore different types of transfer
learning- and federated learning-based
approaches that are used for melanoma
and nonmelanoma skin cancer diagnosis
from clinical and dermoscopic images.

RQ2

What types of metrics are used to
determine the efficacy of various
classification algorithms for melanoma and
nonmelanoma skin cancer diagnosis from
clinical and dermoscopic images?

To identify the performance metrics of
federated- and transfer learning-based
algorithms like true positive rate (TPR),
true negative rate (TNR), precision (PPV),
accuracy (ACC), and area under the
curve (AUC).

RQ3

What types of datasets are available for the
detection of melanoma and non-melanoma
skin cancer? What is the credibility and
reliability of these datasets?

To explore the availability of publicly
available datasets as well as non-listed,
private datasets.

2.3. Search Strategy

The articles, which used TL and FL algorithms using dermoscopy images for the diag-
nosis of melanoma and nonmelanoma skin cancers, were identified by searching 7 different
well-reputed venues: the IEEE Digital Library, the Wiley Library, Springer, the ACM Digital
Library, Science Direct, Scopus, Ovid MEDLINE, and conference proceedings for articles
online from January 2018 to July 2023. Manual search operations were also performed for
related published articles and citations, which might have been omitted throughout the
search. The amalgamation of primary, secondary, and additional keywords was used to
make search strings to find related articles from databases. Moreover, “AND operators”
were used for different-level keywords and “OR operators” were used for same-level
keywords. The following search terms were formulated with the amalgamation of search
keywords: (“transfer learning” OR “pre-trained model” OR “neural network” OR “AI” OR
“artificial intelligence” OR “deep learning” OR “federated learning”) AND (“Melanoma”
OR “skin lesion” OR “skin cancer” OR “non-melanoma”) AND (“detection” OR “classifica-
tion” OR “diagnosis”). The retrieved results from different information sources consisted
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of the paper’s title, abstract, and publication source, which were further filtered according
to the exclusion and inclusion selection criteria and saved in a personal knowledge base.
Furthermore, a word cloud analysis of author-indexed keywords revealed that the empha-
sis of the articles was on “melanoma”, ”non melanoma” “cancer”, “diagnosis”, “skin”,
“transfer”, “federated”, “dermatologists”, and “medical”, as graphically represented in
Figure 2.
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2.4. Study Inclusion and Exclusion Criteria

The selection procedure aimed to find and include the most important research publi-
cations on skin cancer. We only examined the article once if it appeared in several sources.
The inclusion criteria of the acquired research articles were limited by the search strategies.
For each selected article, we independently evaluated its eligibility by screening the titles
of the search results and abstracts. After evaluating the papers that met the established
inclusion criteria, our next step was to establish the exclusion criteria to omit articles that
met at least one of the subsequent exclusion criteria (EC):

EC1. Research studies that were not focused on the classification of skin cancer without medical
images were eliminated.

EC2. Research studies that did not address any of the research questions presented in our SLR were
eliminated.

EC3. Research that presented a review on skin cancer was eliminated.

EC4. Research studies that were not based on skin cancer classification were eliminated.

2.5. Screening and Selection Criteria

The study selection process was accomplished by finding the most related research
studies. Papers that provided a significant contribution to research were selected in this
systematic review. The PRISMA method was utilized in this research. Initially, 11,606 arti-
cles were identified, as shown in Figure 3. The overall search process yielded 984 articles
from IEEE Xplore, 6113 from Science Direct, 239 from the ACM Digital Library, 2817 from
Springer Link, 909 from Medline, 45 from Scopus, and 499 from the Wiley Online Library.
Most articles in the search results were unrelated to our research questions. In the following
stages, duplicate and irrelevant articles were manually excluded based on titles. A total of
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11,548 articles were screened. Articles were omitted based on exclusion criteria and, finally,
86 studies were finalized and included in this SLR.
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inclusion process of studies in this systematic review, including the reasons for excluding all reviewed
full-text articles.

2.6. Search Results

The 86 included studies were obtained from different publications, including journals,
books, symposiums, and conferences. It was computed that 76% of the selected papers
were published in journals, while 1% of papers were book chapters and symposiums,
respectively. However, 22% of the 86 selected studies were published at conferences. The
overall distribution of all 86 included studies and the journal-wise and conference-wise
distribution of the articles are presented in Figure 4.
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3. Methods for the Detection of Melanoma and Nonmelanoma Skin Cancer (RQ1)

In the field of transfer learning and federated learning, there are several new algo-
rithms and techniques for classifying melanoma and nonmelanoma skin cancer. In this
section, state-of-the-art methods dependent on transfer learning and federated learning
are examined.

3.1. Fully Convolutional Network (FCN)-Based Methods

Some studies used FCN-based methods to classify skin cancer, such as Lequan
et al. [34], which proposed a two-stage approach for automated skin cancer recognition
based on deep CNNs. FCRN and deep residual DRN networks were used for lesion seg-
mentation and classification. The residual learning technique is utilized for the training
of both deep networks. Moreover, the proposed approach creates a grade map of the skin
lesion from the images and then the lesion mask is cropped and resized. The cropped
lesion patch is transferred for melanoma classification. However, Al-Masni [35] proposed
an integrated deep learning two-level framework for segmenting and classifying multiple
skin lesions. Firstly, an FRCN is applied to dermoscopic images to segment the lesion
boundaries. To differentiate between various skin lesions, the segmented skin lesions are
fed into pretrained algorithms, such as DenseNet-201, Inception-ResNet-v2, ResNet-50,
and Inception-v3. The pre-segmentation phase enables these classifiers to memorize and
learn only specific lesion features while ignoring the surrounding region.

In comparison, Jayapriya and Jacob [36] also designed an architecture consisting of
two fully convolutional networks (FCNs) based on pretrained GoogLeNet and VGG-16
models. These hybrid pretrained networks extract more specific features and give a better
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segmentation output than an FCRN. The segmented lesion image is next passed into a DRN
and a hand-crafted feature for classification purposes. The SVM classifier is implemented
for classifying various skin lesions into nonmelanoma and melanoma lesions. Elsewhere,
Khan et al. [37] suggested a method for the multiclass localization and classification of lesion
images based on MASK-RCNN and Resnet50 along with a feature pyramid network (FPN).

Moreover, Al-Masni et al. [38] presented an integrated model based on an FRCN and
ResNet-50 network. An FRCN is implemented on dermoscopy images to segment the
boundaries of the lesion images and then passed to a pretrained ResNet-50 deep residual
network by fine-tuning the model for the classification of various lesion images. The basic
architecture of a CNN model used for classifying melanoma and nonmelanoma is presented
in Figure 5.
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3.2. Hybrid Methods

Many studies used hybrid methods for the diagnosis of skin cancer. Kassem et al. [39]
proposed an architecture that can accurately classify eight different kinds of skin lesion
images, even imbalanced images between classes. The proposed method used a pretrained
GoogLeNet architecture by incorporating supplementary filters onto every layer for im-
proved feature extraction and less background noise. The model was implemented to
classify the lesion by changing various layers in two ways. This change aimed to identify
outliers or unknown images. The performance metrics of the architecture increased when
all the layers’ weights were fine-tuned instead of performing fine-tuning only on replaced
layers. Gavrilov et al. [40] used a pretrained neural network, Inception v3, that was trained
on a large image dataset. Miglani et al. [41] used a novel scaling pretrained model called
EfficientNet-B0 to classify lesion images in various categories by using transfer learning.
Moreover, Hosny et al. [42] developed a method based on pretrained AlexNet and transfer
learning to classify seven different kinds of lesions.

Esteva et al. [43] implemented a pretrained GoogLeNet Inception v3 classifier for the
binary classification of two problems: benign nevi versus malignant melanomas and be-
nign seborrheic keratosis versus keratinocyte carcinomas. Furthermore, Majtner et al. [44]
suggested a two-part method consisting of a feature extraction and feature reduction pro-
cess based on deep learning with the LDA approach for melanoma detection. Pretrained
AlexNet was used for feature extraction and then the LDA approach was employed to
optimize features, which helped decrease the set of features and enhance the precision of
classification. Ather et al. [45] proposed a multiclass classification framework for identifica-
tion and optimal discrimination between different skin lesions, both benign and malignant.
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Moreover, three deep models, namely ResNet-18, VGG16, and AlexNet, were suggested
by Mahbod et al. [46] for the classification of three lesion classes: benign nevi, malignant
melanoma, and seborrheic keratosis. In comparison, Namozov et al. [47] suggested a
deep method with adaptive linear piecewise (APL) activation units for the classification
of melanoma that can attain superb melanoma recognition performance. Hosny et al. [48]
suggested a deep CNN that classifies three different lesion types, melanoma, atypical nevus,
and common nevus, from color images of skin cancer in addition to image augmentation
and fine-tuning. To categorize the three types of lesions, the last layer of a pretrained
AlexNet is modified. This technique can work directly with any photographic or dermo-
scopic image and does not need preprocessing. Devansh et al. [49] developed an automated
technique for melanoma diagnosis that specially deals with skin lesion image datasets that
are small-scale, extremely imbalanced, and image occlusions. However, Maron et al. [50]
examined the brittleness of three pretrained VGG16, ResNet50, and DenseNet121 CNNs
in image analysis and showed brittleness, such as rotation, scaling, or minor changes in
the input image, which have a significant effect on the classification of the CNN. Rivera
et al. [51] proposed a technique for the early detection of melanoma that is implemented on
mobile phones or embedded devices. The proposed system uses a pretrained MobileNet.
Khan et al. [52] suggested a deep neural network model based on RESNET-50 and RESNET-
101 with a kurtosis-controlled principal component (KcPCA) approach. In contrast, Khan
et al. [53] implemented a CAD system based on MASK-RCNN and a DenseNet deep model
for lesion detection and recognition. Georgakopoulos et al. [54] compared two different
CNN models without and with pretraining in images. The transfer learning technique was
applied in the case of the pretrained model instead of randomly initialing the weights of the
CNN. The consequences of this kind of hybrid method demonstrate that the classification
results are significantly enhanced. Kulhalli et al. [55] provided a hierarchical classifier
approach based on CNN and transfer learning. The proposed branched approach uses the
pretrained InceptionV3 model for skin lesion classification. The structure of the hybrid
methods based on transfer learning classifiers is presented in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 28 
 

 

model’s reliability. The precision rate was determined to be 94.28%. Lastly, the F1-score, 

which combines precision and recall, was calculated to be 93.93%, further affirming the 

model’s overall performance in accurately classifying skin cancer disorders. 

 

Figure 6. Hybrid CNN model with RNN for classifying melanoma and nonmelanoma skin disease. 

Karri et al. [56] developed a model by using two notable technical advancements: the 

evaluation of a two-stage, domain-to-domain transfer learning assessment, which in-

volves model-level and data-level transfer learning that is carried out by fine-tuning two 

datasets, namely MoleMap and ImageNet. The authors introduced nSknRSUNet, a deep 

learning network designed for the segmentation of skin lesions. This network demon-

strates good performance by using large receptive fields and feature fusion techniques to 

enhance spatial edge attention. The MoleMap and HAM10000 datasets were used to con-

duct a comparative analysis between the model’s predictions and images of real skin le-

sions originating from two separate clinical settings. The proposed model in data-level 

transfer learning, when applied to the HAM10000 dataset, attained a Dice Similarity Co-

efficient (DSC) of 94.63% and an accuracy of 99.12%. The MoleMap dataset demonstrated 

that the suggested model achieved a Dice Similarity Coefficient (DSC) of 93.63% and an 

accuracy of 97.01%. 

Several research studies used ensemble methods, like Yu et al. [57], who proposed a 

network ensemble strategy to combine deep convolutional descriptors for automated skin 

lesion detection. In this proposed method, pretrained ResNet50 and VGGNet are adopted. 

Multiple CNNs are trained using a data augmentation technique specifically designed 

based on illuminant projection and color recalibration. Then, output convolution activa-

tion maps of each skin image are extracted from each network and the local deep features 

are selected from the object-relevant region. Finally, the Fisher kernel encoding-based 

method combines these deep features as image illustrations to classify lesions. SVM is 

then used to classify skin lesions accurately. Pal et al. [58] used an ensemble of three fine-

tuned DenseNet-121, MobileNet-50, and ResNet50 architectures to predict the disease 

class. 

Alizadeh et al. [59] proposed an ensemble method based on two CNN architectures, 

including a CNN model composed of nine layers and a pretrained VGG-19 CNN model 

combined with other classifiers. Milton [60] used an ensemble of transfer learning tech-

niques including InceptionV4, SENet154, InceptionResNetV2, PNASNet-5-Large, and all 

Figure 6. Hybrid CNN model with RNN for classifying melanoma and nonmelanoma skin disease.

3.3. Ensemble Methods

Tahir et al. [27] introduced a CNN-based method named DSCC_Net for the classifica-
tion of skin cancer. ISIC 2020, DermIS, and HAM10000 were the three publicly accessible
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benchmark datasets utilized to evaluate the performance of the proposed methodology.
Moreover, the performance of DSCC_Net was also compared with six baseline deep learn-
ing methods. Furthermore, the researchers used the SMOTE to effectively tackle the
problem of underrepresented classes. The suggested DSCC_Net model showed a high level
of effectiveness in accurately classifying the four distinct categories of skin cancer disorders.
It achieved an impressive area under the curve (AUC) value of 99.43%, indicating its strong
discriminatory power. Moreover, the model exhibited a commendable accuracy rate of
94.17%. The recall rate was found to be 93.76%, further highlighting the model’s reliability.
The precision rate was determined to be 94.28%. Lastly, the F1-score, which combines
precision and recall, was calculated to be 93.93%, further affirming the model’s overall
performance in accurately classifying skin cancer disorders.

Karri et al. [56] developed a model by using two notable technical advancements: the
evaluation of a two-stage, domain-to-domain transfer learning assessment, which involves
model-level and data-level transfer learning that is carried out by fine-tuning two datasets,
namely MoleMap and ImageNet. The authors introduced nSknRSUNet, a deep learning
network designed for the segmentation of skin lesions. This network demonstrates good
performance by using large receptive fields and feature fusion techniques to enhance spatial
edge attention. The MoleMap and HAM10000 datasets were used to conduct a comparative
analysis between the model’s predictions and images of real skin lesions originating from
two separate clinical settings. The proposed model in data-level transfer learning, when
applied to the HAM10000 dataset, attained a Dice Similarity Coefficient (DSC) of 94.63%
and an accuracy of 99.12%. The MoleMap dataset demonstrated that the suggested model
achieved a Dice Similarity Coefficient (DSC) of 93.63% and an accuracy of 97.01%.

Several research studies used ensemble methods, like Yu et al. [57], who proposed a
network ensemble strategy to combine deep convolutional descriptors for automated skin
lesion detection. In this proposed method, pretrained ResNet50 and VGGNet are adopted.
Multiple CNNs are trained using a data augmentation technique specifically designed
based on illuminant projection and color recalibration. Then, output convolution activation
maps of each skin image are extracted from each network and the local deep features are
selected from the object-relevant region. Finally, the Fisher kernel encoding-based method
combines these deep features as image illustrations to classify lesions. SVM is then used
to classify skin lesions accurately. Pal et al. [58] used an ensemble of three fine-tuned
DenseNet-121, MobileNet-50, and ResNet50 architectures to predict the disease class.

Alizadeh et al. [59] proposed an ensemble method based on two CNN architectures,
including a CNN model composed of nine layers and a pretrained VGG-19 CNN model
combined with other classifiers. Milton [60] used an ensemble of transfer learning tech-
niques including InceptionV4, SENet154, InceptionResNetV2, PNASNet-5-Large, and all
architectures to classify seven different lesion classes. Chaturvedi et al. [61] implemented
a method that uses five pretrained CNN models, including ResNetXt101, NASNet Large,
InceptionResNetV2, InceptionV3, and Xception CNN, and four ensemble models to dis-
cover the best model for the multiclassification of skin cancer. However, Amirreza et al. [62]
proposed a method that ensembles deep extracted features from several pretrained models.

Le et al. [63] provided an ensemble framework based on modified ResNet50 models
with a focal loss function and class weight. Moreover, Mahbod et al. [64] described the
effect of dermoscopic images of different resolutions on the classification performance of
different fine-tuned CNNs in skin lesion analysis. Moreover, a novel fusion approach was
presented by assembling the results of multiple fine-tuned networks, such as DenseNet-
121, ResNet-50, and ResNet-18, that were trained with various dimensions and sizes of
dermoscopic images. Nyiri and Kiss [65] suggested multiple novel methods of ensemble
networks, such as VGG16, VGG19, ResNet50, Xception, InceptionV3, and DenseNet121,
with differently preprocessed data and different hyperparameters to classify skin lesions.
Bi et al. [66] implemented the CNN ensemble technique to classify nevi versus seborrheic
keratosis versus melanoma from dermoscopic images; for this purpose, instead of training
multiple CNNs, they trained three ResNet-like ResNet multiclasses for three classes; the
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second one is the other two lesion classes versus melanoma or the other two lesion classes
versus seborrheic (ResNet binary) and for the third one, they ensembled the first two
methods to obtain the final results (ResNet (ensemble)) by fine-tuning a pretrained CNN.

Wei et al. [67] proposed an ensemble lightweight melanoma recognition CNN model
based on MobileNet and DenseNet. Harangi et al. [68] outlined that the ensemble of the
different CNN networks enhanced the individual accuracies of models to classify different
skin lesions into related classes such as seborrheic keratosis, melanoma, and benign. They
fused the output layers of pretrained GoogLeNet, ResNet, AlexNet, and VGGNet CNN
models. The best fusion-based methods were used to aggregate pretrained models into
one framework. Finally, the extracted deep features were classified based on a sum of
maximal probabilities. The overview of the ensembling of CNN-based models is depicted
in Figure 7.
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3.4. Federated Learning

Recently, federated learning (FL) has been proposed to train decentralized models
in a privacy-preserved fashion depending on labeled data on the client side, which are
usually not available and costly. To address this, Bdair et al. [31] proposed a federated
learning method known as the FedPerl framework for classifying skin lesions using a
multisource dataset. This study also applied various methods to improve privacy, hide
user identity, and minimize communication costs. Lan et al. [69] proposed a MaOEA-IS
based on federated learning to solve the privacy and fragmentation of data to a better
extent for skin cancer diagnosis. Hossen et al. [70] applied federated learning based on a
convolutional neural network to classify skin lesions using a custom skin lesion dataset
while ensuring data security. Agbley et al. [71] proposed a federated learning model for
melanoma detection that fused lesion images and their corresponding clinical metadata
while ensuring privacy during training. Hashmani et al. [72] suggested an adaptive
federated learning-based model with the capability of learning new features consisting of
global point (server) and intelligent local edges (dermoscopy) that can correctly classify
skin lesion dermoscopy images and predict their severity level. Moreover, Bdair et al. [73]
proposed a semi-supervised FL framework motivated by a peer learning (PL) approach
from educational psychology and ensemble averaging from committee machines for lesion
classification in dermoscopic skin images. A block diagram of FL for the classification of
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skin lesion images is illustrated in Figure 8. In addition, Table 2 presents an overview of FL
and transfer learning (TL) classifiers for skin disease classification.
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Table 2. Federated and transfer learning classifiers for the classification of melanoma.

Ref Training Algorithms Archi. Datasets Image Modality

[17] Hybrid deep CNN DCNN HAM10000, ISIC 2018 Dermoscopy
[18] SLDCNet, FrCN DCNN ISIC 2019 Dermoscopy
[31] FedPerl FL Multisource combined dataset Dermoscopy
[42] MaOEA-IS (federated learning) FL ISIC 2018 Dermoscopy
[44] AlexNet + LDA CNN ISIC Archive Dermoscopy
[45] ResNet-18, VGG16, AlexNet DNN ISIC 2016, ISIC 2017 Dermoscopy
[47] LeNet + Adaptive linear piecewise function CNN ISIC 2018 Dermoscopy
[48] AlexNet DNN PH2 Dermoscopy
[66] DenseNet DCNN ISIC 2017, HAM10000 Dermoscopy
[67] MobileNet V1, DenseNet-121 DCNN ISIC 2016 Dermoscopy
[68] CNN DCNN Dermo fit, MEDNODE Dermoscopy
[69] MaOEA FSDM Ham 10000 Dermoscopy
[70] FL + CNN CNN Custom image dataset Dermoscopy
[71] FL + CNN FL Multisource dataset Dermoscopy
[72] Adaptive ensemble CNN with FL FL ISIC 2019 Dermoscopy
[74] Ensemble DCCN DCNN ISIC 2017, PH2 Dermoscopy
[75] Derma Net CNN ISIC 2017 Dermoscopy
[76] VGG-M, VGG-16 DNN ISIC 2016, Atlas Dermoscopy
[77] Ensemble CNN CNN HAM 10000 Dermoscopy
[78] CNN CNN ISIC 2017, ISIC 2016, PH2 Dermoscopy
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4. Performance Evaluation of Methods to Determine the Efficacy of Various
Classification Algorithms for Melanoma and Nonmelanoma Cancer Using Clinical
and Dermoscopic Images (RQ2)

The classification accuracy of the considered articles was computed using evaluation
metrics like TPR, TNR, PPV, ACC, and AUC. The credibility and performance of every
classification method were judged on these metrics. The performance of the proposed
models on single, multiple, and combined datasets was evaluated and a summary of the
performance metrics is provided in Table 3.

4.1. Analyzing Performance on a Single Dataset

Damian et al. [79] proposed a CAD method based on texture, color, shape, and deep
learning feature fusion through mutual information (MI) metrics for nonmelanoma and
melanoma lesion detection and classification. The efficiency of this method was tested on
the HAM10000 dataset and exhibited competitive performance against other advanced
methods. Furthermore, Adegun and Viriri [80] implemented a CAD framework based
on a segmentation network with a multi-scale encoder–decoder and a fully convolutional
network-based DenseNet classification network combined with a fully connected (FC) CRF
for the refinement of skin lesion borders to generate precise soft segmentation maps, as
well as a DenseNet architecture for the effective classification of lesion images. Further-
more, Nida et al. [81] implemented a deep regional CNN with FCM clustering for skin
lesion segmentation and detection. Moreover, Kaymak et al. [82] utilized four different
FCNs, namely FCN-8s, FCN-16s, FCN-32s, and FCN-AlexNet, for the automatic semantic
segmentation of lesion images. Shan et al. [83] implemented an ∇N-Net architecture with
a feature fusion method; all these proposed methods were tested and evaluated on the ISIC
2018 benchmark dataset. Bakheet et al. [84] proposed a CAD method based on multilevel
neural networks with improved backpropagation based on the Levenberg–Marquardt (LM)
model and Gabor-based entropic features. Balaji et al. [85] implemented a firefly and FCM-
based neural network. The performance of the classification methods was evaluated on an
open-source PH2 dataset that consists of only 200 lesion images, including 40 melanoma
images, 80 atypical nevi, and 80 common nevi images. Warsi et al. [86] proposed a novel
multi-direction 3D CTF method for the extraction of features from images and employed a
multilayer backpropagation NN technique for classification.

4.2. Performance Evaluation on Multiple Datasets

Yutong Xie et al. [87] proposed a mutual bootstrapping DCNN method based on
coarse-SN, mask-CN, and enhanced-SN for simultaneous lesion image segmentation and
classification, and the effectiveness of the proposed approach was validated using ISIC
2017 and PH2 datasets. Barata et al. [88] proposed a multi-task CNN with channel and
spatial attention modules that perform a hierarchical diagnosis of the lesion’s images and
used ISIC 2017 and ISIC 2018 datasets to evaluate the proposed model. Hosny et al. [89]
implemented a method that used ROI and data augmentation techniques and modified
GoogleNet, Resnet101, and Alex-Net models. The performance and effectiveness of the
proposed approach were validated using ISIC 2017, DermIS, DermQuest, and MED-NODE
datasets. Filali et al. [90] used PH2 and ISIC 2017 to validate a method based on the fusion
of features like texture, color, skeleton, shape, and four pretrained CNN features. Moreover,
Hasan et al. [91] proposed a lightweight DSNet that uses PH2 and ISIC 2017. Saba et al. [92]
used PH2, ISIC 2017, and ISIC 2016 benchmark datasets to evaluate their proposed contrast-
enhanced deep CNN method. The deep features were extracted through AP and FC layers
of the pretrained Inception V3 algorithm through fine-tuning.

4.3. Performance Evaluation on Combined Datasets

Javeria et al. [93] implemented an architecture that extracts deep features using
AlexNet and the VGG-16 model and fused them to produce a single feature vector for
melanoma classification. Optimal features were selected by using the PCA method. This
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model was assessed on a combined dataset which contains 7849 images of the ISIC 2016,
ISIC 2017, and PH2 datasets. Hameed et al. [94] implemented a method based on AlexNet
for performing multiclass, multilevel classification. The pretrained model AlexNet was
re-trained on the multisource dataset by performing fine-tuning. The proposed method
was validated using 3672 images gathered from different online data sources such as Der-
mQuest, DermIS, DermNZ, ISIC Image Challenge, and PH2. Zhang et al. [95] proposed an
optimized CNN technique that adopted a whale optimization method for improving the
efficacy of CNNs and evaluated the method on a large DermIS and DermQuest combined
dataset. The proposed method was compared with other pretrained CNNs and gave the
best results for melanoma diagnosis.

4.4. Performance Evaluation on a Smartphone Camera-Based Collected Dataset

Pacheco and Krohling [96] suggested an aggregation method combining patient clini-
cal information with pretrained models. To validate the proposed method, the PAD dataset
was used based on the images collected by using different smartphone cameras. The model
achieved an improvement of approximately 7% in balanced prediction accuracy.

Table 3. Performance evaluation of TL and FL classifier.

Ref. Dataset Model TPR TNR PPV ACC AUC

[18] ISIC 2019 SLDCNet, FrCN 99%, 99.36% NM 99.92% NM
[69] ISIC 2018 MaOEA-IS with FL NM NM NM 91% 88.7%
[87] ISIC 2018 CKDNet 96.7% 90.4% NM 93.4% NM
[88] ISIC 2017 CKDNet 92.5% 70% NM 88.1% 90.5%
[97] ISIC 2019 GoogleNet and transfer learning 79.8% 97% 80.3% 94.92% NM
[98] ISIC 2019 ResNet-101, NASNet-Large 88.46% 88.24% NM 88.33% NM
[99] ISIC 2019 Adaptive ensemble CNN with FL 91% NM 90% 89% NM
[100] ISIC 2018 Ensemble GoogLeNet, Inceptionv3 45% 97.2% 67.5% 88.2% 91.3%
[101] ISIC 2018 ∇N-Net architecture NM NM NM 87% NM
[102] ISIC 2018 Hybrid-CNN with DSNet 86% NM 85% NM 97%
[103] ISIC 2017 FrCN 78.9% 96% NM 90.7% NM
[104] ISIC 2017 Mutual bootstrapping DCNN 72.7% 91.5% NM 87.8% 90.3%
[105] ISIC 2017 Ensemble CNN NM NM NM NM 92.1%
[106] ISIC 2017 Inception-V3 94.5% 98% 95% 94.8% 98%
[107] ISIC 2017 DenseNet-161, ResNet-50 60.7% 89.7% NM NM 80.0%
[108] ISIC 2017 FC-DenseNet 83.8% 98.6% NM 93.71% NM
[109] ISIC 2017 Lightweight DSNet 83.6% 93.9% NM 92.8% NM

5. Available Datasets for the Evaluation of Classification Methods for Melanoma and
Nonmelanoma Skin Cancer (RQ3)

There were numerous datasets available for skin lesion classification. It was identified
from the literature that most datasets are publicly available for use, and some are not
publicly accessible. Figure 9 shows the availability proportion of public and private datasets.
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5.1. Public Datasets

These datasets are also known as benchmark datasets because of their high usage
in research for detecting melanoma. The below-discussed datasets are known as bench-
mark datasets.

SIIM-ISIC 2020 challenge dataset: This dataset contains 33,126 dermoscopic images
of different types including 584 melanoma and nonmelanoma images [29]. These images
were collected at multiple centers and are available in two formats, DICOM/JPEG and
TIF. This multicenter dataset was collected from 2056 patients worldwide with clinical
contextual information.

ISIC 2019 challenge dataset: This dataset comprises 25,331 dermoscopic images of eight
types and includes 4522 melanoma images, with the rest being nonmelanoma images [39,106].

ISIC 2018 challenge dataset: This dataset consists of 12,500 dermoscopic images of
seven types such as dermatofibromas, vascular lesions, Bowen’s disease, actinic keratosis,
BCC, seborrheic keratosis, nevi, and melanoma [110].

ISIC 2017 challenge dataset: This dataset contains 2000 dermoscopic images of three types,
of which 374 are melanoma, 1372 are benign nevi, and 254 are seborrheic keratosis [99,101].

ISIC 2016 challenge dataset: This dataset has a collection of 900 images including
173 melanoma and 727 noncancerous, labeled as either malignant or benign [82].

PH2 dataset: This dermoscopic image database consists of 200 images, which contain
40 melanoma, 80 atypical nevi, and 80 common nevi, obtained from the “Pedro Hispano
Clinic, Portugal Dermatology Service” [76,83,92].

HAM10000 dataset: This is a benchmark dataset with a massive collection of multi-
source dermoscopic lesion images extracted from the ISIC 2018 grand challenge datasets.
The dataset contains 10,015 images of seven different types of common pigmented skin
lesions, namely MEL, VASC, AKIEC, NV, BCC, DF, and BKL, with a 600 × 450-pixel
resolution including 1113 melanoma images [78,95,97].

MEDNODE dataset: This dataset has a collection of 170 non-dermoscopic images of
two types, including 100 nevus images and 70 melanomas from the digital image archive
of the University of Medical Center’s Department of Dermatology, Groningen (UMCG).
The dimensions of clinical images range from 201 × 257 pixels to 3177 × 1333 pixels [111].

DermIS: The DermIS Digital Database is a European dermatology atlas for healthcare
professionals. This image database consists of 206 images of different types including
87 benign and 119 melanoma images in RGB format. It has vast online lesion image
information for detecting skin cancers on the Internet [112]. The images in the datasets
consist of two labeled classes, nevus and melanoma. This organization provides free-to-use
classified images for academic purposes [113].

ISIC Archive: This online archive dataset has a collection of around 24,000 clinical and
dermoscopic high-quality images of seven different types, including 2177 melanoma images.
Their growing archive is labeled manually, containing high-quality lesion images [114].

DERM 7pt: This dataset consists of a seven-point skin lesion malignancy checklist. It
comprises 1011 images, including 252 melanoma and 759 benign [115].

DermNet: The DermNet dataset is freely available, gathered and labeled by the
DermNet Skin Disease Atlas, and has a collection of around 23,000 dermoscopic images,
of which around 635 are melanoma. This dataset consists of 23 super-classes and 642 sub-
classes of the disease [86,107,116].

DermQuest: The DermQuest database is an online medical atlas for educationists and
dermatologists. It provides 22,000 non-dermoscopic (clinical) images for analysis purposes.
Renowned international editorial boards reviewed and approved these clinical images.
The images in the datasets have only two labeled classes, nevus and melanoma. These
organizations provide free-to-use classified images for academic purposes [116,117].

5.2. Private Datasets

DermNet NZ: The dermatology image library owned by the DermNet New Zealand
Trust contains over 20,000 clinical images for download and re-use [118]. It is frequently up-
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dated to provide information about the skin via any desktop or mobile web browser. More-
over, high-definition, non-watermarked images are available for purchase [108,117,119].

Dermofit Image Library: This dermoscopic image database contains 1,300 high-quality
images including 526 melanomas. The Dermofit dataset consists of 10 different classes
of lesions, such as melanocytic nevus (mole), actinic keratosis, intraepithelial carcinoma,
basal cell carcinoma, pyogenic granuloma, seborrheic keratosis, hemangioma, pyogenic
granuloma, dermatofibroma, and squamous cell carcinoma [120]. A licensing agreement
with a EUR 75 license fee is required to obtain this dataset [90,101].

Interactive Dermoscopy Atlas: The Interactive Dermatology Atlas database con-
sists of over 1000 clinical and dermoscopic images from patient visits over the past two
decades [121]. This dataset contains 270 melanomas, 681 unmarked, and 49 seborrheic ker-
atosis. This database is accessible by paying a fee of EUR 250 for research purposes [84,92].

5.3. Non-Listed/Non-Published Datasets

MoleMap Dataset: This is a New Zealand-forward telemedicine service and store for
diagnosing melanoma. It contains 32,195 photographs of 8882 patients with 14,754 lesions
from 15 disease groups and it was collected between the years 2003 and 2015. Clinical and
dermoscopic images of skin lesions are included in the dataset and image size varies from
800 × 600 pixels to 1600 × 1200 pixels [122]. This dataset is available only upon special
request [77,88].

Irma skin lesion dataset: This dataset comprises 747 dermoscopic images, including
560 benign and 187 melanoma lesions, with a resolution of 512 × 512 pixels. It is under
third-party development and only available upon special request [88,120].

Skin-EDRA. The Skin-EDRA dataset consists of 1064 clinical and dermoscopic images
with a 768 × 512-pixel resolution. This dataset is a part of the EDRA CDROM collected as a
CD resource from two European university hospitals [66,77,123].

PAD dataset: The Federal University of Espírito Santo collected this dataset through
the Dermatological Assistance Program (PAD) [124]. This dataset consists of 1612 images
collected using various smartphone camera devices with different resolutions and sizes.
Their respective clinical information includes the patient’s age, lesion location on the
body, and whether the lesion has recently increased, changed its pattern, itches, or bleeds.
Moreover, the dataset contains six types of skin lesion images (MEL 67, ACK 543, BCC 442,
NEV 196, SCC 149, and SEK 215) and is available only upon special request [57,60].

It was identified from the literature that publicly available datasets were the most
preferred datasets until February 2023 and were most frequently used by researchers to
evaluate their proposed architectures.

Figure 10 presents the recent trend in using available public, private, and non-listed
datasets for melanoma classification.
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6. Taxonomy for Melanoma Diagnosis

Initially, the proposed taxonomy classifies lesion images into cancerous diseases (ma-
lignant) and noncancerous diseases (benign) [125]. In this study, the majority of the studies
examined were on transfer learning for the categorization of melanoma and nonmelanoma
skin cancers. Squamous cell carcinoma and basal cell carcinoma are considered non-
melanoma cancers [126,127]. Melanoma is the most serious kind of skin cancer. Lentigo
maligna, acral lentiginous, noda melanoma, and superficial spreading are the four main
subtypes of melanoma. Malignant melanoma is the name given to these cancers when they
are found. Finding the appropriate form requires analysis and searching for patterns. A
model is trained to identify the particular type of cancer [62,66,77,78]. There is a wide range
of melanoma cancers, each with its own unique appearance, size, structure, prevalence, and
color. Lentigo maligna has an uneven form that may be brown or tan and varies in color
and size, while Noda melanoma has elevated patches that can be dark or light and develop
vertically. Acral lentiginous melanoma grows unevenly and varies in size and color, while
superficial spreading melanoma is characterized by a black patch, an uneven border, and
color variations. Additionally, if the illness is determined to be benign or noncancerous, it
is divided into three primary categories: dermal, epidermal, or melanocytic [62,78]. These
skin cancers have shapes that look like melanoma. They are not cancerous and belong to
the group of noncancerous diseases (Figure 11).
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by considering all values in the confusion matrix. The Matthews Correlation Coefficient
(MCC) is a statistical measure that assume values between −1 and 1. A value of −1 repre-
sents complete disagreement, while a value of 0 suggests no improvement compared to
random classification. The metric under consideration is a quantitative assessment of the
effectiveness of categorization, accounting for the potential occurrence of chance results. A
value of 1 represents complete consensus, whereas 0 signifies no discernible enhancement
above random chance and −1 denotes a lack of consensus. The range of Kappa values
spans from −1 to 1. The distribution of accurate replies is determined by the percentage of
correct, incorrect, and incomplete responses. The Jaccard index is a metric used to evaluate
the performance of a model by comparing the agreement between its predicted outcomes
and the precision of manually annotated examples.

However, the MCC measure has many benefits in comparison to other metrics, includ-
ing precision, confusion entropy, F1-score, and balanced precision. The great reliability of
the Matthews Correlation Coefficient (MCC) with imbalanced databases is attributed to its
ability to provide a high score when a significant proportion of both projected negative and
positive data occurrences are accurately classified.

7. Results and Discussion

Our systematic review study included 86 research papers in the domain of FL and
transfer learning methods for melanoma and nonmelanoma skin cancer detection. Dif-
ferent transfer learning-based training methods and algorithms were employed across
research studies for diagnosing melanoma and nonmelanoma from dermoscopic and
non-dermoscopic images. The most commonly used pretrained models were ResNet-
50, DenseNet, VGG-16, VGG-19, MobileNet, Inception V3, Xception, GoogleNet, and
AlexNet [68]. Several effective frameworks and architectures based on transfer learning
have been suggested by researchers in recent years [62,66,74,76,83]. The effectiveness
of these methods was discerned and observed in melanoma detection from clinical and
dermoscopic images across selected studies. Some proposed methodologies use an en-
semble of several pretrained models and aggregate their predictions to “boost” model
performance. The application of ensembling can be astonishingly beneficial, not only
for integrating multiple pretrained models but also for merging distinct hyperparameter
choices for these networks.

Some researchers suggested an integrated two-phase framework based on FCN meth-
ods for segmenting and classifying multiple skin lesions [63]. The pre-segmentation phase
enables these classifiers to memorize and learn only specific skin lesion features while ig-
noring the surrounding region and giving a better segmentation output. Many researchers
implemented hybrid methods in which different preprocessing and data augmentation
techniques like flipping, crop, zoom, and rotate operations were performed on a skin color
image dataset for the augmentation of segmented ROI images to solve the problem of over-
fitting and imbalanced datasets; in addition, various fine-tuned pretrained models were
employed to extricate deep features from lesion images to diagnose lesions as melanoma
or nonmelanoma [76]. Some researchers suggested federated learning-based methods
for melanoma and nonmelanoma skin cancer diagnosis to resolve the issue of the small
number of lesion images in a dataset for the training of the model without compromising
user-sensitive data. All these proposed methods were tested and evaluated on various
public benchmark datasets as well as non-public, combined, and non-listed datasets. It was
seen that the validation methods’ effectiveness and efficacy fluctuated and different results
were obtained among various research studies [77,79]. These selected research studies
provided sufficient data to construct evaluation tables to calculate performance metrics.
It was observed from the literature that the FCN-based method’s accuracy ranged from
approximately 81% to 98%, and the accuracy of ensemble and hybrid methods ranged from
approximately 76% to 99%. In comparison, federated learning-based methods ranged from
approximately 81% to 91% when evaluated on various datasets, including open access,
private, and combined datasets [89,90]. Research in the domain of diagnosing skin cancer
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is making encouraging progress. Regardless of the fact that now is an auspicious and
providential moment for approaches based on transfer learning, it was observed from the
literature that there are undeniable challenges and problems faced by these approaches in
becoming perfect and effective diagnostic methods, which one needs to resolve in imminent
stages. Now, researchers claimed that their proposed model beats doctors’ performance in
the classification of melanoma and nonmelanoma skin cancer. Still, this view is far from
reality because they experimented in a closed environment with defined principles. These
systems are never tested on cancer patients in real-life diagnosis [84,90]. The real-world
diagnosis process needs to consider the patient’s ethnicity, existing sun damage, eye color,
hair, skin, medicines, the number of nevi, occupation, illness, response to previous ther-
apy, treatments, and lifestyle habits like alcohol intake, smoking, sun exposure, clinical
history, and other data from the patient’s medical records. There are many inter-class
dissimilarities and intra-class similarities concerning size, color, place, and texture in the
visual appearance of lesions. But despite this, current algorithms and approaches based on
transfer learning conspicuously depend only on patients’ imaging data [116,117]. However,
when these systems are employed for skin lesion images, they might have a greater risk of
misdiagnosis. It was observed from the literature that transfer learning algorithms need
a substantial and extensive amount of high-quality, balanced, and diverse training data
that indicate each class of skin lesions to revamp the recognition accuracy of methods.
Federated and transfer learning-based systems have the potential to bring out a progressive
change in the detection of melanoma and nonmelanoma skin cancer and enable a remotely
accessible, affordable, and cost-effective procedure [109]. To improve existing AI systems
and enhance the classification accuracy of methods, dermatologists and computer vision
societies need to work and collaborate.

8. Research Gap and Future Direction for Melanoma and Nonmelanoma Skin
Cancer Classification

The research gap and corresponding future directions for diagnosing melanoma and
nonmelanoma skin are presented in this section. State-of-the-art classification methods are
facing numerous challenges that can be identified in the selected articles.

8.1. Challenges in Transfer Learning-Based Classification Methods

This section describes the six significant challenges that were identified in the literature.

8.1.1. Dataset Inconsistency

The datasets were collected from heterogeneous sources and, hence, have many
inconsistencies. In the DermIS and DermQuest online data repositories, various people
have uploaded their images of skin lesions, but their image-capturing devices are different.
Hence, for each image, the dimension, type, quality, and format of images may fluctuate.
In these datasets, shape and boundary features are not extracted accurately because some
of the images cover the lesion area. In contrast, most of the images cover the whole body,
which restricts the feature extraction stage in conventional approaches [99,107]. Thus, the
poor resolution of these images may affect classification performance. So, the inconsistency
of the dataset is a considerable challenge.

8.1.2. The Lack of Lesion Images from Dark-Skinned People in the Datasets

Typically, current datasets consist of lesion images that belong to only white and
fair-skinned people rather than dark-skinned or brown people. Every year since 2016,
ISIC has announced a challenge to tackle melanoma detection, but the limitation of this
ISIC dataset is that it has image data from mostly fair-skinned people [104,107]. Dark-
or brown-skinned people can also have cancer and are usually detected at later stages.
Hence, deep and transfer learning architectures that are tested and validated for detecting
melanoma in light-skinned people have a higher risk of misdiagnosing those with brown
or darker skin.
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8.1.3. ABCDE Rule of Dermoscopy

In the clinical environment, the dermoscopy technique is used to visually examine
suspected skin lesions. The ABCDE rule is a fundamental constraint for distinguishing
between benign and malignant lesions. The ABCDE rule comprises whether the skin lesion
is asymmetrical, has irregular borders, shows different colors, whether its diameter is larger
than 6 mm, and whether the color of the lesion has changed. Hence, deep learning- and
transfer learning-based models do not perform as well as the ABCDE rule, which is trusted
by dermatologists. The main reason is the pattern recognition complexity for malignant
lesion characteristics in medical imaging. That is why recent attempts are still considered
black-box approaches [62,98].

8.1.4. The Limited Number of Images in Datasets

It was observed that publicly available datasets consist of small lesions for training
and testing. The proposed models’ performance is good on a limited number of images,
while their credibility is unpredictable when these models are tested on a vast image
set [93,95,121].

8.1.5. Patient’s Clinical Metadata and Case History

Patient’s case history and clinical metadata, such as age, sex, structure, lesion size,
ethnicity, and patient family history of skin cancer, are considered very significant when
carrying out a visual examination of a suspicious lesion through dermoscopy. There-
fore, image-based deep and transfer learning methods suggested for the classification of
melanoma falter for crucial characteristics of patient and clinical metadata [79]. Moreover,
it was observed that in most available datasets, both patient history and clinical metadata
are unfortunately missing.

8.1.6. Unbalanced Datasets

In different available datasets, it is commonly seen that there are primarily images of
benign skin lesions rather than malignant lesions. There is a scarcity of rare lesions such as
vascular, dermatofibroma, and actinic keratosis, not only in the ISIC 2018 dataset but in all
publicly available datasets. Most deep learning- and transfer learning-based methods are
trained on a balanced dataset. Hence, the performance of algorithms is usually affected by
insufficient and unbalanced datasets [122].

8.2. Potential Future Opportunities and Work

This section describes the possible future opportunities that should be considered to
improve the performance of AI-based systems. Deep learning- and transfer learning-based
approaches could improve the detection of skin cancer with the opportunities specified below.

8.2.1. Miscellaneous Datasets

In datasets, included skin lesion images are mostly of fair-skinned people. Datasets
must have racial and ethnic miscellany and diversity; they must include equally distributed
dark-skinned and fair-skinned lesion images to minimize ethnic or social bias in frame-
works. The very same consideration can be diversified or enhanced for age, particularly
when surrounding solar damage or degree of skin aging, which can influence decision
making and the dataset [68,75,77].

8.2.2. Generative Adversarial Networks

Currently, GANs are mainly used to create high-resolution fake image data to manage
the problem of small and limited datasets. For melanoma and nonmelanoma skin can-
cer, GANs produce realistic synthetic images to overcome the insufficiency of annotated
data. For synthesizing fine-grained and good-quality lesion images, Abdelhalim et al. [23]
suggested a self-attention-based progressive GAN (SPGGAN). The distribution of skin
lesions is heavily distorted or biased in publicly available datasets. GANs can be utilized
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to produce lesion image data for rare classes of skin cancer, namely carcinoma, Kaposi
sarcoma, sebaceous, and MCC.

8.2.3. Data Fusion Algorithm Development

Data fusion algorithms need to be developed to integrate the features of images from
deep learning models with patient clinical information to provide a final output for the
diagnosis of melanoma and nonmelanoma skin cancer, because patient history and clinical
metadata have significant importance in the diagnosis of skin cancer [16].

8.2.4. Federated Learning-Based Framework Development

The issue of the limited no. of lesion images in a dataset for the training of models
has been resolved by FL without compromising the privacy of user information. So,
more frameworks should be developed based on FL in the future for melanoma and
nonmelanoma skin cancer diagnosis [28,35,37,123].

8.2.5. Data Augmentation Techniques

Data augmentation techniques could improve the detection of melanoma and non-
melanoma skin cancer. The addition of augmented samples with various image transfor-
mation techniques, such as vertical and horizontal flip, color jitter, color space, translation,
rotation at different angles, and random crop, may reduce many limitations of skin lesion
datasets such as heterogeneous sources of image data and unbalanced data between the
classes of lesions [23].

8.2.6. Color Constancy Algorithm Development

Skin lesion images are obtained from various image-capturing devices with different
illumination settings in publicly available dermoscopic and clinical datasets, which could
decrease the performance of the deep learning and transfer learning models [124]. It has
been proved through many types of research that color constancy methods like max-RGB
and Shades of Gray can be utilized to enhance the efficiency of pretrained models for the
classification of heterogeneous data source images [30,41,71].

8.2.7. A Balanced Skin Lesion Dataset

A balanced skin lesion dataset is essential to achieve superior performance with
transfer learning algorithms; hence, the selection of cases with balanced datasets is a
requisite that would perfectly represent the class of a specific lesion, and the input of
proficient doctors could be beneficial, productive, and worthwhile for this selection [38,41].

8.2.8. CAD System Design Based on the ABCDE Medical Algorithm and Transfer Learning

The ABCDE rule is considered a significant constraint for distinguishing between be-
nign and suspicious malignant skin lesions. Hence, a deep and transfer learning automatic
diagnostic system based on the commonly well-proven ABCDE medical procedure can be
developed that performs in the same way as the ABCDE rule, trusted by dermatologists, in
order to enhance the performance of pretrained models [71].

8.2.9. Internet of Things (IoT) and Transfer Learning

Cloud computational power and storage are becoming more cost-effective and afford-
able [125,128]. So, a fast, automatic, and accessible system can be designed by using the
concept of the Internet of Things (IoT) and transfer learning in parallel to assist dermatolo-
gists with skin lesion diagnoses in clinical cases around the world [97,123].

8.3. Limitations

In this SLR, we followed Kitchenham’s approach for performing systematic reviews [28]
to avoid selection bias instead of depending only on our information and background. In
total, 86 articles in English met the inclusion criteria and qualified for further assessment.
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Thus, it is possible that articles in other languages and related gray literature were missed.
We performed a search operation by using many keywords and terms related to melanoma
skin cancer because researchers from different backgrounds use different terms for the
same concept and topic. Our search was concluded in February 2023, so research studies
published after that date would not have been taken into consideration or captured. Aside
from these limitations, to the best of our knowledge, this is the first SLR on diagnosing
melanoma through CNN-based pretrained models and federated learning and it could be
helpful for other researchers to plan their research activities.

9. Conclusions

This systematic review study discussed the latest research on melanoma and non-
melanoma skin cancer classification using federated and transfer learning techniques. This
SLR was designed to provide contemporary research on the performance and effectiveness
of transfer learning- and federated learning-based models used for detecting melanoma
and nonmelanoma skin cancer across several modalities of skin lesion datasets. In this re-
view, various transfer learning- and federated learning-based approaches and classification
methods to diagnose melanoma and nonmelanoma skin cancer were analyzed extensively,
and we also highlighted the principal shortcomings of existing approaches and areas of
research where further enhancement should soon be carried out. Moreover, various skin
lesion datasets that are publicly available, as well as private and non-listed ones, includ-
ing dermoscopy, whole-slide pathology scanning (histopathology images), and clinical
images, were described. Furthermore, a taxonomy was proposed by exploring relevant
research studies. Moreover, the research gap and future direction of AI-based systems
were subsequently described and established in this SLR. There were six existing issues of
classification systems identified and nine potential opportunities were suggested to resolve
the identified challenges and enhance the performance of federated learning- and transfer
learning-based systems, so that they can be used as a powerful aid for dermatologists and
their performance in diagnosing skin cancer can be enhanced. In the future, researchers
must perform an analysis on the graph and signal processing techniques for detecting
melanoma and nonmelanoma skin cancers.
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