Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Methodological Quality
2.4. Data Extraction
2.5. Data Analysis
3. Results
3.1. General Characteristics of the Studies
3.2. Methodological Quality
3.3. Data Analysis
3.3.1. Correlation between Activity Counts and Energy Expenditure
3.3.2. Validity of Actigraph Devices
Meta-Analysis Results
Sensitivity Analysis
Descriptive Analysis
3.3.3. Accuracy of Different Prediction Equations
4. Discussion
4.1. The Correlation between Counts and Energy Expenditure
4.2. Validity According to the Actigraph for Energy Expenditure
4.3. Accuracy of Different Prediction Equations
4.4. Validity According to the Positioning of Actigraph Devices
4.5. Practical Implications and Future Trends
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Guo, J. Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition. Gastroenterology 2017, 152, 1718–1727. [Google Scholar] [CrossRef]
- Caron, N.; Peyrot, N.; Caderby, T.; Verkindt, C.; Dalleau, G. Energy Expenditure in People with Diabetes Mellitus: A Review. Front. Nutr. 2016, 3, 56. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy balance and obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Westerterp, K.R. Assessment of physical activity: A critical appraisal. Eur. J. Appl. Physiol. 2009, 105, 823–828. [Google Scholar] [CrossRef]
- Haugen, H.A.; Chan, L.N.; Li, F. Indirect calorimetry: A practical guide for clinicians. Nutr. Clin. Pract. 2007, 22, 377–388. [Google Scholar] [CrossRef]
- Schoeller, D.A.; van Santen, E. Measurement of energy expenditure in humans by doubly labeled water method. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982, 53, 955–959. [Google Scholar] [CrossRef]
- Kagan, I.; Zusman, O.; Bendavid, I.; Theilla, M.; Cohen, J.; Singer, P. Validation of carbon dioxide production (VCO2) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: A retrospective observational study. Crit. Care 2018, 22, 186. [Google Scholar] [CrossRef]
- Bonomi, A.G.; Westerterp, K.R. Advances in physical activity monitoring and lifestyle interventions in obesity: A review. Int. J. Obes. 2012, 36, 167–177. [Google Scholar] [CrossRef]
- Bassett, D.R.; Troiano, R.P.; McClain, J.J.; Wolff, D.L. Accelerometer-based physical activity: Total volume per day and standardized measures. Med. Sci. Sports Exerc. 2015, 47, 833–838. [Google Scholar] [CrossRef]
- Giurgiu, M.; Timm, I.; Becker, M.; Schmidt, S.; Wunsch, K.; Nissen, R.; Davidovski, D.; Bussmann, J.B.J.; Nigg, C.R.; Reichert, M.; et al. Quality Evaluation of Free-living Validation Studies for the Assessment of 24-h Physical Behavior in Adults via Wearables: Systematic Review. JMIR mHealth uHealth 2022, 10, e36377. [Google Scholar] [CrossRef]
- Taoum, A.; Chaudru, S.; De Müllenheim, P.Y.; Congnard, F.; Emily, M.; Noury-Desvaux, B.; Bickert, S.; Carrault, G.; Mahe, G.; Le Faucheur, A. Comparison of Activity Monitors Accuracy in Assessing Intermittent Outdoor Walking. Med. Sci. Sports Exerc. 2021, 53, 1303–1314. [Google Scholar] [CrossRef]
- Engineering/Marketing, A. ActiLife Users Manual; ActiGraph: Pensacola, FL, USA, 2009. [Google Scholar]
- Ngueleu, A.M.; Barthod, C.; Best, K.L.; Routhier, F.; Otis, M.; Batcho, C.S. Criterion validity of ActiGraph monitoring devices for step counting and distance measurement in adults and older adults: A systematic review. J. Neuroeng. Rehabil. 2022, 19, 112. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. Open Med. 2009, 3, e123–e130. [Google Scholar] [PubMed]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Adamo, K.B.; Prince, S.A.; Tricco, A.C.; Connor-Gorber, S.; Tremblay, M. A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: A systematic review. Int. J. Pediatr. Obes. 2009, 4, 2–27. [Google Scholar] [CrossRef]
- Phillips, S.M.; Summerbell, C.; Hobbs, M.; Hesketh, K.R.; Saxena, S.; Muir, C.; Hillier-Brown, F.C. A systematic review of the validity, reliability, and feasibility of measurement tools used to assess the physical activity and sedentary behaviour of pre-school aged children. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 141. [Google Scholar] [CrossRef]
- Maidment, D.W.; Barker, A.B.; Xia, J.; Ferguson, M.A. A systematic review and meta-analysis assessing the effectiveness of alternative listening devices to conventional hearing aids in adults with hearing loss. Int. J. Audiol. 2018, 57, 721–729. [Google Scholar] [CrossRef]
- Prinsen, C.A.C.; Mokkink, L.B.; Bouter, L.M.; Alonso, J.; Patrick, D.L.; De Vet, H.C.; Terwee, C.B. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual. Life Res. 2018, 27, 1147–1157. [Google Scholar] [CrossRef]
- Terwee, C.B.; Mokkink, L.B.; Knol, D.L.; Ostelo, R.W.; Bouter, L.M.; de Vet, H.C. Rating the methodological quality in systematic reviews of studies on measurement properties: A scoring system for the COSMIN checklist. Qual. Life Res. 2012, 21, 651–657. [Google Scholar] [CrossRef]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; Updated March 2011; The Cochrane Collaboration: London, UK, 2011; Available online: https://training.cochrane.org/handbook (accessed on 1 March 2023).
- Cohen, A.; Schagerlöf, H.; Nilsson, C.; Melander, C.; Tjerneld, F.; Gorton, L. Liquid chromatography-mass spectrometry analysis of enzyme-hydrolysed carboxymethylcellulose for investigation of enzyme selectivity and substituent pattern. J. Chromatogr. A 2004, 1029, 87–95. [Google Scholar] [CrossRef]
- Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Kelly, L.A.; McMillan, D.G.; Anderson, A.; Fippinger, M.; Fillerup, G.; Rider, J. Validity of actigraphs uniaxial and triaxial accelerometers for assessment of physical activity in adults in laboratory conditions. BMC Med. Phys. 2013, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Neil-Sztramko, S.E.; Rafn, B.S.; Gotay, C.C.; Campbell, K.L. Determining activity count cut-points for measurement of physical activity using the Actiwatch2 accelerometer. Physiol. Behav. 2017, 173, 95–100. [Google Scholar] [CrossRef]
- Hänggi, J.M.; Phillips, L.R.; Rowlands, A.V. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J. Sci. Med. Sport 2013, 16, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.; Pienaar, P.R.; Henst, R.H.P.; Roden, L.C.; Kolbe-Alexander, T.L.; Rae, D.E. Assessing the validity and reliability and determining cut-points of the Actiwatch 2 in measuring physical activity. Physiol. Meas. 2020, 41, 085001. [Google Scholar] [CrossRef] [PubMed]
- Calabró, M.A.; Lee, J.M.; Saint-Maurice, P.F.; Yoo, H.; Welk, G.J. Validity of physical activity monitors for assessing lower intensity activity in adults. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 119. [Google Scholar] [CrossRef]
- Schneller, M.B.; Pedersen, M.T.; Gupta, N.; Aadahl, M.; Holtermann, A. Validation of five minimally obstructive methods to estimate physical activity energy expenditure in young adults in semi-standardized settings. Sensors 2015, 15, 6133–6151. [Google Scholar] [CrossRef] [PubMed]
- Anastasopoulou, P.; Tubic, M.; Schmidt, S.; Neumann, R.; Woll, A.; Härtel, S. Validation and comparison of two methods to assess human energy expenditure during free-living activities. PLoS ONE 2014, 9, e90606. [Google Scholar] [CrossRef] [PubMed]
- Florez-Pregonero, A.; Meckes, N.; Buman, M.; Ainsworth, B.E. Wearable monitors criterion validity for energy expenditure in sedentary and light activities. J. Sport Health Sci. 2018, 6, 103–110, Correction in J. Sport Health Sci. 2018, 7, 250. [Google Scholar]
- Thomson, N.K.; McMichan, L.; Macrae, E.; Baker, J.S.; Muggeridge, D.J.; Easton, C. Validity of the iPhone M7 Motion Coprocessor to Estimate Physical Activity During Structured and Free-Living Activities in Healthy Adults. J. Meas. Phys. Behav. 2021, 4, 212–219. [Google Scholar] [CrossRef]
- Gastin, P.B.; Cayzer, C.; Dwyer, D.; Robertson, S. Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. J. Sci. Med. Sport 2018, 21, 291–295. [Google Scholar] [CrossRef]
- Morris, C.E.; Wessel, P.A.; Tinius, R.A.; Schafer, M.A.; Maples, J.M. Validity of Activity Trackers in Estimating Energy expenditure During High-Intensity Functional Training. Res. Q. Exerc. Sport 2019, 90, 377–384. [Google Scholar] [CrossRef]
- Crouter, S.E.; Horton, M.; Bassett, D.R., Jr. Validity of ActiGraph child-specific equations during various physical activities. Med. Sci. Sports Exerc. 2013, 45, 1403–1409. [Google Scholar] [CrossRef]
- Aguilar-Farias, N.; Peeters, G.M.E.E.G.; Brychta, R.J.; Chen, K.Y.; Brown, W.J. Comparing ActiGraph equations for estimating energy expenditure in older adults. J. Sports Sci. 2019, 37, 188–195. [Google Scholar] [CrossRef]
- McMinn, D.; Acharya, R.; Rowe, D.A.; Gray, S.R.; Allan, J.L. Measuring activity energy expenditure: Accuracy of the GT3X+ and actiheart monitors. Int. J. Exerc. Sci. 2013, 6, 5. [Google Scholar]
- Kossi, O.; Lacroix, J.; Ferry, B.; Batcho, C.S.; Julien-Vergonjanne, A.; Mandigout, S. Reliability of ActiGraph GT3X+ placement location in the estimation of energy expenditure during moderate and high-intensity physical activities in young and older adults. J. Sports Sci. 2021, 39, 1489–1496. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, K.C.; Ho, C.S.; Huang, C.C. Accuracy of the energy expenditure during uphill exercise measured by the Waist-worn ActiGraph. J. Exerc. Sci. Fit. 2019, 17, 62–66. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, P.; Zhuang, J. Predicting Chinese children and youth’s energy expenditure using ActiGraph accelerometers: A calibration and cross-validation study. Res. Q. Exerc. Sport 2013, 84 (Suppl. 2), S56–S63. [Google Scholar] [CrossRef] [PubMed]
- Crouter, S.E.; Flynn, J.I.; Bassett, D.R., Jr. Estimating physical activity in youth using a wrist accelerometer. Med. Sci. Sports Exerc. 2015, 47, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Crouter, S.E.; Lee, J.M.; Dixon, P.M.; Gaesser, G.A.; Welk, G.J. Comparisons of prediction equations for estimating energy expenditure in youth. J. Sci. Med. Sport 2016, 19, 35–40. [Google Scholar] [CrossRef]
- Santos-Lozano, A.; Santín-Medeiros, F.; Cardon, G.; Torres-Luque, G.; Bailon, R.; Bergmeir, C.; Ruiz, J.R.; Lucia, A.; Garatachea, N. Actigraph GT3X: Validation and determination of physical activity intensity cut points. Int. J. Sports Med. 2013, 34, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Treuth, M.S.; Schmitz, K.; Catellier, D.J.; McMurray, R.G.; Murray, D.M.; Almeida, M.J.; Going, S.; Norman, J.E.; Pate, R. Defining accelerometer thresholds for activity intensities in adolescent girls. Med. Sci. Sports Exerc. 2004, 36, 1259–1266. [Google Scholar]
- Trost, S.G.; Ward, D.S.; Moorehead, S.M.; Watson, P.D.; Riner, W.; Burke, J.R. Validity of the computer science and applications (CSA) activity monitor in children. Med. Sci. Sports Exerc. 1998, 30, 629–633. [Google Scholar] [CrossRef]
- Puyau, M.R.; Adolph, A.L.; Vohra, F.A.; Butte, N.F. Validation and calibration of physical activity monitors in children [published correction appears in Obes. Res. 2006, 14, 528]. Obes. Res. 2002, 10, 150–157. [Google Scholar] [CrossRef]
- Freedson, P.; Pober, D.; Janz, K.F. Calibration of accelerometer output for children. Med. Sci. Sports Exerc. 2005, 37 (Suppl. 11), S523–S530. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.H.; Treuth, M.; Hannan, P.; McMurray, R.; Ring, K.B.; Catellier, D.; Pate, R. Predicting energy expenditure from accelerometry counts in adolescent girls. Med. Sci. Sports Exerc. 2005, 37, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Mattocks, C.; Leary, S.; Ness, A.; Deere, K.; Saunders, J.; Tilling, K.; Kirkby, J.; Blair, S.N.; Riddoch, C. Calibration of an accelerometer during free-living activities in children. Int. J. Pediatr. Obes. 2007, 2, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Robusto, K.M.; Trost, S.G. Comparison of three generations of ActiGraph™ activity monitors in children and adolescents. J. Sports Sci. 2012, 30, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- García-Massó, X.; Serra-Añó, P.; García-Raffi, L.M.; Sánchez-Pérez, E.A.; López-Pascual, J.; Gonzalez, L.M. Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheelchair users with spinal cord injury. Spinal Cord 2013, 51, 898–903. [Google Scholar] [CrossRef]
- Nightingale, T.E.; Walhim, J.P.; Thompson, D.; Bilzon, J.L. Predicting physical activity energy expenditure in manual wheelchair users. Med. Sci. Sports Exerc. 2014, 46, 1849–1858. [Google Scholar] [CrossRef]
- Reid, R.E.; Insogna, J.A.; Carver, T.E.; Comptour, A.M.; Bewski, N.A.; Sciortino, C.; Andersen, R.E. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J. Sci. Med. Sport 2017, 20, 578–582. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nystrom, C.; Mora-Gonzalez, J.; Lof, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Howe, C.A.; Staudenmayer, J.W.; Freedson, P.S. Accelerometer prediction of energy expenditure: Vector magnitude versus vertical axis. Med. Sci. Sports Exerc. 2009, 41, 2199–2206. [Google Scholar] [CrossRef]
- Fairclough, S.J.; Noonan, R.; Rowlands, A.V.; Van Hees, V.; Knowles, Z.; Boddy, L.M. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Med. Sci. Sports Exerc. 2016, 48, 245–253. [Google Scholar] [CrossRef]
Source of Search | Date of Search | Searches Conducted | Search Outcome |
---|---|---|---|
PubMed | 1 January 2010 to 3 January 2023 | ALL-Fields (“gt3x”) | 1048 |
ALL-Fields (“Actigraph gt3x”) | 965 | ||
Web of Science—Core | 1 January 2010 to 3 January 2023 | ALL-Fields (“gt3x”) | 1045 |
ALL-Fields (“Actigraph gt3x”) | 951 | ||
sportdiscuss | 1 January 2010 to 3 January 2023 | ALL-Fields (“gt3x”) | 390 |
ALL-Fields (“Actigraph gt3x”) | 324 | ||
Manual Search | 1 January 2010 to 3 January 2023 | No application | 15 |
Interpretation of Pearson and Spearman Correlation Coefficients Using Cohen’s Criteria [25] | Intra-Group Correlation Coefficients Interpreted Using Ciccetti’s Criteria [26] | Explaining Effect Sizes Using Hopkins’ Criteria [27] |
---|---|---|
<0.3: Very low 0.3–0.49: Moderate 0.5–0.69: Good 0.7–1: Excellent | <0.4: Very low 0.4–0.59: Low 0.6–0.74: Good 0.75–1: Excellent | <0.2: Very low 0.2–0.59: Low 0.6–1.19: Moderate 1.2–1.99: Important 2–4: Very Important >4: Extremely important |
Authors and Year | Number of Participants | Participants’ Age (Mean ± Standard Deviation), Years | Body Mass Index (Mean ± Standard Deviation), kg/m2 | Actigraph Device | Positioning of Actigraph | Sampling Frequency | Indirect Calorimetry Device |
---|---|---|---|---|---|---|---|
Florez-Pregonero et al., 2017 [35] | 16 | 25.38 ± 8.58 | 24.6 ± 4.6 | NR | Hip | 30 Hz | Oxycon mobile |
Gastin et al., 2018 [37] | 26 | 21.3 ± 2.4 | 23.2 ± 2.0 | GT3X+ | Hip | 100 Hz | Metamax 3B |
Calabró et al., 2014 [32] | 40 | 27.4 ± 6.7 | 22.9 ± 3.1 | GT3X | NR | NR | Oxycon mobile |
Morris et al., 2019 [38] | 47 | 28.12 ± 11.22 | 23.68 ± 3.97 | GT3X+ | Hip | NR | Cosmed k4b2 |
Kelly et al., 2013 [28] | 42 | 21.57 ± 2.73 | 25.26 ± 3.25 | GT3X | Hip | 30 Hz | NR |
Crouter et al., 2013 [39] | 72 | 12.7 ± 0.8 | NR | GT3X+ | Hip | 30 Hz | Cosmed k4b2 |
Hänggi et al., 2013 [30] | 49 | 10.8 ± 1.9 | 18.2 ± 2.7 | GT3X | Hip | NR | Cosmed k4b2 |
Schneller et al., 2015 [33] | 14 | 27.7 ± 3.3 | 22.9 ± 1.4 | GT3X+ | Hip | 60 Hz | Cosmed k4b2 |
Anastasopoulou et al., 2014 [34] | 19 | 30.68 ± 8.58 | 24.34 ± 3.27 | GT3X | Hip | 30 Hz | Metamax 3B |
Kossi et al., 2021 [42] | 29 | 24 ± 4 | 25 ± 3 | GT3X+ | Hip, ankle and wrist | 30 Hz | Metamax 3B |
Zhu et al., 2013 [44] | 367 | NR | NR | GT3X | Hip | 30 Hz | Cosmed k4b2 |
Aguilar-Farias et al., 2019 [40] | 40 | 77.4 ± 8.13 | 22.0 ± 5.67 | GT3X+ | Hip | 30 Hz | Metamax 3B |
Chang et al., 2019 [43] | 30 | 24.53 ± 1.55 | 23.86 ± 2.67 | GT3X | Hip | 30 Hz | Vmax encore 29 system |
Crouter et al., 2015 [45] | 181 | NR | NR | GT3X | Wrist | 30 Hz | Cosmed k4b2 |
Kemp et al., 2020 [31] | 50 | 29.5 ± 18.0 | 24.1 ± 5.5 | GT3X | Hip | NR | Cosmed cpet |
Mcminn et al., 2013 [41] | 19 | 30 ± 9 | NR | GT3X+ | Hip and wrist | 30 Hz | Ultima cpx |
Neil-Sztramko et al., 2017 [29] | 30 | 40.0 ± 14.9 | 22.4 ± 3.1 | GT3X+ | Wrist | NR | Cosmed k4b2 |
Thomson et al., 2021 [36] | 20 | 28 ± 5 | NR | GT3X+ | Hip | 30 Hz | Ultima cpx |
Kim et al., 2016 [46] | 59 | NR | NR | GT3X | Hip | 30 Hz | Oxycon mobile |
Santos-Lozano et al., 2013 [47] | 97 | NR | NR | GT3X | Hip | 30 Hz | Oxycon pro |
Authors | Activity Counts (Mean ± Standard Deviation) | Indirect Calorimetry (Mean ± Standard Deviation) | Validity Indices | Outcomes |
---|---|---|---|---|
Kelly et al., 2013 [28] | VM 4.8 km/h:5688.83 ± 1072.3 (cpm) 6.4 km/h:8470.14 ± 1402.9 (cpm) 9.7 km/h:12774.0 ± 2413.8 (cpm) | 4.8 km/h:0.93 ± 0.2 (L/min) 6.4 km/h:1.32 ± 0.3 (L/min) 9.7 km/h:2.54 ± 0.5 (L/min) | Pearson correlation coefficient | VM r = 0.81 * Type of activity: 4.8 km/h slow walk, 6.4 km/h fast walk, 9.7 km/h run |
Hänggi et al., 2013 [30] | VA Lying: 0.08 ± 0.25 (cps) Sitting: 0.04 ± 0.19 (cps) Stand: 0.83 ± 1.47 (cps) Video game: 5.33 ± 9.76 (cps) Slow walking: 28.07 ± 8.96 (cps) Brisk walking: 62.09 ± 13.13 (cps) Jogging: 122.09 ± 30.13 (cps) Moderate run: 122.50 ± 33.98 (cps) VM Lying: 0.24 ± 0.54 (cps) Sitting: 0.26 ± 0.83 (cps) Standing: 3.79 ± 4.2 (cps) Video game: 26.34 ± 23.16 (cps) Slow walking: 44.95 ± 9.63(cps) Brisk walking: 81.32 ± 13.12(cps) Jogging: 136.34 ± 28.51(cps) Moderate running: 140.73 ± 33.83(cps) | Lying: 5.43 + 1.46 (mL∙kg−1/min) Sitting: 5.97 + 1.46 (mL∙kg−1/min) Standing: NR Video game: 12.20 + 5.15 (mL∙kg−1/min) Slow walking: 14.8 + 4.65 (mL∙kg−1/min) Brisk walking: 20.57 + 5.04 (mL∙kg−1/min) Jogging: 29.78 + 5.97 (mL∙kg−1/min) Moderate running: 34.35 + 6.59 (mL∙kg−1/min) | Pearson correlation coefficient | VA r = 0.88 * VM r = 0.89 * Type of activity: lying, sitting, standing, boxing, walking, and running |
Neil-Sztramko et al., 2017 [29] | NR Sitting: 504.2 ± 703.7 (cpm) Carrying: 6828.4 ± 1548.7 (cpm) Climbing stairs: 6735.5 ± 2720.1 (cpm) 2 mph Jogging: 2816.6 ± 1013.3 (cpm) Self-selected speed jogging: 4718.4 ± 1955.5 (cpm) 3.0–3.5 mph medium-speed run: 5432.2 ± 1853.3 (cpm) Optional medium-speed run: 6642.6 ± 1975.0 (cpm) Fast run: 11,235.4 ± 6856.5 (cpm) Optional fast-speed run: 11585.5 ± 6297.3 (cpm) | Sitting: 1.4 ± 0.3 (MET) Carrying: 5.8 ± 1.3 (MET) Climbing stairs: 7.9 ± 1.5 (MET) 2 mph Jogging: 2.6 ± 0.5 (MET) Self-selected speed jogging: 3.6 ± 0.8 (MET) 3.0–3.5 mph medium-speed run: 5.2 ± 0.6 (MET) Optional medium-speed run: 4.6 ± 0.6 (MET) Fast run: 7.2 ± 1.6 (MET) Optional fast-speed run: 6.5 ± 1.7 (MET) | Pearson correlation coefficient | NR r = 0.69 * Activity type: slow (approximately 2.0 mph), medium (3.0–3.5 mph), and fast (run or walk of one’s choice); self-paced indoor walking at three speeds (slow, medium, and fast), up and down two flights of stairs, and a carrying task in which participants were asked to walk 10 m, pick up a 5-pound box, walk 10 m to place the box on a table, and walk back to the initial starting point |
Kemp et al., 2020 [31] | NR Rest: 0.0 ± 0.0 (cpm) Sitting: 0.0 ± 4.1 (cpm) Stand: 0.0 ± 1.0 (cpm) Jogging: 2131.0 ± 1413.0 (cpm) Jogging: 7601.8 ± 3497.5 (cpm) Medium-speed running: 7509.1 ± 2106.6 (cpm) Fast running: 74.8 ± 685.8 (cpm) Fast kinetic cycling: 891.5 ± 1509.1 (cpm) Medium-speed walking: 3206.1 ± 720.1 (cpm) | Rest: 1.1 ± 0.1 (MET) Sitting: 1.2 ± 0.1 (MET) Stand: 1.2 ± 0.2 (MET) Jogging: 3.3 ± 0.6 (MET) Jogging: 6.8 ± 1.4 (MET) Medium-speed running: 8.3 ± 1.9 (MET) Fast running: 4.9 ± 1.8 (MET) Fast kinetic cycling: 6.8 ± 3.2 (MET) Medium-speed walking: 6.0 ± 1.2 (MET) | Spearman’s correlation coefficient | Rest: ρ = 0.14 Sitting: ρ = 0.32 * Standing: ρ = 0.17 Jogging: ρ = 0.59 * Jogging: ρ = 0.57 * Medium-speed running: ρ = 0.44 * Fast running: ρ = −0.08 Dynamic cycling: ρ = −0.04 Medium-speed walking: ρ = 0.36 |
Authors and Year | Indices | Outcomes | Effect Size | Equation |
---|---|---|---|---|
Morris et al., 2019 [38] | Pearson’s correlation coefficient; mean deviation (90% CI) | All activities r = 0.74 *; MD = −37.6 (90% CI: −44.2, −30.9) | All activities Hip ES = 10.02 | NR |
Calabró et al., 2014 [32] | Pearson’s correlation coefficient (95% CI) | All activities r = 0.80 * (95% CI:0.65, 0.89) | All activities ES = −7.39 | Freedson Combination (1998) |
Mcminn et al., 2013 [41] | Mean Error (95% CI) | Jogging Hip ME = 0.77 (95% CI: 0.04, 1.51) Wrist ME = 1.22 (95%CI: 0.45, 1.99) Fast running Hip ME = −1.90 (95%CI: −2.77, 1.04) Wrist ME = −0.96 (95%CI: −1.77, 0.14) | Jogging Hip ES = 0.76 Wrist ES = 1.58 Fast running Hip ES = −1.59 Wrist ES = −0.95 All activities Hip ES = 0.18 & Wrist ES = −0.21 | Freedson VM3 (2011) |
Anastasopoulou et al., 2014 [34] | Pearson’s correlation coefficient; intra-group correlation coefficient; percentage error | Walking r = 0.53 *; ICC = 0.23; PE = 36.0% Fast walking r = 0.70 *; ICC = 0.35. PE = 31.3% Jogging r = 0.78 *; ICC = 0.70 # PE = −10.5% Walking uphill/downhill r = 0.84 *; ICC = 0.52 PE = 26.4% Downstairs r = 0.70 *; ICC = 0.24 PE = −37.5% Upstairs r = 0.41; ICC = 0.14; PE = 53.9% | Walking ES = 1.33 Fast walking ES = 1.24 Jogging ES = −0.49 Walking uphill/downhill ES = 1.01 Downstairs ES = −2.01 Upstairs ES = 1.49 All activities Hip ES = 0.22 | Freedson VM3 (2011) |
Kossi et al., 2021 [42] | Intra-group correlation coefficient | Riding Ankle ICC = 0.40 Hip ICC = 0.42 Wrist ICC = 0.42 Walking Ankle ICC = 0.31 Hip ICC = 0.69 # Wrist ICC = 0.32 Running Ankle ICC = 0.22 Hip ICC = 0.59 Wrist ICC = 0.21 | Riding Ankle ES = 2.14 Hip ES = −2.33 Wrist ES = −2.79 Walking Ankle ES = 0.87 Hip ES = −1.29 Wrist ES = −1.48 Running Ankle ES = −2.03 Hip ES = −1.27 Wrist ES = −3.52 All activities Ankle ES = 0.33 Hip ES = − 0.92 Wrist ES = −1.72 | Freedson Adult (1998) |
Chang et al., 2019 [43] | Intra-group correlation coefficient; mean percentage error | 0% angle treadmill running ICC = 0.877 #; MPE = 2.27 3% angle treadmill running ICC = 0.755 #; MPE = 10.85 6% angle treadmill running ICC = 0.504; MPE = 20.97 | 0% 5.61 km/h ES = 0.34 7.20 km/h ES = −0.23 8.02 km/h ES = −0.17 & 3% 5.61 km/h run ES = −1 7.20 km/h ES = −1.28 8.02 km/h ES = −1.15 6% 5.61 km/h ES = −1.98 7.20 km/h ES = −2.36 8.02 km/h ES = −2.11 All activities Hip 0% ES = −0.03 & Hip 3% ES = −0.67 Hip 6% ES = −1.04 | Freedson VM3 Combination (2011) |
Florez-Pregonero et al., 2017 [35] | Mean percentage error | Standing, reading MPE = 32.48% Sitting, typing MPE = 12.96% Sitting, playing chess MPE = 21.67% All sedentary activities MPE = 22.22% 1.62 km/h running MPE = −29.88% 2.41 km/h running MPE = −27.42% 3.24 km/h running MPE = −15.71% Cleaning the kitchen MPE = −11.20% All light activities MPE = −21.15% | Standing, reading ES = 2.24 Sitting, typing ES = 1.46 Sitting, playing chess ES = 2.19 All sedentary activities ES = 1.99 1.62 km/h running ES = 2.95 2.41 km/h running ES = 2.64 3.24 km/h running ES = 1.26 Cleaning the kitchen ES = 0.85 All light activities ES = 1.08 All activities Hip ES = −0.29 | Freedson Adult (1998) |
Schneller et al., 2015 [33] | Root Mean Square Error | Lying RMSE = 0.11 Sitting RMSE = 0.04 Standing RMSE = 0.10 4 km/h walking RMSE = 0.32 5 km/h walking RMSE = 0.57 6 km/h walking RMSE = 1.20 7 km/h running RMSE = 2.33 8.2 km/h running RMSE = 2.62 9.5 km/h running RMSE = 3.29 50 steps/min up the stairs RMSE = 4.06 70 steps/min up stairs RMSE = 4.74 90 steps/min on the stairs RMSE = 6.20 Riding1 RMSE = 21.89 Riding2 RMSE = 30.52 Riding3 RMSE = 40.50 | Lying ES = 1.91 Sitting ES = 2.26 Standing ES = 3.86 4 km/h walking ES = 1.83 5 km/h walking ES = 2.43 6 km/h walking ES = 2.37 7 km/h running ES = 0.22 8.2 km/h running ES = 0.06 & 9.5 km/h running ES = 0.17 & 50 steps/min upstairs ES = 5.85 70 steps/min upstairs ES = 7.05 90 steps/min upstairs ES = 6.24 Riding1 ES = −14.31 Riding2 ES = −11.67 Riding3 ES = −9.05 All activities Hip ES = −0.54 | Crouter Adult (2012) |
Gastin et al., 2018 [37] | Mean error (95% CI); percentage error; root mean square error | 4 km/h running ME = 27.4 (95% CI: −33.0, 87.8); PE = 25.3%; RMSE = 40.8 8 km/h running ME = 38.0 (95%CI: −20.7, 96.8); PE = 16.83%; RMSE = 48.1 12 km/h running ME = −41.2(95%CI: −90.2, 7.9); PE = −14.03%; RMSE = 47.9 Cycle training 1 ME = 127.2 (95% CI: −208.7, 45.8); PE = −56.93%; RMSE = 133.6 Cycle training 2 ME = −137.7 (95% CI: −214.6, 60.8); PE = −61.33%; RMSE = 143.0 Cycle training 3 ME = −132.7 (95% CI: −231.6, 33.8); PE = −59.33%; RMSE = 141.6 | Hip 4 km/h running ES = 0.87 8 km/h running ES = 0.91 12 km/h run ES = 0.87 Cycle training 1 ES = 2.67 Cycle training 2 ES = 3.01 Cycle training 3 ES = 2.78 | Freedson VM3 Combination (2011) |
Thomson et al., 2021 [36] | Mean error (95% CI); mean percentage error; mean absolute percentage error | 5.4 km/h running ME = 0.5 (95% CI: −2.1, 3.2); MPE = 6.5%; MAPE = 23.7% 6.5 km/h running ME = 0.2 (95%CI: −2.5, 2.8); MPE = 2.3%; MAPE = 14.0% 8 km/h running ME = 0.9 (95% CI: −2.9, 4.7); MPE = 11.1%; MAPE = 18.1% | 5.4 km/h running ES = 1.40 6.5 km/h running ES = 0.04 8 km/h running ES = 0.44 All activities Hip ES = 0.16 & | Freedson VM3 (2011) |
Model | Equation | Model | Equation |
---|---|---|---|
Freedson Combination [48] | If cpm > 1951 kcals/min = 0.00094 × cpm + (0.1346 × weight − 7.37418) else kcals/min = cpm × 0.0000191 × weight | Puyau [52] | AEE (kcal·kg−1·min−1) = 0.0183 + 0.000010 × cpm |
Freedson VM3 [49] | If VMcpm > 2453 kcals/min = 0.001064 × VM + 0.087512 × weight − 5.500229 | Freedson [53] | METs = 2.757 + (0.0015 × cpm) − (0.000038 × cpm × age) |
Freedson Adult [48] | MET = 1.439008 + (0.000795 × cpm) | Schmitz [54] | EE (kj·min−1) = 7.6628 + 0.1462 ([cpm − 3000]/100) + 0.2371 × weight − 0.00216 ([cpm − 3000]/1002) + 0.004077 ([cpm − 3000]/100 × weight) |
Freedson VM3 Combination [49] | If VMcpm > 2453 kcals/min = 0.001064 × VM + 0.087512 × weight − 5.500229 else kcals/min = cpm × 0.0000191 × weight | Mattocks [55] | EE (kj·min−1·min−1) = −0.933 + 0.000098 × cpm + 0.091 × age − 0.04 × sex |
Sasaki [49] | METs = 0.000863 × VM + 0.668876 | Crouter REG-VA [45] | If VA/5s ≤ 35, EE = 1 child-MET If VA/5s > 35, EE (child-MET) = 1.592 + (0.0039 × VA/5s) |
Crouter Vector Magnitude 2-Regression [39] |
| Crouter REG-VM [45] | If VM/5s ≤ 100, EE = 1.0 child-MET If VM/5s > 100, EE (child-MET) = 1.475 + (0.0025 × VM/5s) |
Crouter Vertical Axis 2-Regression [39] |
| Work-Energy * | kcals = cpm × 0.0000191 × weight |
Freedson Child * | EE = (0.0191 × cpm) − (0.000671 × cpm2) + (0.128 × weight) + (6.78 × sex) − 7.28 | Santos-Lozano VT [47] | METs = 3.14153 + 0.00057 × VAcpm –0.01380 × weight − 0.00606 × age |
Treuth [50] | METs = 2.01 + 0.000856 × cpm | Santos-Lozano VM [47] | METs = 2.7406 + 0.00056 × VMcpm–0.008542 × age − 0.01380 × weight |
Trost [51] | EE (kcal/min) = −22.23 + 0.0008 × cpm + 0.08 × weight |
Authors and Year | Indices | Outcomes | Activities |
---|---|---|---|
Crouter et al., 2013 [39] | Effect size | All activities ES = 0.22 Crouter Vector Magnitude 2-Regression Model (2012) ES = 0.25 Crouter Vertical Axis 2-Regression Model (2012) ES = 0.35 Freedson Child Equation (2005) ES = 0.38 Treuth Equation (2004) ES = 0.27 Trost Equation (1998) ES = 0.16 Puyau Equation (2002) * | Lying down to rest, playing on computer, playing board games, cleaning, boxing, wall ball, walking, running |
Zhu et al., 2013 [44] | Effect size | All activities ES = 0.30 Trost Equation (1998) ES = −0.31 Freedson Equation (2005) ES = 0.76 Puyau Equation (2002) ES = −0.30 Treuth Equation (2004) ES = 0.23 Schmitz Equation (2005) ES = −0.47 Mattocks Equation (2007) | 3–8 km/h walk and run, dance and youth morning exercise, treadmill activities |
Crouter et al., 2015 [45] | Effect size | All activities ES = 0.05 Crouter REG-VA (2015) * ES = 0.11 Crouter REG-VM (2015) * | Sitting still, watching TV, surfing the Internet, reading, board games, walking slowly, sitting at home, exercising, etc. |
Kim et al., 2016 [46] | Effect size | All activities ES = 2.72 Crouter Vector Magnitude 2-Regression Model (2012) ES = 3.54 Crouter Vertical Axis 2-Regression Model (2012) ES = 2.76 Freedson Equation (2005) ES = 2.47 Trost Equation (1998) ES = 6.34 Puyau Equation (2002) ES = 3.21 Treuth Equation (2004) | 12 randomly selected from 24 activities to complete |
Santos-Lozano et al., 2013 [47] | Bias | All activities Bias = 0.07 Work-Energy (1998) Bias = −0.17 Freedson Combination (1998) | Rest, 3–9 km/h speed walking or running |
Aguilar-Farias et al., 2019 [40] | Mean percentage absolute deviation | All activities MAPE = 8.6% Freedson VM3 (2011) MAPE = 38.6% Santos-Lozano VT (2013) MAPE = 32.8% Santos-Lozano VM (2013) MAPE = 13.8% Sasaki (2011) | Sitting, lying, walking, cleaning, doing housework |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.-J.; Yu, H.-B.; Tai, W.-H.; Zhang, R.; Hao, W.-Y. Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis. Sensors 2023, 23, 8545. https://doi.org/10.3390/s23208545
Wu W-J, Yu H-B, Tai W-H, Zhang R, Hao W-Y. Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis. Sensors. 2023; 23(20):8545. https://doi.org/10.3390/s23208545
Chicago/Turabian StyleWu, Wen-Jian, Hai-Bin Yu, Wei-Hsun Tai, Rui Zhang, and Wei-Ya Hao. 2023. "Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis" Sensors 23, no. 20: 8545. https://doi.org/10.3390/s23208545
APA StyleWu, W. -J., Yu, H. -B., Tai, W. -H., Zhang, R., & Hao, W. -Y. (2023). Validity of Actigraph for Measuring Energy Expenditure in Healthy Adults: A Systematic Review and Meta-Analysis. Sensors, 23(20), 8545. https://doi.org/10.3390/s23208545