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Abstract: Autonomous driving is a complex task that requires high-level hierarchical reasoning.
Various solutions based on hand-crafted rules, multi-modal systems, or end-to-end learning have
been proposed over time but are not quite ready to deliver the accuracy and safety necessary for
real-world urban autonomous driving. Those methods require expensive hardware for data collection
or environmental perception and are sensitive to distribution shifts, making large-scale adoption
impractical. We present an approach that solely uses monocular camera inputs to generate valuable
data without any supervision. Our main contributions involve a mechanism that can provide steering
data annotations starting from unlabeled data alongside a different pipeline that generates path
labels in a completely self-supervised manner. Thus, our method represents a natural step towards
leveraging the large amounts of available online data ensuring the complexity and the diversity
required to learn a robust autonomous driving policy.

Keywords: self-supervised learning; autonomous driving; steering prediction; semantic segmentation;
steering geometry

1. Introduction

Driving a vehicle is a difficult task that requires complex reasoning and visual per-
ception. The high level of stochasticity in the environment structure and dynamics leads
to an intractable state space for traditional robotics trajectory planning approaches; thus,
developing a system that can drive safely and can generalize to a wide variety of en-
vironmental setups remains an open problem. In 1989, the proposal of [1] to build the
Autonomous Land Vehicle in which the traditional trajectory planning module is replaced
by an entirely learnable process (end-to-end learning), showed that a neural network could
exhibit high-level hierarchical reasoning—enough to steer a vehicle. Unfortunately, two
major limitations of current end-to-end solutions consist of the lack of diversity and the
reduced amount of available training data. In a recent study, the authors of [2] analyzed
the impact of data (hours of driving) on the performance of a driving policy (distance to
intervention), indicating a positive correlation. The results suggest that increasing the data
diversity is likely to increase the model’s performance, thus bringing the promise that with
enough data and computational resources, end-to-end solutions will yield good results.

In addition to extremely time-consuming human annotation processes for tasks such
as semantic segmentation [3] or object detection [4], an autonomous driving dataset acqui-
sition system requires expensive hardware. The need for additional sensors represents a
bottleneck for collecting a geographically diverse and complex dataset. Recent develop-
ments in deep unsupervised learning have managed to avoid the need for LIDAR sensors,
recovering depth information [5] and optical flow [6] from a single RGB camera with
high accuracy.
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Prior work has been focused primarily on the supervised paradigm to learn a driving
policy [7] or path [8], from the sensory acquired signals.

We present two self-supervised methods to label an autonomous driving dataset for
steering control and path segmentation. We combined existing work on path labeling,
previously conducted in a weakly-supervised manner, using data from the camera, IMU,
and LIDAR [9], with the recent advancements made in the field of predicting ego-motion
from videos [10] and obtained a completely self-supervised pipeline that can be used to
extract the steering and the path followed by a vehicle for each frame in a video. Our
labeling method requires only a pose estimation network jointly trained with a monocular
depth estimation one in a fully self-supervised manner. Even though driving datasets
with ground-truth labels for the steering and ego-motion values are available, they still
represent a very small fraction when compared to all of the unlabeled videos that can be
utilized if a reliable method for extracting the labeled data would exist. Only using existing
labeled datasets may limit the abilities of the methods trained on this data, when it comes
to generalization on a broader spectrum of scenarios. Using our proposed framework,
driving videos in the wild can be enriched with valuable, reliable data that can be used for
different learning problems. We obtained competitive results against the models trained
on the ground-truth sensory acquired labels for both tasks, proving the feasibility and
robustness of our methods.

The main contributions of our work are:

• Propose a heuristic method for estimating the scaling factor of the vehicle ego-motion;
• Generate steering labels starting from predicted ego-motion estimations made by a

network trained in a self-supervised manner;
• Generate trajectory segmentation labels from the same ego-motion estimations;
• Train a steering neural network on the generated steering labels and ground truth

steering labels and compare the results;
• Provide a method for improving the steering commands by using the predicted

trajectory labels.

2. Related Work

Recent research for autonomous driving has been focused primarily on the end-to-
end paradigm, after the proposal of and introduction of ALVINN [1], one of the first
vehicles driven by a neural network. Alongside lateral and longitudinal control, many
other tasks carry great importance in robotic navigation, such as depth and ego-motion
estimation, where different types of methods have been involved, reaching the potential of
predicting accurate dense depth maps and vehicle trajectories only from stereo images. In
this section, we offer a brief overview of the existing literature on end-to-end approaches
for autonomous driving, environment perception, and ego-motion estimation.

2.1. Steering

A common approach for learning an end-to-end driving policy is via imitation learn-
ing from human expert demonstrations. One of the first successful deployments of a
self-driving policy into the real-world environment is presented by [7], showing that a
convolutional neural network (CNN) can map raw pixels from a single front-facing camera
to steering commands. Human driving skills are replicated on local roads, highways, and
areas with unclear visual guidance, such as parking lots and unpaved roads, achieving an
autonomy of 98% and demonstrating a vast capability to generalize.

Rather than learning a single objective, some approaches include secondary tasks
to enhance the main motion planning module [11,12]. Segmentation, depth, and motion
estimation can provide useful information to improve autonomous driving tasks as they
represent a smaller state space, thus allowing for better generalization. Depth estimation
can improve road detections as it lies below the horizon line, and objects like buildings,
trees, poles, etc., can be distinguished by their geometry. On the other hand, motion can
capture highly dynamic traffic participants such as vehicles and pedestrians, while semantic
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segmentation can improve the overall understanding of the environment. Other recent
approaches followed a similar idea and investigated the impact of different pre-trained
perception modules on the model’s performance by either fusing RGB, depth, and semantic
segmentation into a latent space [2], or providing a fully stacked input representation [13].

By combining sensor fusion and end-to-end learning, the authors of [14] replaced
the classic raw RGB observations of the scene with a top-down synthetic view of the sur-
roundings. Although the representation allows for flexibility in designing and optimizing
auxiliary tasks, the method itself requires expensive perception hardware and relies com-
pletely on the quality of the representation.

In addition to the supervised learning paradigm, reinforcement learning has been
successfully applied in autonomous driving. The authors of [15] designed a deep reinforce-
ment learning algorithm to learn a driving policy within a handful of training episodes.
Instead of physically interacting with the real-world environment, ref. [16] proposed a
data-driven simulator and a training pipeline capable of learning vehicle control policy us-
ing sparse rewards, which successfully transferred to the real-world environment without
additional fine-tuning.

One of the main challenges regarding the learning of steering commands, especially
in end-to-end methods is the inability to correctly react to scenarios that are not previously
met in the training data and the exponential amount of data needed to be added for every
parameter of the environment.

2.2. Path Generation

The authors of [8] proposed a CNN cost model that learns to predict a cost map, given
a single RGB input image. The cost map generation process relies on the IMU collected
data which provides the relative pose of the vehicle between two consecutive frames
and it is further used as an input for a trajectory optimization module that uses model
predictive control.

Following a similar principle, the work of [9] described a weakly-supervised approach
to generate labels for drivable path segmentation. The labeling process relies on several
sensors such as IMU for the odometry data and a LIDAR for object detection by using data
from the point cloud. The self-labeling pipeline projects future location points into the
current frame, and an obstacle detection mechanism limits the length of the generated path.
Finally, the training procedure follows a supervised paradigm where a CNN module learns
to predict the drivable path from a single RGB input image.

Further work shows different improvements brought to the trajectory segmentation
models, including the usage of Bayesian encoder-decoder networks [17] which can add
explainability to the detection. Another improvement comes from the fusion between
trajectory segmentation and steering angle estimation [18] or leveraging optical flow in a
sequence-based approach for trajectory segmentation with training on labels obtained by
projecting the location of the vehicle, obtained using GPS into each frame [19].

In off-road environments, terrain segmentation methods can provide valuable input
and similar approaches that can be adapted for the path generation task. It has been shown
how using image and laser data can be used to generate datasets for the unsupervised
learning of traversable area segmentation [20]. Another method [21] depicts again how
to generate data for learning terrain property in a self-supervised manner by using the
force-torque signal of a robot, while using LIDAR, a bird eye’s view network [22] can
be deployed to predict terrain classes. In supervised scenarios, where sensors like IMU,
LIDAR and GPS are involved, path generation does not pose as many difficulties as in
unsupervised or self-supervised approaches, mostly due to errors that accumulate at each
step during ego-motion inference.

2.3. Learning Depth and Ego-Motion

Depth prediction from an RGB image has been a long-standing problem in computer
vision. Although many approaches using stereo-vision [23,24] exist, recent work has
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been focused on using deep neural networks for depth prediction under supervised or
self-supervised settings. Supervised learning methods achieve impressive results [25–29]
but do not transfer over multiple datasets and depend on the available sensory depth
data. Conventional approaches for unsupervised methods revolve around mapping source
images to a target image and comparing them via a photometric consistency loss, involving
view synthesis as the supervision signal. Such methods either require simultaneously
training depth and pose predictors from one frame to another [5,30–32] or making use of
calibrated cameras [33]. Other approaches also bring the optical flow learning problem
alongside depth and ego-motion [34,35]. Complementary to the previous methods, ref. [36]
proposed a change in the objective function, by comparing reconstructed point clouds
at different time steps using the Iterative Closest Point (ICP) algorithm [37–39]. Another
improvement that relies on tweaking the objective function for depth estimation networks
is shown by the authors of [40], who present a quadtree-constrained photometric loss.

Ref. [41] introduced a novel approach to predict ego-motion and depth from videos
captured by the random camera by simultaneously learning their intrinsic parameters,
which were part of required a priori knowledge in the previous methods. The qualitative
evaluation on a public video recorded by hand-held cameras proved the generalization
power of the approach.

In addition to providing a correct depth estimation up to scale, previous methods
suffer from scale-inconsistent results. Ref. [10] proposed to minimize the inconsistency
between the projected and estimated depths for two consecutive frames, which leads to a
scale consistent prediction across the entire video.

In a survey regarding single image depth estimation, ref. [42] present a broad range of
state-of-the-art methods which also cover the category of self-supervised joint learning of
depth end ego-motion.

3. Datasets

We selected two publicly available datasets to train and test our models, which comply
with the needed requirements for evaluating our methods. First, we must be able to assess
the reliability of the steering labeling, therefore a dataset with the ground-truth labels for
steering has to be used. Secondly, the evaluation of the path labeling method requires a
dataset with available ground truth data for this path or data that can be used to generate
the path, such as the ego-motion labels. In this section, we describe the datasets we used
for training and evaluating the proposed methods.

UPB campus dataset: the UPB campus dataset [43] was collected on the streets belong-
ing to the campus of University Politehnica of Bucharest and presented in a work focused
on defining a guideline on collecting, processing and annotating a self-driving dataset.

It contains 408 videos of normal driving, covering a distance of 72.7 km in 254 min,
with 21% being recorded in low light conditions. Splitting the dataset into four discrete
commands (go straight, stop, turn left and turn right) leads to a class distribution of 86.67%
for straight driving, 5.45% for stop, and 4.45% for turning left, and 3.23% for turning right.
For our experiments, we down-sampled the videos to 10 frames per second (FPS) and
we split the dataset in two disjoint sets, 80% train, 20% test, and distributed in the two
groups such that the geographical overlap is minimal, as shown in Figure 1. This split
provides a fair evaluation and tests the model’s ability to generalize in a previously unseen
environment.

KITTI odometry dataset: the KITTI odometry dataset [44] provides 11 driving se-
quences with ground truth trajectories and poses and another 11 sequences without any
annotation. It contains driving sequences from various types of urban scenes. This dataset
will be used for three main tasks. First of all, we will generate self-supervised path labels
using the estimated ego-motion. Secondly, these path labels will be used as the target
of a segmentation network that will learn to predict them when taking a single frame as
an input. Lastly, we will benchmark the segmentation network by comparing its path
predictions with the path obtained from the ground truth ego-motion of the dataset and
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with the path obtained from the predicted ego-motion.
The frames from this dataset are sampled at 10 FPS and we scaled them to 256 × 832,

before cropping 96 pixels from each side to reach a final size of 256 × 640 for the path
labeling using the estimated poses and the training of the segmentation neural network.

For this dataset, the split contains the sequences 3, 6, 9 and 10 for testing, 4, 11 and 19
for validation and the rest for training. We chose this dataset for training and evaluating
our segmentation model against both the path labels generated using the ground truth
ego-motion and the path labels obtained with the ego-motion network.

Figure 1. Train (blue), validation (red) dataset split. The overlap between the splits is depicted
in black.

4. Proposed Method

In this section, we present the methods we employed for solving the steering labels
generation, path labeling, path segmentation, followed by the implementation of the steer-
ing network and the improvements we proposed for enhancing the predictions of the
network by leveraging the Ackermann steering geometry. We provided a detailed descrip-
tion of the mechanisms for each method, the models’ architecture, and the experimental
setup we configured for both training and evaluation. The pipeline starts with the depth
and ego-motion prediction network, which is trained on the UPB campus dataset and is
followed by the scaling factor estimation, a step that is needed for recovering an accurate
description of the motion. The obtained motion prediction is then utilized for two separate
annotation tasks: the labeling of the steering and the labeling of the followed path, for each
frame. At the end of the section, we also present a method of combining the path labeling
into the steering prediction network for improved autonomy results.

A conceptual chart of the entire pipeline can be visualized in Figure 2.

Figure 2. Pipeline to generate path labels in a self-supervised manner. Start with the RGB driving
dataset, pass it through a depth end ego-motion network for obtaining a scaling factor, steering labels
and path labels and then generate new datasets, one for a steering network and the other for path
segmentation Finally, the segmentation and steering results are combined in a steering improvement
module.
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4.1. Scaling Factor Estimation

One disadvantage of monocular depth estimation is that we can only recover the actual
depth up to scale. To find the scaling factor automatically, we proposed a heuristic method
that uses the position of the acquisition camera. We first transform the pixel coordinates to
camera coordinates by the following sequence of operations:

[
px
py

]
hom−−→

px
py
1

 z−→

px · z
py · z

z

 M−1
−−→

x
y
z

 (1)

where [px, py] denote the pixel coordinates, [x, y, z] denote the world coordinates, M3×3 is
the intrinsic camera matrix.

We sampled the y coordinates in the pixel space from a rectangular box corresponding
to the road patch in front of the vehicle. Let (h, w) be the height and the width of the image.
In our experiments, the box is delimited by (h− 10, h)× (w/2− 50, w/2 + 50), from which
we take the median value of the y coordinate (my). The extrinsic camera matrix provides
the y coordinate of the camera denoted by cy. We estimate the scaling factor as f =

cy
my

.

4.2. Steering Labeling

The majority of deep learning models trained for the steering task and tested in the
real-world environment use a single input observation [7,16] or short time dependencies,
up to two frames [2]. Additional time dependencies have been reported to degrade the
network’s performance [2] as the models started to capture spurious correlations [14], there-
fore, we opt for a method that uses single input observations and labels, since we consider
it possesses a better ability to capture the actual reasoning behind an action instead of only
correlating it to a set of past actions which can depict false reasons for taking a decision.

Leveraging the limited time horizon of the input, we proposed to generate steering
labels by using the pose estimation network. The pose estimation model trained jointly with
the depth prediction network provides the output as a six-dimensional tensor, correspond-
ing to the six degrees of freedom of the middle-top camera, encoded as [tx, ty, tz, rx, ry, rz].
The first three values represent the translations that happen on the three dimensional axes,
while the last values are the rotations of the vehicle-mounted camera on these axes. We

computed the turning radius as R = s ·
√

t2
x+t2

y
2(1−cos(ry))

, where s is the scaling factor, and

left/right turns are determined by the sign of ry. This formula for the turning radius can
be obtained using the law of cosines. Considering the distance between the positions
of the vehicle at two different time steps is given as d =

√
t2
x + t2

z and ry is the rotation
angle around the y axis, then the circle arc on which the vehicle moves between the two
different points will have an angle of ry. Therefore, the distance d can also be expressed as

d =
√

R2 + R2 − 2 · R · R · cos ry. A visual explanation for how the vehicle moves on the
circle arc from point P0 and P1 and the computation of the turning radius can be seen in
Figure 3. The turning radius is further used to generate the targets for the learning process
of the steering prediction task, as it is described in Section 4.4.
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Figure 3. Computing the turning radius. Considering the initial and final positions of the vehicle, the
turning radius can be computed using the law of cosines when the distance between the two different
positions and the angle between the orientation of the vehicle in the two given positions are known.

4.3. Path Labeling

Unlike the previous methods used for detecting and labeling the path, which are
not completely self-supervised, we propose a self-supervised approach that combines
previous proposed ideas for pose estimation [5,10,41] and path labeling to be further used
in generating path labels for each input frame.

Ref. [9] showed how the relative pose between consecutive frames can be used to
generate path labels. However, this approach involves the usage of an IMU sensor for
recording the pose alongside the vehicle’s path. Therefore, in this section, we analyze the
methods used for obtaining ego-motion (pose) estimates, given as a rotation matrix and a
translation vector, from monocular images in a self-supervised manner, directly from RGB
inputs, without the need for additional sensors. These methods are valuable for giving
the possibility to be applied on videos in the wild and further generate usable data from
them, such as the path labels in our case, without being limited to cases where vehicles are
equipped with additional sensors. Therefore, this largely broadens the amount of driving
data that can be used for different learning problems, such as the steering prediction, in the
case of this work.

The self-supervised path labeling pipeline consists of two main steps. During the first
step, two neural networks, described in Section 4.3.1, are trained to jointly learn depth
and ego-motion from sequences of monocular frames. Once the networks are trained, the
pose between different frames of a video can be predicted and we collect all the poses from
each video, relatively to the time step of the first frame. The second step of the pipeline
begins with iterating through each frame of the video and taking the next frames starting
immediately after it, computing the relative poses between the camera position in the
current frame and the same position from all the next selected frames, then projecting the
contact points between the vehicle’s wheels and the ground. Once we have these points,
we can construct a dataset of labels for the path and then train a segmentation model to
learn such paths and to generate new ones when exposed to previously unseen data.

4.3.1. Learning Ego-Motion

The first component of the pipeline is represented by the models that jointly learn
depth and ego-motion in a self-supervised manner, from monocular frames. The approach
is the one used in [10], which employs two separate neural networks, one for predicting
depth maps and one for ego-motion. The depth neural network is a DispResNet, which
takes the DispNet architecture as in [45] and replaces the convolutional layers of the encoder
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with residual ones. Therefore, the encoder is made of a ResNet50 [46] and the decoder
consists of convolutional blocks with 3 × 3 kernel sizes and a number of channels which
decrease from 256 to 16 by a factor of two, over five layers.

Having a source and target frame, we aim for warping the source into the target, using
the equation that ties together the two frames and the pose between them. Minimizing the
differences between the target image and the warped source image using the estimated
pose between the two images, means getting closer to the true values of the rotation and
translation that project the source into the target. The solution to warping from source to
target is to apply an inverse warp from target to source. Therefore, for each point of the
target, we want to find the location that the point will have in the source. To do this, the
rotation and translation estimated as the pose between the two frames are applied to the
target frame after it was converted to 3D coordinates. After the motion transformation
of the target frame to the space of the source frame using the rotation matrix and the
translation vector, the target frame is converted back to pixel coordinates, which will take
continuous values in [−1, 1]. Since the values are continuous, a differentiable bilinear
sampling mechanism is applied to interpolate the coordinate value and compute the actual
corresponding pixel from the source frame. After this, the depth and the RGB pixel values
of the source frame can be placed on the grid, since all the coordinate values will be integers.

Equation (2) represents the backbone of jointly learning depth and ego-motion in a
self-supervised manner.

h(ps) = KTt→sD(pt)K−1h(pt) (2)

This represents the view synthesis process when given a source and a target frame.
The notations are as follows: h(ps) and h(pt) represent the homogeneous pixel coordinates
of the two views s for the source and t for the target, K is the intrinsic matrix of the
camera, Tt→s represents the motion transformation between the target and the source
frames and D(pt) is the predicted depth of the target view. The equation ties the depth
and ego-motion, therefore creating a task where both are jointly optimized during the back
propagation process.

4.3.2. Trajectory Generation

Once all the poses from a sequence of frames have been collected, it is possible to
compute the relative pose between each pair of frames. This needs to be computed, since
the pose outputs are all relative to the first frame of the sequence, which is considered
an identity matrix. Using the relative pose, any arbitrary point from a time step can be
projected into a frame from another time step, therefore, we select two points which are
fixed for every frame and represent the contact points between the vehicle and the road. To
determine the position of these points, we can use the extrinsic properties of the camera.
After that, considering a frame at the t time steps and an integer value k, we project the two
points from all the t + 1 to t + k time steps into the frame at time step t. We will consider P
as the set of all points we want to project. Poset,t+k represents the relative pose between the
frames at t and t + k, while Pt,t+k denotes the projection of all the points in the set P from
frame t + k to frame t and it can be computed according to Equation (3).

Pt,t+k = Poset,t+kP (3)

We considered 60 future points which were projected into the current frame using the
pose and the camera parameters.

Generating hard labels. The hard labels use the initial generated labels and consists
of two separate classes. The first class represents the path followed and the second class
consists of all the pixels that belong to the rest of the scene. Figure 4 shows few samples of
the generated hard labels.
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Figure 4. Generated samples for the path labeling process. Green depicts the path obtained using the
estimated pose, red is the path obtained using the ground truth pose and yellow is the intersection
between them.

Generating soft labels. To obtain the soft labels cost map for the segmentation process,
we started from the initial hard labels generated at the previous step as a two colors image
and obtained a blurred version of them by applying a Gaussian filter with a kernel size
of 31 × 31 and a standard deviation of 51. After applying the blurring filter, the obtained
values are normalized between [0, 1]. Figure 5 depicts the results of the soft labels generation
process starting from a hard label given for a specific input.

Figure 5. Soft label generation. After the hard label has been generated for the input frame, a
Gaussian blur is applied over it. In the bottom right figure, the soft label can be seen as a heatmap,
where the brightest pixels represent the highest values.

The intuition behind using a soft version of the labels lies in the possibility to train
a segmentation network with these labels as a target and then apply a threshold over the
segmentation map that results as an output. This threshold would suggest how strong
the network’s belief in the prediction should be, to consider this prediction as part of the
predicted path.

4.4. Steering Training

We adapted the work of [7] to a single camera constraint. We enrich the training
dataset with synthetic scenarios obtained by simulating displacements of the car using the
2D perspective augmentation of the input frames. Additionally, we provide the corrected
steering command for the augmented frame, such that the simulated vehicle will take an
action that will correct its position to match the position of the original one, after a given
distance. Similar to [11], to capture multimodalities (e.g., intersection), our model outputs
a discrete distribution over the future relative courses. This approach prevents from penal-
izing incorrectly the networks decision where multiple future trajectories are plausible.

We used imitation learning to predict the instantaneous road curvature recorded by
the steering acquisition sensor or predicted by the pose-estimation module from two con-
secutive frames sampled at 0.1 s. The road curvature is defined as 1

R , where R is the turning
radius. As previously remarked in [7], this representation avoids singularity and further-
more is independent of the car geometry and covers the bounded interval [− 1

Rmin
, 1

Rmin
],
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where Rmin represents the minimum turning radius. In our current setup, we considered
rmin = 5[m]. We modeled the target by a normal distribution centered in the ground truth
road curvature and we fixed a standard deviation of 0.01. After investigating the histogram
of the ground truth road curvatures, we decided to discretize the output into 401 bins.
One decimal precision has proven to be necessary to capture multimodalities, indicating
different routes that the car can take in a complex scenario (e.g., intersection).

The architecture of our model follows a ResNet18 [47] structure. The training proce-
dure optimized the Kullback–Leibler (KL) divergence between the ground truth distribution
and the predicted distribution. We trained our models for five epochs using the SGD opti-
mizer with a batch-size of 256 and an initial learning rate of 0.1, decayed by a factor of 0.5
every epoch. We regularized the model by including an dropout of 0.5 before the output
layer, a weight decay of 0.001.

To address the systematic bias from the dataset (86.6% of the time, the car goes in a
straight direction) we experimented with data balancing by splitting the target into five
classes, according to the absolute curvature. This split allows us to capture a broad enough
spectrum of turning scenarios, covering both wide and tight turns and also straight line
driving. More splits could allow better exposure of the models to extreme corner cases,
but we considered this number to be enough to mitigate the bias that exists in the dataset.
The weight of each class is inversely proportional to the number of examples that belong
to it and during training, we sampled with replacements according to the distribution of
weights. We choose five classes to capture representative samples for different types of
driving scenarios according to the road curvature. Equation (4) emphasizes the formula
used for weighting each sample in the dataset. Here, wi represents the weight of the sample
i, N is the total number of samples in the dataset, #classes is the number of classes we
selected for discretizing the steering values, C(i) represents the class of sample i and | · | is
the operator that denotes the cardinality of a set.

wi =
N

#classes · |C(i)| (4)

Following the work of [7], our training pipeline augments 50% of the data instances
with recoveries from erratic driving by applying perspective transformations that corre-
spond to random translations and/or rotations sampled uniformly (both positive and
negative values are considered) considering the following cases:

• if only a translation is applied, we sampled the shift uniformly from [0.5, 1.5] [m]
• if only a rotation is applied, we sampled the rotation uniformly from [0.05, 0.25] [rad].
• if a translation and a rotation is applied, we sampled uniformly from [0.5, 1.2] ×

[0.05, 0.12] [m, rad]

4.5. Path Segmentation

The approach we employ for path generation is based on semantic segmentation. We
generated a dataset using the path labels and considered two separate variants for them:
hard labels and soft labels.

As a segmentation model for the task of path generation, we chose DeepLabv3 [48]
with a ResNet50 [47] backbone, which was pre-trained on ImageNet [49]. The loss functions
we employ in the training process are cross entropy for the model trained on the hard labels
and binary cross entropy with logits for the model trained with the targets defined by the
soft labels cost maps. As an optimizer, we select SGD, with an initial learning rate of 0.0001,
momentum of 0.9 and a weight decay of 0.0001. The model was trained for 50 epochs and
the selected batch size was eight.

During training, a balancing technique was applied, since the datasets are biased
and the predominant scenario emphasizes the vehicle moving forward. Therefore, for
a generated path, we use the relative poses of the camera points between each pair of
consecutive frames and then compute the rotation angle around the Y axis and sum all
the obtained rotation angles along the followed path. Based on this sum, each frame
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was categorized as one of five different classes and during the training, each category
was selected with the same probability. The categories are defined by angles between
(−∞,−28), [−28,−8), [−8,−8] (8, 28] and (28, ∞). These values have been chosen to
represent different types of courses, varying from tight turns to left and right, to wider
turns in both directions and straight line driving.

4.6. Improving Steering Predictions Using Path Labels

Furthermore, after having both the base steering generation networks and the path
segmentation ones, we designed two additional methods to test if the performance of the
steering generation can be improved.

Encoded ROI: the first idea suggests using the segmentation path labels as a ROI
map which is fed as an additional input to the steering network. The steering network
remains the same as the one described in Section 4.4, but the main difference is adding a
convolutional encoder for the ROI map, whose output is then multiplied with the output of
the first convolution in the ResNet, before being forwarded as input to the ResNet blocks.

Considering the initial steering network as a ResNet backbone and a fully connected
layer for obtaining a course distribution output, we can express this process through
Equation (5):

y = L(R(C(x))) (5)

where x is the input frame, C denotes a convolutional encoder, R represents the ResNet
backbone for feature extraction and L is the linear layer used for the output distribution
generation.

The process of obtaining the output distribution for the encoded ROI solution is shown
in Equation (6):

y = L(R(C(x) · C(S(x))) (6)

where we used the same notations as in Equation (5) and S represents the segmentation
network which is applied on the image input and (·) is a tensor multiplication operator.

Label guidance: the second idea employs the Ackermann steering model, which is
used to generate a vehicle’s trajectory starting from a wheel angle input and a turning
distance. Having the output distribution generated by the steering prediction network, we
found the peaks of the distribution and then computed the corresponding wheel angle for
each peak. Furthermore, for each of these wheel angles, we generated a path using the
Ackermann geometry and then used the segmentation results to compute an overlapping
score between the two. In the case of the soft segmentation method, this score is computed
as the sum of the segmentation score for each pixel that lies in the geometrically generated
path, while for the hard label segmentation, the score is represented by the mean intersection
over union between the segmentation network output and the geometrically generated
path. The path with the highest score was selected and its corresponding wheel angle was
converted to steering angle and chosen as the command to be followed by the vehicle.

5. Evaluation

In this section, we evaluate our automatic labeling techniques, for the generation
of both steering labels and path labels. We also analyze the influence of the deducted
ego-motion scaling factor over the quality of the steering labels. Furthermore, we evaluate
and compare the performance of a steering network when trained on the generated steering
labels against the same network trained on the ground truth steering. The final part of this
section is represented by the results obtained for the task of path segmentation.

5.1. Hardware Setup

For training all our neural networks, we have used the PyTorch deep learning frame-
work [50] l alongside CUDA version 12.1 for GPU acceleration on a Linux machine with an
Intel Core i7-6800K CPU, 32 GB of DDR4 RAM at 2400 MHz and loaded the models on a
single NVIDIA GTX 1080Ti with 12 GB of memory.
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5.2. Scaling Factor

By applying the heuristic described in Section 4.1 to our car setup, we obtained an
average scaling factor of 32.8. To analyze the accuracy of our scaling factor estimation
heuristic we proceeded as follows: initially, we have extracted the unscaled turning radius
from the pose estimation module; then we swept over the interval [10, 60] of potential
scaling factors, and corrected our predictions. Finally we computed the mean squared error
(MSE) of the road curvature against the ground-truth labels and we reported the minimizer.
For the straight-forward computation, we obtained a scaling factor value of 34.65. As
depicted in Figure 6, we can observe that the error decreases fast until it reaches the
minimizing value, and afterwards slowly increases. The slow increasing rate is attributed
to the systematic bias present in the dataset (most of the time the car goes in a straight
line). By increasing the scaling factor, we implicitly increase the turning radius, which
corresponds to a decrease in the road curvatures. Thus most of the road curvature values
oscillate around 0, which corresponds to the dominant value in our dataset. To address
this issue, we debiased the MSE by computing a weighted average using the sampling
probabilities for data balancing. Our later procedure provides in a clear turning point of
MSE plot, resulting in a faster increasing rate after the minimum values is surpassed (see
Figure 6). Our predicted value for the scaling factor is clipped between the biased and
unbiased minimizers, showing that our method provides an accurate estimate. The same
figure shows the difference between the same trajectory with the minimizers’ scale values,
on the right.

(a) (b)

Figure 6. Influence of the scale factor over the MSE between the road curvature and the ground-truth
labels (a) and over the aspect of the trajectory (b). (a) MSE of the road curvature against the ground-
truth label for different scale factors. (b) Different trajectories constructed from the estimated pose
and the corresponding scale factors.

5.3. Steering Labeling

We performed open-loop and closed-loop evaluation of our models in a video-based
simulator. For the open-loop evaluation, we used KL divergence as an error metric between
the ground truth and the output distributions over the next possible road curvature. Our
closed-loop evaluation relies on a video-based simulator similar to [7,16]. Each simulation
step provides a single view corresponding to the middle front facing camera, by applying
the corresponding view port transformations that reflects the previous decision of the steer-
ing policy. In this way, the current observation received by the network is determined by its
previous decisions, and thus we simulate the car’s movement through the environment as
if it was released in the real world. Our implementations describes the car’s trajectory using
the Ackermann steering model, and at every step we monitor the displacement between
the virtual and the real car to identify a human intervention and penalize the model. We
followed the same evaluation metric proposed in [7], by reporting the autonomy and the
number of interventions. We consider an intervention when the displacement (translation
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and rotation) between the virtual and the real car surpasses a given threshold, set to 1.5 [m]
and 0.2 [rad], respectively. Each intervention is penalized by 6 s.

To obtain a universal reference value for the sensitivity of our closed-loop evaluation
system, where 86.67% corresponds to driving in a straight line, we considered as a baseline
a model that which always predicts a future course of 0◦. The relatively low performance of
the baseline, 45% autonomy, suggests that our simulator is able to capture fine movements
of the simulated vehicle.

Initially, we trained a model on the ground-truth data recorded by the steering acqui-
sition sensor. We applied multiple training procedure in terms of data sampling and data
augmentation, including: raw dataset, data balancing, perspective augmentation (shifts—
corresponding to recoveries from erratic driving), and finally combining data balancing
and shifts. During our training procedure, we monitored the open-loop performance on
the validation dataset, but we did not find it to be informative and correlated with the
closed-loop evaluation. Thus, we reported the evaluation results for the model that achieves
the best closed-loop performance on the validation dataset. The results of our experiments
are summarized in Table 1. For our current setup, data balancing slightly degraded the
performance of our model. We attribute that loss to the systematic bias that also exists in
the validation dataset, where a balanced model could predict more turning commands,
therefore decreasing the overall autonomy on a dataset where the bias emphasizes going
in a straight line. By weighting the five class equally, our model can forget about the
actual trajectory distribution. UPB dataset [43] lacks of diversity in terms of intersection
and curved roads, and we suspect that our model has difficulties in generalizing. We
leave the analysis of other balancing strategies for future work. Our best model achieves
a 79% autonomy, equivalent to 134 interventions over approximately 51 min of recorded
driving (without accounting the time penalty for each intervention). The 2D perspective
augmentation introduced in the training dataset boosted the autonomy of the model with
9% and reduced the number of interventions with 84. Most of the time, the model struggles
in intersections since we did not condition the policy to follow a predefined trajectory. From
the manual inspection of the simulations, we observed that the model learned to avoid
obstacles such as stationary cars, fences in construction areas and pedestrians that walk on
the drivable area. Moreover, since our model does not account for past dependencies, the
model has difficulties returning to the correct lane when overtaking an obstacles, requiring
human intervention.

We applied the same training procedure by replacing the ground-truth road curva-
ture with the one resulted from the pose estimation module to evaluate the feasibility of
our proposed method. In Table 1, we summarized the open-loop evaluation against the
ground-truth and pose estimation labels and the and the closed-loop evaluations against
the ground-truth labels. Similar to our previous experiment, we reported the best closed-
loop performance on the validation dataset. Our best model achieves a 77% autonomy,
equivalent to 159 intervention. The 2% decrease of the model’s performance from its
corresponding ground-truth counterpart demonstrates that the pose-estimation module
provides accurate labels, achieving competitive results against the collected sensory data.

Figure 7 illustrates previously described behavior of our models and the location of
the intervention points.
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Table 1. Evaluation results of the two experiments over 3060.16 [s]. Baseline corresponds to the model
that predicts always 0◦. Abbreviations: ground truth (GT), pose estimation (POSE), data balancing
(B), perspective augmentation shifts (S), autonomy (A), number of interventions (NoI), not applicable
(-), total time including penalties (TT).

Open-Loop (KL) Closed-Loop

Model GT POSE A NoI TT [s]

Baseline 4.05 - 0.45 623 6846.67

GT 0.49 - 0.70 221 4434.67
GT + B 0.56 - 0.67 254 4632.67
GT + S 0.51 - 0.79 134 3912.67
GT + BS 0.61 - 0.77 153 4026.67

POSE 0.54 0.58 0.65 284 4812.67
POSE + B 0.60 0.62 0.65 276 4764.67
POSE + S 0.55 0.62 0.77 159 4062.67
POSE + BS 0.64 0.70 0.75 172 4140.67

Figure 7. Intervention points for model trained with perspective augmentations.

5.4. Scale Sensitivity

One limitation of our pose estimation labeling pipeline is the recovery of the correct
scaling factor. We analyzed the impact of the estimated scaling value on the steering
network’s performance by training multiple models on different pose estimation labels
obtained by varying the scaling factor between 22.8 and 42.8. We used the same training
pipeline as described in Section 4.4, and we reported the open-loop and closed-loop evalua-
tion of the models that achieved the best autonomy on the validation dataset. Our results
are summarized in Table 2.

In terms of the open-loop evaluation against the ground-truth labels, as suggested by
the downward-upward trend captured by our results, a better estimate of the scaling factor
results in a lower error metric. On the other hand, the open-loop evaluation against pose
estimation labels on the validation dataset does not offer any relevant information. As pre-
viously emphasized in Section 4.1, increasing the scaling leads to an increase in the turning
radius, which implicitly results in a decrease in road curvatures. Thus, an overestimation
of the scaling factor induces a bias in the constructed labels (almost a straight trajectory),
which could be easily learned by a model, as suggested by the downward trend captured
in our results.

Similarly to the open-loop evaluation against the ground-truth labels, we observe a
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downward-upward trend in the closed-loop performance. The average autonomy over
the scaling factor sweep is 76.11% with a standard deviation of 1.19%, suggesting that
the model learns a robust policy even for inaccurate scaling factors. Moreover, the model
achieved the best autonomy of 77% for a range of scale values, between 30.3 and 37.8, an
interval which contains our heuristically estimated value of 32.8. This again shows that our
method for selecting the scaling factor is appropriate, since it obtains the highest autonomy
with a small number of interventions higher than models trained with labels obtained from
other scaling factors.

Table 2. Scale sensitivity. The results for our scale prediction are written in bold. Abbreviations:
ground truth (GT), pose estimation (POSE), Kullback–Leibler divergence (KL) autonomy (A), number
of interventions (NoI).

Scale 22.80 25.30 27.80 30.30 32.80 35.30 37.80 40.30 42.80

A 0.73 0.76 0.76 0.77 0.77 0.77 0.77 0.76 0.76
NoI 194 164 160 157 159 153 159 161 164
KL(GT) 0.65 0.61 0.59 0.59 0.55 0.54 0.57 0.58 0.60
KL(POSE) 0.78 0.76 0.70 0.69 0.62 0.58 0.58 0.54 0.52

5.5. Segmentation

After the path labels have been obtained, we trained the segmentation model on both
the KITTI odometry and UPB datasets. We define five different model alternatives: one
which is trained with the hard labels as targets and four which are trained with the soft
labels and we will denote them as below:

• HL: the model trained with the targets defined by the hard labels.
• SL Logits: the model trained with the targets defined by the soft labels, where a

threshold is applied directly of the output of the model.
• SL Sigmoid: as SL Logits, but a Sigmoid operation is applied on the output logits.
• SL Softmax: as SL Logits, but a Softmax operation is applied on the output logits.
• SL Tanh: as SL Logits, but a Tanh operation is applied on the output logits.

To find the best threshold for the soft labels evaluation, we selected an interval and
performed a search for each one of the four variants of the model. This search employs
running the model on the testing split of the UPB campus dataset and then selecting the
threshold that leads to the highest mIOU. The setup for this search follows the cases:

• SL Logits: search interval [−1, 0.5], step size 0.025, with the best threshold at 0.15.
• SL Sigmoid: search interval [0.1, 1], step size 0.025, with the best threshold at 0.425.
• SL Softmax: search interval [0.0025, 0.035], step size 0.0025, with the best threshold

at 0.0075.
• SL Tanh: search interval [−0.25, 0.25], step size 0.025, with the best threshold at −0.15.

For evaluating the path segmentation, we chose two popular metrics: accuracy (Acc)
and mean intersection over union (mIOU). Accuracy represents the percentage of pixels
that were correctly classified, and the formula for this metric can be seen in Equation (7). In
this equation, the following notations have been used: TP for true positives, TN for true
negatives, FP for false positives and FN for false negatives. In our situation, true positive
are pixels that are correctly identified to belong to the path class, true negatives are pixels
that are correctly identified to belong to the rest of the scene, false positives are pixels that
are incorrectly identified as belonging in the path class and false negatives are represented
by the pixels incorrectly identified as belonging to the rest of the scene.

accuracy =
TP + TN

TP + TN + FP + FN
(7)

The second metric, mIOU can be described as the ratio between the intersection of
the target with the prediction and the union of the two, averaged over all classes. Since
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we only have one class, denoting the followed path, the intersection represents the pixels
where the ground-truth label of the path and the predicted label are overlapped, while
the union represents the pixels where either the ground truth or the prediction is present.
Equation (8) describes the mIOU metric for segmentation.

mIOU =
predicted ∩ target
predicted ∪ target

(8)

Table 3 shows the results of the segmentation process on different setups, where the
threshold values for the soft label models have been selected as described above. The
first column, denoted as KITTI SSL shows the performance on the KITTI dataset, after we
compared the segmentation results of different variations of the model with the labels we
obtained in a self-supervised manner. The second column, named KITTI GT, shows the
segmentation results compared to the labels we obtained when using the ground truth
poses from the dataset, while the final column shows the results of the segmentation on the
UPB campus dataset against the self-supervised labels generated for this dataset. In the
case of this dataset we could not evaluate against the labels obtained from the exact path of
the vehicle, since there are no poses recorded during the data collection process.

Table 3. Evaluation results for the path segmentation given the two metrics: accuracy (Acc) and mean
intersection over union (mIOU).

KITTI SSL KITTI GT UPB SSL

Model Acc (%) mIOU (%) Acc (%) mIOU (%) Acc (%) mIOU (%)

HL 98.20 84.79 98.22 85.23 97.40 83.89
SL Logits 98.15 66.18 98.25 67.01 98.14 70.32
SL Sigmoid 98.24 66.21 97.44 66.96 97.87 70.51
SL Softmax 96.98 42.36 95.85 42.06 95.13 36.37
SL Tanh 98.13 66.16 98.19 66.37 97.92 70.70

Figure 8 shows several result samples of the HL model applied on the UPB campus
dataset, while Figure 9 depicts the four variations of the SL model on a sample taken from
the same dataset, revealing both the heatmap of the model output and the final output after
applying a threshold over each heatmap.

Figure 8. Segmentation samples for the UPB campus dataset obtained using the HL model.
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(a) (b) (c) (d)
Figure 9. Segmentation samples for the UPB campus dataset and heatmap visualizations obtained
using the SL models. (a) SL Logits. (b) SL Sigmoid. (c) SL Softmax. (d) SL Tanh.

We can see the models are able to generalize well for new driving sections that are not
found in the training split of the dataset.

One feature we desired for the segmentation model was the ability to generate multiple
paths in cases of reaching an intersection. There are some cases where the segmentation
network generates multiple path possibilities, as seen in Figure 10.

Figure 10. Multiple paths generated by the segmentation network.

The segmentation results show reliable path generation even for the cases of inter-
section, where the network is able to generate multiple paths, despite their absence from
the ground truth ego-motion trajectories of the vehicle. However, there are also situations
where the paths generated by the network show a lack of confidence in the trajectory
followed by the vehicle, especially in turns where the road is not very well delimited.

5.6. Steering Improved

For the steering improvement evaluation, we use the steering network models trained
on the dataset where the ground truth is generated by the steering labeling algorithm as
described in Section 4.2 and we want to see if these improvements can guide these models
to yield similar or better performance compared to the steering models trained on the
dataset with the ground truth steering labels as collected by the sensors.

Therefore, in this section, we introduce two new models: POSE + S + ROI and
POSE + S + ACK. The first model corresponds to the first one described in Section 4.6. The
ROI map we used consists of the soft segmentation ground-truth labels, while at inference
time, the SL Sigmoid model was applied on the RGB frame and the results are fed into the
steering network, alongside with the single RGB input. The second model starts from the
POSE + S model, mentioned in Table 1 and uses the segmentation guidance as described in
Section 4.6. Figure 11 shows an example of this process. On the left, the output distribution
of the steering network is shown, the image in the center suggests the possible paths formed
from the distribution peaks, while the image on the right shows the heatmap representation
of the results after applying the path segmentation network.
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(a)

(b) (c)
Figure 11. Guiding the steering network using the segmentation results. In this example, the steering
network would choose the higher peak, from the left, but the segmentation model predicts a higher
score for going to the right. (a) Steering network distribution output with the two detected peaks.
(b) Paths generated with the Ackermann model from the distribution peaks. (c) Output of the path
segmentation network.

We compared these two additional models with the GT + S and POSE + S models,
the best performing models from the previous experiments. The results can be seen in
Table 4. The model that uses the segmentation labels as ROI input performs worse than
the same model without the additional input, however, when the base model is guided
by the overlap score between the Ackermann paths and the segmentaion labels, it even
outperforms the model that is trained on the ground truth steering labels.

Table 4. Evaluation results of the two additional experiments.Abbreviations: ground truth (GT), pose
estimation (POSE), perspective augmentation shifts (S), autonomy (A), number of interventions (NoI),
total time including penalties (TT), encoded region of interest model (ROI) and Ackermann geometry
guided model (ACK).

Closed-Loop

Model A NoI TT [s]

GT + S 0.79 134 3912.67
POSE + S 0.77 159 4062.67
POSE + S + ROI 0.75 175 4158.67
POSE + S + ACK 0.80 128 3876.67

6. Conclusions

We have presented a fully self-supervised labeling pipeline for an autonomous driving
dataset in the context of steering control and path labeling. We applied our method on
two open-source driving datasets [43,44], and we proved the robustness and accuracy by
achieving competitive results against the ground-truth labeling counterpart. Consequently,
this shows that leveraging self-labeled data for learning a steering model can be almost
as reliable as using the ground truth data. Additionally, our heuristic for determining a
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scaling factor for the depth and ego-motion resulted from the self-supervised learning
pipeline has proven to be accurate and simple, which shows promising results in adapting
the ego-motion and depth estimation to a real-world scale.

We consider that our current proposal can address two of the main limitations of the
end-to-end approach regarding the amount and the diversity of available training data.
Our method is flexible and applicable to a minimalistic data acquisition setup consisting
of a single camera, which makes it suitable for data generation in the case of videos in
the wild, significantly broadening the data that can be used for learning driving policies
without being limited by the labels from a dataset or additional equipment which might
not be available to everyone. Therefore, one potential line of research that we intend to
investigate is to leverage the vast amount of online driving video resources to learn a robust
driving policy.

In addition to providing two different self-supervised labeling techniques, one for
steering labels and one for path masks, we have shown how the path segmentation network
and steering geometry can be leveraged with the purpose of improving the decisions taken
by the steering network, demonstrated by the fact that this setup surpassed the autonomy
of the steering network when trained on ground truth steering data.

In summary, our contributions are as follows:

• a comprehensive performance evaluation of the unsupervised steering labeling proce-
dure;

• a sensitivity analysis of the steering models performance relative to the estimated
scaling factor;

• a pipeline that generates path labels for any given dataset, in a self-supervised manner;
• a performance evaluation of different variations of segmentation models trained on

the generated paths;
• two different approaches used to improve the performance of the base models using

the paths obtained through segmentation.

As for future work, we propose on pursuing a more robust way of generating the
path labels, keeping the self-supervised approach, but also considering the obstacles that
interfere in the trajectory followed by the vehicle. One approach involves the idea of
discarding the path regions from the current frame that are not supposed to be visible due
to occlusions and to achieve this, the disparity maps of all the frames alongside the trajectory
can be used. Another possible research direction we want to follow through consists of
eliminating the steering network from the decision making process and only provide
steering outputs by leveraging the trajectory segmentation results and the Ackermann
geometry. We are also commited to trying newer segmentation approaches, using state-of-
the-art methods involving vision transformers and we plan on introducing a user-guided
text embedding which represents the intention about the directions of the trajectories
outputed by the segmentation model in intersection scenarios.

We believe that leveraging the vast amount of driving video recordings available on
the internet will be a natural next step towards improving the capability of an autonomous
driving system.
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