Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project
Abstract
:1. Introduction
- -
- First, the evanescent field in those basic SPR structures only penetrates the surrounding medium for about 100 nm, and thus, it is very difficult to detect the large target molecules, like cells and bacteria.
- -
- Second, SPR systems, such as the Biacore system, require complex interrogation instruments based on prism coupling, which requires expensive adaptive optics and thermal controls.
- -
- Finally, there are some sensitive SPR biosensors; however, most of them can only detect one analyte. In that sense, the SPR imaging (SPRI) technique is, thus far, the most promising tool for high-throughput multi-analyte detection with a sensitivity of approximately 10−5 RIU [18]. The typical SPRI sensor is, however, also based on complex prism coupling instrumentation, in which monochromatic incident light is expanded, passes through a prism, and strikes the interface of the thin film and prism at the coupling angle, exciting a broad area of the sensing surface.
2. PHOTONGATE Overall Concept
- Porous nanomaterial [41,42], filled with cargo and closed with molecular gates. Chemical interactions between the targeted analyte and probe will trigger the opening of the gates, allowing the release of the cargo, which is sensed by the LSPR structures, amplifying, in this way, the weak chemical interactions.
- An optical readout platform was produced for this project; this system includes optical emitters and a spectrometer device, which are able to display the sensing signal for up to 12 analytes.
PHOTONGATE Innovation
- The PHOTONGATE device will be capable of detecting different chemical and microbial contaminants and viral hazards, being able to work for different fields such as health care and food control. In addition, it requires little training on the part of the personnel since there is a minimum preprocess of the samples, and it will offer an easy reading of the results.
- The LSPR sensors used in the device do not require the use of any fluorescent label (label-free detection).
- The use of the molecular gates mechanism will improve the specificity and selectivity of the biosensors.
- The sensing mechanism, involving the opening of the pores by the probe-receptor interaction, produces a strong change in the refractive index. This mechanism of signal amplification will increase the sensitivity, allowing lower detection limits.
- The analysis will require 30 min or less. Additionally, it evaluates multiple targets with no risk of cross-reactions.
- Fabrication at the wafer scale will ease high-integration and cost-effective devices.
- The portable and easy-to-use readout platform of PHOTONGATE avoids complex components of current SPR commercial systems, enabling them to be used by small clinics, labs, farms, or food producers.
3. PHOTONGATE Concept, Overall Design, and Architecture
3.1. Functionalized Porous Substrate
3.2. Localized Surface Plasmon Resonance (LSPR) Substrates
3.3. Polymeric Microfluidic System
3.4. Optical Readout Platform and Sensing Data Analysis/Algorithms
3.5. Sensing Data Analysis/Algorithms
4. Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, R.; Vedarethinam, V.; Huang, L.; Qian, K. Advanced materials for precise detection and antibiotic-free inhibition of bacteria. Mater. Today Adv. 2022, 13, 100204. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Scott, N.B.; Pocock, N.S. The Health Impacts of Hazardous Chemical Exposures among Child Labourers in Low- and Middle-Income Countries. Int. J. Environ. Res. Public Health 2021, 18, 5496. [Google Scholar] [CrossRef]
- Pircalabioru, G.G.; Iliescu, F.S.; Mihaescu, G.; Cucu, A.I.; Ionescu, O.N.; Popescu, M.; Simion, M.; Burlibasa, L.; Tica, M.; Chifiriuc, M.C.; et al. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front. Cell. Infect. Microbiol. 2022, 12, 807253. [Google Scholar] [CrossRef]
- Available online: https://www.nature.com/articles/d42473-021-00318-w (accessed on 2 May 2023).
- Mackay, I.M. Real-time PCR in virology. Nucleic Acids Res. 2002, 30, 1292–1305. [Google Scholar] [CrossRef]
- Dymond, J.S. Explanatory Chapter. Methods Enzymol. 2013, 529, 279–289. [Google Scholar] [CrossRef]
- Available online:. Available online: https://food.ec.europa.eu/safety/rasff_en (accessed on 19 April 2023).
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The Sources of Chemical Contaminants in Food and Their Health Implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef]
- Nemati, M.; Hamidi, A.; Dizaj, S.M.; Javaherzadeh, V.; Lotfipour, F. An Overview on Novel Microbial Determination Methods in Pharmaceutical and Food Quality Control. Adv. Pharm. Bull. 2016, 6, 301–308. [Google Scholar] [CrossRef]
- Barzegar, F.; Kamankesh, M.; Mohammadi, A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. Food Rev. Int. 2021, 39, 1157–1183. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef]
- Conroy, P.J.; Hearty, S.; Leonard, P.; O’Kennedy, R.J. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 2009, 20, 10–26. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef]
- Singh, A.K.; Anwar, M.; Pradhan, R.; Ashar, M.S.; Rai, N.; Dey, S. Surface plasmon resonance based-optical biosensor: Emerging diagnostic tool for early detection of diseases. J. Biophotonics 2023, 16, e202200380. [Google Scholar] [CrossRef]
- Estevez, M.; Alvarez, M.; Lechuga, L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon-Rev. 2012, 6, 463–487. [Google Scholar] [CrossRef]
- Yang, J.M.; Kim, K.R.; Kim, C.S. Biosensor for Rapid and Sensitive Detection of Influenza Virus. Biotechnol. Bioprocess Eng. 2018, 23, 371–382. [Google Scholar] [CrossRef]
- Thakur, M.S.; Ragavan, K.V. Biosensors in food processing. J. Food Sci. Technol. 2013, 50, 625–641. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef] [PubMed]
- Pol, E.; Roos, H.; Markey, F.; Elwinger, F.; Shaw, A.; Karlsson, R. Evaluation of calibration-free concentration analysis provided by Biacore™ systems. Anal. Biochem. 2016, 510, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Takemura, K. Surface Plasmon Resonance (SPR)- and Localized SPR (LSPR)-Based Virus Sensing Systems: Optical Vibration of Nano- and Micro-Metallic Materials for the Development of Next-Generation Virus Detection Technology. Biosensors 2021, 11, 250. [Google Scholar] [CrossRef]
- Polo, L.; Gómez-Cerezo, N.; Aznar, E.; Vivancos, J.-L.; Sancenón, F.; Arcos, D.; Vallet-Regí, M.; Martínez-Máñez, R. Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomater. 2017, 50, 114–126. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, A.; Aznar, E.; Martínez-Máñez, R.; Sancenón, F. New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small 2019, 16, e1902242. [Google Scholar] [CrossRef] [PubMed]
- Caballos, I.; Aranda, M.N.; López-Palacios, A.; Pla, L.; Santiago-Felipe, S.; Hernández-Montoto, A.; Tormo-Mas, M.; Pemán, J.; Gómez-Ruiz, M.D.; Calabuig, E.; et al. Aptamer-Capped Nanoporous Anodic Alumina for SARS-CoV-2 Spike Protein Detection. Adv. Mater. Technol. 2023, 8, 2201913. [Google Scholar] [CrossRef]
- Hernández-Montoto, A.; Aranda, M.N.; Caballos, I.; López-Palacios, A.; Tormo-Mas, M.; Pemán, J.; Rodríguez, M.P.; Picornell, C.; Aznar, E.; Martínez-Máñez, R. Human Papilloma Virus DNA Detection in Clinical Samples Using Fluorogenic Probes Based on Oligonucleotide Gated Nanoporous Anodic Alumina Films. Adv. Heal. Mater. 2023, 12, e2203326. [Google Scholar] [CrossRef]
- de Luis, B.; Llopis-Lorente, A.; Rincón, P.; Gadea, J.; Sancenón, F.; Aznar, E.; Villalonga, R.; Murguía, J.R.; Martínez-Máñez, R. An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angew. Chem. 2019, 58, 14986–14990. [Google Scholar] [CrossRef]
- Available online:. Available online: https://www.photongate.eu/ (accessed on 19 April 2023).
- Aznar, E.; Oroval, M.; Pascual, L.; Murguía, J.R.; Martínez-Máñez, R.; Sancenón, F. Gated Materials for On-Command Release of Guest Molecules. Chem. Rev. 2016, 116, 561–718. [Google Scholar] [CrossRef]
- Rodríguez-Cantó, P.; Martínez-Marco, M.; Rodríguez-Fortuño, F.J.; Tomás-Navarro, B.; Ortuño, R.; Peransí-Llopis, S.; Martínez, A. Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Opt. Express 2011, 19, 7664–7672. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Wang, F.; Dong, B.; Ou, C.; Meng, D.; Liu, J.; Fan, Z.-C. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb. Pathog. 2015, 89, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Arunkumar, G.A.; Krammer, F. Universal influenza virus vaccines and therapeutics: Where do we stand with influenza B virus? Curr. Opin. Immunol. 2018, 53, 45–50. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Perk, Y.; Ozdil, M. Respiratory syncytial virüs infections in neonates and infants. Turk. Arch. Pediatr. 2018, 53, 63–70. [Google Scholar] [CrossRef]
- Maintz, L.; Novak, N. Histamine and histamine intolerance. Am. J. Clin. Nutr. 2007, 85, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Ceccatelli, S.; Daré, E.; Moors, M. Methylmercury-induced neurotoxicity and apoptosis. Chem. Biol. Interact. 2010, 188, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Berche, R. Physiopathologie des infections Listeria monocytogenes*. Médecine Et Mal. Infect. 1995, 25, 197–209. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, W. A selective and sensitive “turn-on” fluorescent chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile desulfurization–lactonization reaction. Chem. Commun. 2009, 26, 3913–3915. [Google Scholar] [CrossRef] [PubMed]
- Hungerford, J.M. Scombroid poisoning: A review. Toxicon 2010, 56, 231–243. [Google Scholar] [CrossRef]
- Rodríguez-Fortuño, F.J.; Martínez-Marco, M.; Tomás-Navarro, B.; Ortuño, R.; Martí, J.; Martínez, A.; Rodríguez-Cantó, P.J. Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Appl. Phys. Lett. 2011, 98, 133118. [Google Scholar] [CrossRef]
- Carvalho, A.; Sebastião, P.; Fonseca, I.; Matos, J.; Gonçalves, M.C. Silica and silica organically modified nanoparticles: Water dynamics in complex systems. Microporous Mesoporous Mater. 2015, 217, 102–108. [Google Scholar] [CrossRef]
- Gonçalves, M.C. Sol-Gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018, 23, 2021. [Google Scholar] [CrossRef]
- Allert, R.D.; Bruckmaier, F.; Neuling, N.R.; Freire-Moschovitis, F.A.; Liu, K.S.; Schrepel, C.; Schätzle, P.; Knittel, P.; Hermans, M.; Bucher, D.B. Microfluidic quantum sensing platform for lab-on-a-chip applications. Lab A Chip 2022, 22, 4831–4840. [Google Scholar] [CrossRef]
- Jaruwongrungsee, K.; Waiwijit, U.; Withayachumnankul, W.; Maturos, T.; Phokaratkul, D.; Tuantranont, A.; Wlodarski, W.; Martucci, A.; Wisitsoraat, A. Microfluidic-based Split-Ring-Resonator Sensor for Real-time and Label-free Biosensing. Procedia Eng. 2015, 120, 163–166. [Google Scholar] [CrossRef]
- Mross, S.; Pierrat, S.; Zimmermann, T.; Kraft, M. Microfluidic enzymatic biosensing systems: A review. Biosens. Bioelectron. 2015, 70, 376–391. [Google Scholar] [CrossRef] [PubMed]
- EN 17266; Foodstuffs. Determination Elements and Their Chemical Species. De-Termination of Organomercury in Seafood by Elemental Mercury Analysis. European Committee for Standardization: Bruxelles, Belgium, 2019.
- Cressey, P.; Miles, G.; Saunders, D.; Pearson, A.J. Mercury, methylmercury and long-chain polyunsaturated fatty acids in selected fish species and comparison of approaches to risk-benefit analysis. Food Chem. Toxicol. 2020, 146, 111788. [Google Scholar] [CrossRef] [PubMed]
PHOTONGATE System Advancements | |||
---|---|---|---|
Feature | Current Systems | PHOTONGATE System | |
Meas. range | Histamine | ppm range | ppm range for liquid and solid samples |
MeHg | ppb range | ppb range | |
Microbial analysis | 20–1000 CFU/g | 1 CFU/25 g | |
Viral analysis | 1–250 viral copies/μL (RT-PCR) | 1–5 viral copies/μL | |
Selectivity (Specificity) | Chemical contaminants: Typical analyte interference caused by the food matrix. Microbial and viral hazards: Specificity, based on specific media in culture-based methods and primer design in PCR. | Increased selectiveness among contaminants, e.g., validated discrimination between close species (inorganic mercury and MeHg) in model system. Specificity based on probe/antibody, ARN/ADN designs. | |
Analysis time | Several hours/days | 30 min for up to 12 targets | |
Cost-effectiveness | MeHg/histamine: EUR 200–300 per sample Microbial and viral: One analysis from EUR 20 to 100 dep. on target. | EUR 20 per chip for 4 analytes, Platform manufacturing: EUR 7 K (to be used for 10,000 analyses) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieves, O.; Ortiz de Zárate, D.; Aznar, E.; Caballos, I.; Garrido, E.; Martínez-Máñez, R.; Dortu, F.; Bernier, D.; Mengual-Chuliá, B.; López-Labrador, F.X.; et al. Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project. Sensors 2023, 23, 8548. https://doi.org/10.3390/s23208548
Nieves O, Ortiz de Zárate D, Aznar E, Caballos I, Garrido E, Martínez-Máñez R, Dortu F, Bernier D, Mengual-Chuliá B, López-Labrador FX, et al. Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project. Sensors. 2023; 23(20):8548. https://doi.org/10.3390/s23208548
Chicago/Turabian StyleNieves, Oscar, David Ortiz de Zárate, Elena Aznar, Isabel Caballos, Eva Garrido, Ramón Martínez-Máñez, Fabian Dortu, Damien Bernier, Beatriz Mengual-Chuliá, F. Xavier López-Labrador, and et al. 2023. "Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project" Sensors 23, no. 20: 8548. https://doi.org/10.3390/s23208548
APA StyleNieves, O., Ortiz de Zárate, D., Aznar, E., Caballos, I., Garrido, E., Martínez-Máñez, R., Dortu, F., Bernier, D., Mengual-Chuliá, B., López-Labrador, F. X., Sloth, J. J., Loeschner, K., Duedahl-Olesen, L., Prado, N., Hervello, M., Menéndez, A., Gransee, R., Klotzbuecher, T., Gonçalves, M. C., ... Griol, A. (2023). Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project. Sensors, 23(20), 8548. https://doi.org/10.3390/s23208548