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Abstract: With the accomplishment of deep neural networks, face recognition methods have achieved
great success in research and are now being applied at a human level. However, existing face
recognition models fail to achieve state-of-the-art performance in recognizing occluded face images,
which are common scenarios captured in the real world. One of the potential reasons for this is the
lack of large-scale training datasets, requiring labour-intensive and costly labelling of the occlusions.
To resolve these issues, we propose an Adversarially Learning Occlusions by Backpropagation
(ALOB) model, a simple yet powerful double-network framework used to mitigate manual labelling
by contrastively learning the corrupted features against personal identity labels, thereby maximizing
the loss. To investigate the performance of the proposed method, we compared our model to the
existing state-of-the-art methods, which function under the supervision of occlusion learning, in
various experiments. Extensive experimentation on LFW, AR, MFR2, and other synthetic masked or
occluded datasets confirmed the effectiveness of the proposed model in occluded face recognition by
sustaining better results in terms of masked face recognition and general face recognition. For the AR
datasets, the ALOB model outperformed other advanced methods by obtaining a 100% recognition
rate for images with sunglasses (protocols 1 and 2). We also achieved the highest accuracies of 94.87%,
92.05%, 78.93%, and 71.57% TAR@FAR = 1 × 10−3 in LFW-OCC-2.0 and LFW-OCC-3.0, respectively.
Furthermore, the proposed method generalizes well in terms of FR and MFR, yielding superior
results in three datasets, LFW, LFW-Masked, and MFR2, and producing accuracies of 98.77%, 97.62%,
and 93.76%, respectively.

Keywords: occluded face recognition; deep neural network; end-to-end; adversarial learning

1. Introduction

Face recognition (FR) is an early success story in computer vision and is achieved by
deep convolution networks extracting discriminative features [1,2], sophisticated training
loss formulation optimizing models [3–5], and large-scale training datasets [6,7]. FR meth-
ods that train with clear faces fail to maintain state-of-the-art results against real-world
scenarios since there is no promise of capturing images that are free of obstructions, such as
large-pose variations, poor illumination, and occlusions, in practice. A straightforward so-
lution is training a model in occluded datasets. Unfortunately, the current existing occluded
datasets do not have enough data compared with clear face datasets, causing overfitting
problems [8]. Researchers have conducted extensive studies on occluded face recognition
(OFR) and masked face recognition (MFR), which require the effort of hand-craft labelling
the corrupted features in realistic training datasets. To alleviate the manual work, engineers
are developing novel CNN-based FR methods incorporated with a gradient reversal layer
(GRL) [9] to adversarially learn the occlusions using only personal identity labels while
sustaining competitive results in terms of FR, OFR, and MFR compared to methods that
are supervised by labels of occlusion location and individual identity.
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The existing solutions to address manual annotation and the improve performance of
OFR and MFR can be divided into two groups: (1) the construction of synthetic datasets by
applying random occlusion generators [10–13] or masking tools [14,15]; and (2) training
networks without the guidance of occlusion location by cropping the lower parts of the
images for MFR [16,17] and unsupervised learning for occlusions in OFR [18]. FROM [10]
and PDSN [11] utilized the same collection of realistic occlusions common in real life to
add them to the original face datasets. FROM proposed an algorithm, named occluded
face dataset construction, to randomly select the realistic objects as the occlusions and
then occlude the faces to different occluded degrees, such as 43.09% and 52.00% of the
occluded areas in the whole face. Three kinds of occlusions were applied in MSML [13]
to construct the occluded training datasets, including black geometric shapes, realistic
objects collected from the Internet, and synthetic face masks. INFR [12] augmented the
training datasets with black rectangles as the occlusions. In terms of MFR, a masking tool,
called MaskTheFace, was presented by [14] to build the masked datasets with various types
of face masks, such as cloth, surgical-green, N95, etc. LPD [15] also applied this tool for
converting the face datasets into the masked version. FIT [8] constructed training datasets
by collecting relevant images but removed useless ones by adjusting misplaced facial
data and massively scaling the original datasets. The solutions in the first group still had
difficulties cooperating with real-world training datasets and would lose training images
that failed to detect faces to add masks for training MFR. For MFR, the second group of
methods is to remove the lower part of the images based on different cropping proportions
and focus on non-masked parts such as the forehead and eyes since the mask’s location
is fixed in the lower patch of the images. UPA [16] embedded an upper patch attention
into the trunk CNN for extracting more meaningful features from the upper patches of
the masked faces and [17] introduced a model to determine the optimal cropping in the
damaged areas of the masked faces. These methods solve the manual labelling problem and
improve the performance of MFR, while losing the global information of the whole face that
would be useful for MFR and causing a substantial decline in the performance of FR tasks.
For OFR, there are limited number of unsupervised methods. A representative method,
MaskNet [18], was incorporated into the CNN architecture and assigned higher weights to
the hidden units activated by the non-occluded features. It learns mask features based on
the supervision of the identity labels only, but it fails to compare with the current advanced
OFR methods, which have learning guidance in terms of the locations of occlusions, and
does not include experiments for FR and MFR to show its generality.

The ideal model is required to extract the information from non-occluded and occluded
regions, containing necessary local and global features, with effortless labelling work. The
extraction of facial features is highly complicated due to various occlusions and unexpected
placements occurring in facial images [19]. Inspired by the success of the GRL [9,20] in
learning a large amount of labelled and unlabeled data in text and image classification,
the proposed method here adversarially detects the corrupted features through the GRL
optimizing the models by maximizing the loss computed for the class labels only. Occlusion
is one of the most important factors in increasing the loss calculated for identity labels. This
approach can train with realistic and synthetic datasets and achieve competitive results for
FR, OFR, and MFR without hand-crafted labelling in occlusions.

In this paper, we propose a simple yet effective ALOB model to detect occlusions from
one neural network before cleaning it from the discriminative features for the final recog-
nition. The proposed ALOB model adopts two networks, called Identifier and Trimmer,
to reveal the corrupted features caused by the occlusion in Trimmer and clean them from
another feature vector generated using Identifier by feature projection purification [21].
Identifier extracts discriminative features but still contains corrupted features without
careful cleaning. The feature projection purification removes the common parts between
features created from Identifier and Trimmer to generate a more pure feature for the final
recognition. Unlike most of the works in OFR and MFR, we do not utilize occlusion la-
bels but train with two deep neural networks to achieve competitive results in FR, OFR,
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and MFR (proven by our extensive experiments). The main contribution of our work is
summarized as follows:

1. We propose the ALOB model, a double-network OFR approach, which learns the
corrupted and significant features via Trimmer and Identifier without annotating the
occlusion location.

2. We present a new way to learn occlusion to form the feature vector from Trimmer
added with GRL that optimizes the models by maximizing the loss computed for class
labels only. The formed vector contains contaminated information, which should be
cleaned from another feature generated from Identifier to gain the final feature vector
for recognition.

3. The proposed method has been evaluated in substantial experiments on LFW [7],
MFR2 [14], AR [21], and other synthetic occluded and masked datasets, achiev-
ing competitive results compared to the state-of-the-art methods supervised by
occlusion labels.

The rest of the paper is structured as follows. In Section 2, we review the work related
to OFR. Then, we introduce the core components of our method, Identifier and Trimmer,
and the loss function in Section 3. Section 4 includes the extensive experiments compared
to the advanced approaches and ablation studies. Finally, we conclude in Section 5.

2. Related Work

In this section, we first review some traditional works in OFR. Afterwards, the recent
developments of deep learning methods in OFR are also explored and compared to our work.

2.1. Traditional Machine Learning-Based Methods

The traditional machine-learning-based algorithm is the earliest approach to tackling
the occlusions that appeared in face recognition. Wright et al. [22] proposed the sparse-
representation-based classification (SRC) in which the testing image is represented as
a sparse linear combination of the training samples and then classified based on the
coefficients in each class. This model is time-consuming when the training datasets are
large and fails to consider errors in the sparse representation caused by more complex
occlusions in practice, which is improved later by robust spare coding (RSC) [23] and
structured sparse error coding (SSEC) [24]. RSC and SSEC are more powerful ways to cope
with occlusions and corruption by relaxing coefficients in the sparse representation. In
pursuit of having superior results by comparing each area of the face individually [22],
McLaughlin et al. [25] compared face similarity by finding the largest matching area (LMA)
at each point on the testing face images. Weng et al. [26] introduced robust point-set
matching to the textural and geometrical information of local features extracted from
the person of interest. Furthermore, Stringface [27] matched two faces through a string-
to-string matching schema to find discriminative parts represented by substrings. The
mentioned approaches deteriorate severely in discriminative feature representation. A
novel membrane-inspired binary bat algorithm (MIBBA) [28] was introduced to enhance
the representative power of local binary pattern (LBP) features from facial images fused
with Gabor wavelet features. More recently, in 2020, Zhang et al. [29] obtained a more
robust sparse representation than [22–24] by utilizing the Laplacian uniform mixture as
the distribution of coding residuals. Although their works achieved sound performance in
terms of benchmarks, they are limited by large-scale and complex images in practice.

2.2. Deep-Learning-Based Methods

To mitigate the limitations of traditional methods, Zhao et al. [30] introduced the
first deep learning method to recover the occluded parts of an image through a robust
LSTM–Autoencoder (RLA) model. The RLA model contains two LSTM components to
convert the facial patches to latent representation via an encoder and reconstruct the faces
by receiving information from the encoder. Vo et al. proposed a divide-and-conquer al-
gorithm to address the sub-problems of degraded face reconstruction and classification
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by effectively applying multiple deep convolutional neural networks [31]. Another ad-
vanced texture-aware network named RFA-Net [32] employed a non-pooling residual
CNN with three novel modules for finer image inpainting under the supervision of hybrid
loss optimization, focusing on the semantic and texture details of the inpainting. Later, a
generative adversarial network (GAN) was utilized to reconstruct faces by cooperating
with a pre-trained convolutional neural network (CNN) while sustaining identity-variance
features [33]. However, the image-construction method is computationally heavy and fails
to contain representative features for recognition. The corruption-removal approach miti-
gates the issues that appeared in previous works. Removing corruption is a straightforward
method, but it is hard to locate occlusions even when trained with the provided labels of
occlusions in the input face images. Moreover, different models were applied such as graph
convolutional networks (GCNs) and a combination of deep learning and machine learning.
Vu et al. combined features extracted by neural networks and a local binary pattern (LBP)
to jointly identify masked faces and published COMASK20, a masked face dataset [34].
Another well-known masked dataset, MFR2, was proposed by Anwae et al., who utilized
an existing face landmark detector to extract six key-part features from the face that are
necessary for its identification [14]. Albalas et al. constructed two graphs to represent the
geographical similarity and correlation among facial parts and then built GCNs on fused
graphs to detect the occluded faces for identifying them [35].

Most work utilized a CNN to tackle the issues. Wan et al. [18] proposed a MaskNet
model, assigning lower weights to occlusions represented by nonactivated units. It is
integrated into any CNN model supervised by personal labels. Using this method, it is
hard to extract the most related information from the middle layers of the CNN without
learning guidance, and it cannot achieve competitive results compared to other methods
supervised with occlusion labels. To solve the problem, Song et al. [11] established a mask
dictionary to distinguish corrupted features from occlusion-free features extracted from
the top convoluted layers and then cleaned it up through multiplication with the original
features. This method requires heavy computational power and an external occlusion
detector to reveal the blocked regions and is improved by the most recent work from
Qiu et al. [10]. Qiu et al. proposed a simple way, FROM, to dynamically decode the
corrupted features learnt from the mask decoder and then assign lower weights to them
through the multiplication of discriminative features. FROM is one of the best occlusion-
robust face recognition methods proposed recently, and it takes the refined ResNet50
trained on the training datasets as its pre-trained model. Furthermore, the multi-scale
segmentation-based mask learning (MSML) introduced by Yuan et al. [13] hierarchically
extracts information from occlusions and then purifies it from multi-scale layers.

Here, most of the state-of-the-art works require the location of occlusions. Instead, the
ALOB model predicts the corrupted features caused by random occlusions in the input
face images through adversarial learning, maximizing the loss computed for identity labels
only and then removing it from the feature vector extracted in Identifier before the final
recognition. Compared to MaskNet [18] without supervision of occlusion location, our
method extracts more precise information about the corrupted features since it learns
occlusions from a whole network instead of gaining them from the middle of the CNN. Im-
portantly, the ALOB model still maintains comparable performance to advanced methods
with annotations of occlusions.

3. Method

The proposed ALOB model, presented in Figure 1, is a novel double-network model
trained in an end-to-end manner. It takes a min-batch consisting of clean and corrupted
face images as the input and generates two opposite features for later purification. The core
function of the ALOB model is to remove the features that maximize the loss calculated
for identity labels to form the most purified feature vectors for the final recognition. It
takes two networks, Trimmer and Identifier, to generate masked and discriminative yet
corrupted features, respectively, before cleaning the masked vector from the discrimina-
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tive one. Specifically, Trimmer learns the occluded features caused by the occlusions in
the input face images by applying negation in the backward propagation [9]. Identifier
operates like a usual neural network model to extract the prominent features; however, it
removes the common parts that appeared in corrupted feature vectors through orthogonal
projection [20]. Trimmer and Identifier can apply different networks as the backbones to
accomplish this OFR task. Since the proposed method utilizes two networks and given the
fact that the residual network (ResNet) has achieved success in most face recognition tasks,
we used a relatively light model, ResNet18 [2], as the backbone for the two components in
the ALOB model to illustrate the effectiveness of our models.
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Figure 1. The proposed architecture contains two feature extractors for Identifier (green) and Trimmer
(blue). Adversarial learning occlusion is achieved by connecting the Trimmer with the GRL [9],
which multiplies the gradient with a negative constant, −C, during the back-propagation. the GRL
ensures Trimmer detects features (F2) that maximize the prediction loss, L2y. Identifier then extracts
discriminative features (F1) and then cleans F2 from F1, which is used for final face recognition via
feature projection purification (FPP) [20].

In the following, we first discuss the ResNet18 extractors used as the backbones in
the two networks. Then, a detailed explanation of Trimmer, which extracts the corrupted
features without learning guidance on occlusion location, is explored. Afterwards, Identifier
with feature purification that gains the significant features and eliminates the influence
of occlusions to create more discriminative features is depicted. Finally, we describe the
margin-based loss functions from recent face recognition [3–5] that are applied in our
method and include the overall training objective of the two networks.

3.1. ResNet Extractor

We assume that the model works with image samples
〈

∑L
i=1(xi, yi)

〉
, where xi rep-

resents an input face image and yi is an identity label corresponding to the ith identity
in the training datasets with length L. The ALOB model consists of two subnetworks,
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Trimmer and Identifier, in which two of the same ResNet18 feature extractors are utilized
without sharing the same parameters. These feature extractors are symbolized as Fm and F f .
Fm and F f extract the desired features, f m and f f , from residual learning after receiving xi
from the input layer, respectively. The procedure is simplified as Equations (1) and (2).

f m = Fm(xi) (1)

f f = F f (xi) (2)

where f m and f f are the 512-dimensionial face embedding from Trimmer and Identifier.

3.2. Trimmer: Gradient Reversal Layer

The principle of Trimmer is to learn a masked vector that contains the semantic
information of the input clean or occluded face images that is not discriminative for
the recognition task. The face classifier should not utilize corrupted features for the
classification. After feature extraction, Trimmer is incorporated with the GRL [9] to negate
the gradient during the back-propagation to detect the occlusion. The GRL has been
applied in text and image classification for the unsupervised learning of the non-labelled
features in [9]. In our case, the goal of the GRL is to adversarially learn occlusions or non-
discriminative features against personal labels. Through this training module, Trimmer
obtains the corrupted features from the input images.

The objective of the GRL is to reverse the gradient direction during back-propagation
to optimize the model by maximizing the loss computed against the ground truth labels,
i.e.,−C ∂L2y

∂θ f 2
substitutes ∂L2y

∂θy2
in the backward computation, as shown in Figure 1. The

GRL works as an identity transform during the forward pass. Mathematically, the GRL
can be formulated into Equations (3) and (4) to illustrate the schema for forward- and
back-propagation [9].

GRL(x) = x (3)

dGRL(X)

dx
= −CI (4)

where I is defined as an identity matrix and C is a hyper parameter. The 512-dimensional
embedding vector, f m, is processed via the GRL as GRL( f m) = f m′, before being fed to a
face classifier, Cm , in Equation (5). CosFace [4], explained in Section 3.4, is used to generate
the predicted labels.

Ym = Cm

(
f m′
)

(5)

Lossm = CrossEntropyLoss(Ytrue, Ym) (6)

Lossm stated in Equation (6) is optimized by a Stochastic Gradient Descent (SGD) optimizer
to enable Fm to extract occlusions among different classes.

3.3. Identifier: Feature Projection Purification

The goal of Identifier is to first gain the full feature information from the input images
and then clean the extracted features by projecting them into a purified semantic space for
the final face recognition. Feature projection purification (FPP) [20] helps us accomplish this
goal. We perform the projection from the face feature f f gained from F f into the orthogonal
direction of the mask feature f m extracted from Fm. The orthogonal projection preserves
the significant features in f f for the recognition task but removes the contaminated features
occurring in f m from f f , which cause performance degradation in the final classification.
The final feature, f f

orth proj, generated from the orthogonal projection should be made to be

purer than f f by excluding information relevant to the mask feature f m.
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Figure 2 details FPP in a two-dimensional space. We first project the original feature
vector, f f , onto the masked feature vector f m to form f f ′ , as stated in Equation (7).

f f ′ = Proj
(

f f , f m
)
=

f f · f m

| f m|
f m

| f m| (7)

where Proj is a projection function. f f and f m are the 512-dimensional vectors from F f

and Fm, respectively. The projected feature f f ′ contains the shared features in f f and f m.
We obtain the orthogonal component, f f

orth proj, of f f through simple vector subtraction,
formulated as in Equation (8) and shown in Figure 2.

f f
orth proj = f f − f f ′ (8)

The projection from f f onto f m illustrated in Equation (7) restricts the pure vector
f f
orth proj from containing information on f f instead of the trivial vectors from any other

orthogonal planes to the masked feature, f m. The pure vector f f
orth proj is fed into the classifier,

Cm , as stated in Equation (9). As stated in Equation (10), the same loss function as Trimmer is
applied in Identifier but is optimized by a different optimizer, the Adam optimizer.

Yf = Cm( f f
orth proj) (9)

Loss f = CrossEntropyLoss
(

Ytrue, Yf

)
(10)
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desired feature vector contains purer information for the final recognition.

3.4. Loss Function

To boost the performance of face recognition, various large-margin softmax loss
functions are introduced, such as CosFace [4], SphereFace [5], and ArcFace [3]. They can
be effectively employed in large-scale datasets to empower more discriminative models,
while Tripe Loss [36] and Contrastive Loss [37] achieve good results in small datasets.
The core purpose of those loss functions is to increase the inter-class distances while
decreasing the intra-class distances among all classes. We selected a large margin cosine
loss, referred to as CosFace, in our model. CosFace redefines the traditional SoftMax loss in
Equation (11) via L2 normalization.

Lso f tmax =
1
N ∑N

i=1−log pi =
1
N ∑N

i=1−log
e fyi

∑C
j=1 e fyj

(11)
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where N and C are the number of training samples and classes, respectively. pi defines the
posterior probability of xi being correctly predicted, and f j represents the activation of the
fully connected layers with a weight vector.

CosFace is defined as:

LCosFace =
1
N ∑N

i=1−log
M

M + ∑j 6=i escos (θj ,i)
(12)

w.r.t M = es(cos (θyi ,i)−m)

cos
(
θj, i
)
= WT

j xi

where m is the margin added to control the magnitude of the cosine margin and s is a scaler
vector. N is the total number of training samples. xi is the feature vector corresponding
to the label yi, and θj indicates the angle between the weight vector, Wj, and the feature
vector, xi. Notice that the same loss function in Equation (12) is applied in Trimmer and
Identifier, where both are trained simultaneously.

3.5. Overall Training Objective

The overall training loss is a combination of the Trimmer loss, Lm, and the Identifier
loss, L f , as presented in Equation (13). We state the total loss as follows:

Losstotal = L f + λ ∗ Lm (13)

where L f and Lm are defined by Equation (12). λ is the weight coefficient used to control the
Trimmer loss and is set to 1 in our experiments to achieve the optimization. A discussion of
λ is provided in Section 4.3. Note that L f and Lm are trained simultaneously but optimized
by different optimizers, as suggested by [9]. The Moment SGD, with a momentum of
0.9 and a weight decay of 0.0005, optimizes Trimmer, and the Adam optimizer optimizes
Identifier. Since the two losses have opposite goals, i.e., to optimize the feature extractors
F f and Fm, the parameters between them are separated to achieve the goals and targeted
in the specific subnetwork, such as making f m, which is formed from Fm, closer to the
real occlusions. The extracted features, f m and f f

orth proj, are converted to Ym and Yf by the
classifier, Cm, where the cosine similarity is applied to generate a one-hot prediction, and m
and s are set to 0.4 and 30 for computing Equation (12).

4. Experiments

In this section, extensive experiments are explored to evaluate our method in realistic
and synthetic datasets with various occlusions or masks only. Moreover, we specify training
configurations in detail and provide a comprehensive analysis of the ALOB model using
quantitative and qualitative methods.

4.1. Datasets and Evaluation Protocols

Our model was evaluated on various datasets, and Table 1 summarizes the statistics
of the testing datasets. Detailed information about the datasets for training and testing is
explored as follows.

CASIA-WebFace [38]: The CASIA-WebFace is a large-scale face dataset containing
about 10,000 subjects with nearly 500,000 images crawled from the Internet. We trained our
model on the WebFace dataset using its mixed version containing clean and occluded faces,
following [10,11].
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Table 1. Statistics of the training datasets and testing datasets used for performance evaluation. Types
characterize whether the occluded version of the datasets is collected from real world or generated by
masking tools. (* represents randomly selected pairs following [39] and “-” refers to no data required).

Names IDs Images Test Pairs Matching Types

Training Dataset

CASIA-WebFace 10 K 0.5 M - 1:1 Synthetic

Testing Datasets

LFW 5749 13,233 6000 pairs 1:1 Synthetic

AR 126 4000 - 1: N Realistic

MFR2 53 269 800 pairs * 1:1 Realistic

Labelled Faces in the Wild (LFW) [7]: LFW includes 13,233 testing images for
5749 identities collected in an unconstrained environment. It provides 6000 testing pairs
for one-to-one face verification. We evaluated our model using the standard protocols
provided by [3] and presented the testing performance on 6000 test cases.

AR Face Datasets (AR) [21]. AR is a realistic occlusion dataset used for face identifica-
tion based on two protocols in our experiments. It contains 4000 face images of 126 people
with differences in occlusions, illuminations, and facial expressions. Figure 3 presents some
examples from AR.

Masked faces in the real world for face recognition (MFR2) [14]: MFR2 is a real-world
masked face dataset with 53 subjects, including celebrities and politicians, and 269 images
obtained from the Internet in total. We report the verification performance on the 800 face–
mask pairs obtained from [16] by utilizing the standard protocol of face verification in [3].

Synthetic Occluded and Masked Datasets: A face-masking tool [14] that converts
face images to masked faces by randomly selecting various types of masks, such as cloth,
KN95, and surgical, was utilized to construct a masked dataset, named LFW-Masked. For a
fair comparison to the state-of-the-art method [16], we employed the same masking tool
and selected the same types of masks stated in their paper for face verification using the
standard 6000 testing pairs of LFW. We also constructed occluded datasets with various
real-life occlusions, such as a cups, books, eyeglasses, eye masks, face masks, hands, phones,
sunglasses, and scarves, by applying the occlusion generation algorithm from [10]. Some
occlusions are visualized in Figure 4. LFW-OCC-2.0 and LFW-OCC-3.0 are generated
corresponding to the occluded regions of 43.09% and 52.00% of the whole face images
with randomly selected occlusions from the sample set obtained from [10]. Some synthetic
samples are illustrated in Figure 4.

Evaluation Protocols: We evaluated the performance of our method on three realistic
datasets and three synthetic datasets by employing two extensively used metrics. The first
protocol we adopted is the accuracy metric:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

However, the accuracy metric fails to consider the scenarios when a FP is worse than a
FN. The second metric is True Accepted Rate (TAR) under False Accepted Rate (FAR) and
can be stated as:

TAR =
TP

TP + FN
(15)

FAR =
FP

FP + TN
(16)

where TP, TN, FP, and FN represent true positive, true negative false positive, and false
negative, respectively. The performance was evaluated by a 10-fold cross-validation for
one-to-one face verification, strictly following the standard protocol from [10].
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Figure 3. Examples of the training datasets and testing datasets in our model. The first row are
images from the training dataset, OCC-CASIA-WebFace, randomly occluded by different occlusions,
which are scaled from 1:0.5:5 [10]. The second and the third rows present the realistic datasets with
masks in MFR2 and sunglasses and scarves in AR. The last two rows are selected from synthetic LFW
datasets with 43.09% or 52% [10] occluded parts in the whole images and various types of masks.
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Figure 4. Visualizations of several occlusions utilized in the synthetic datasets provided by [10,11].
All of them are common occlusions in life encountered during face recognition, including cups, books,
eyeglasses, eye masks, face masks, hands, phones, sunglasses, and scarves.

Three scenarios were considered in our experiments to examine the robustness and
effectiveness of the proposed model, including: (1) Face–Face (unmasked-to-unmasked),
an FR task, (2) Face–Occlusion (unmasked-to-occluded), where the clean face image was
utilized to identify another occluded face, and (3) Face–Mask (unmasked-to-masked),
which verifies the identities of unmasked and masked faces to see whether they come from
the same person.

4.2. Implementation Details

Preprocessing Datasets: We first aligned and cropped face images by utilizing an
MTCNN [40] to detect facial landmarks (two eyes, a nose, and two corners of the mouth),
which resized the face images into 112× 112 pixels. This was carried out since the raw images
contain lots of background information, impairing the performance of the models [41]. Finally,
the 112 × 112 images were resized to 112 × 96 pixels through a similar transformation in
terms of alignment and cropping before being normalized to [−1.0, 1.0] in training and testing
following [4,10,11]. We employed the random occlusion generator [10], which masked the
final 112 × 96 face images.

Training Configuration: For a fair comparison to other advanced methods, we applied
ResNet18 or LightCNN-9 (L9) [42] as the backbones of the ALOB model. Note that Identifier
and Trimmer cooperated with identical feature extractors in all our experiments, with
different optimizers stated in Section 3.5. All the models were trained for 21 epochs with a
batch size of 128 without any pre-trained models via one NVIDIA T4 GPU in the Linux
system. The framework for our model was written in the PyTorch using Python. We set
the initial learning rate to 0.01 and 0.001 for training ResNet18 and L9 as the backbones
in the various experiments, respectively. The learning rates were divided by 10 at epoch
10. The training dataset was a mixed dataset with clean and occluded face images from
CASIA-WebFace and a selection ratio of 1:2 for the whole training process, following the
setting used in [10]. The scale was randomly chosen as 1:0.5:5, that is (1, 1.5, 2, 2.5, etc.)
to determine the size of the occluded parts in the images. We named the training dataset
OCC-CASIA-WebFace. Data augmentation, such as random horizontal flips and changing
the brightness, contrast, saturation, and hue, was also applied during the training process.

Baseline Settings: In our experiments, we selected two networks as the baselines,
ResNet18 and L9. As illustrated in Figure 1, although we trained the two subnetworks, only
cleaned features extracted from Identifier were utilized for the final recognition without
adding more features generated from another backbone. Here, the baselines are a single-
network framework. Compared to the ALOB model, we designed two baselines as the
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typical feature extraction to showcase that the proposed method removes corrupted features
while keeping the useful ones.

Baseline—ResNet18: We applied ResNet18 as the feature extractor (i.e., Identifier
without FPP, as shown in Figure 1). The backbone is trained on OCC-CASIA-WebFace
using the CosFace loss for 21 epochs with an initial learning rate of 0.01.

Baseline—L9: Another baseline, L9, was employed as the feature extractor. The
training set was the same as the baseline ResNet18, but we changed the initial learning
rate to 0.001. Compared to ResNet18, L9 is a lighter model, allowing us to assign a small
learning rate to train L9 as the feature extractor.

4.3. Test Performances

As stated before, the proposed model was trained on OCC-CASIA-WebFace datasets
with the weighted loss function shown in Equation (13). Here, we defined two baselines for
a comparative analysis and utilized the same type of backbones as the main state-of-the-art
models for a fair comparison. Some other factors were considered in our experiments
such as the training datasets and seen occlusions (trained occlusions), shown in Table 2.
We compared our model to the most recent and advanced OFR methods, FROM [10] and
MSML [13], on occluded versions of LFW and AR, respectively. Both methods used the
OCC-CASIA-WebFace dataset for training, including the same occlusions that appeared
in the testing cases. Our methods with lighter backbones and without manual labelling
work can still outperform FROM and MSML requiring annotating labels. Furthermore,
we also compared ALOB to other OFR methods with and without guidance on occlusion
location, such as PDSN [11] and MaskNet [18], and our method surpassed all of them
for the AR datasets. For LFW-OCC-2.0 and 3.0, we tested ALOB using two metrics and
gained higher results than FROM trained using labels of occlusions and personal identities.
We summarize the detailed information in Tables 3 and 4. To evaluate the generality of
our model in the Face–Face and Face–Mask test cases shown in Table 5, we compared
the performance of our model with the recently proposed MFR methods, LPD [15] and
UPA [16]. ALOB is not targeted for MFR, but it generalizes well in MFR tasks, even
compared to MFR methods.

Table 2. The training datasets, including the occlusions from the state-of-the-art methods compared
in our experiments.

Models Training Datasets Occlusions in Training

MSML(L29) OCC-CASIA-WebFace geometric shapes, realistic objects (sunglasses,
scarf, face mask, hand, etc.), masks

FROM(ResNet50) OCC-CASIA-WebFace sunglasses, scarf, face mask, hand, eye mask,
eyeglasses, book, phone, cup

UPA(ResNet28) CASIA-Webface-Masked face masks (cloth, surgical-blue, surgical-green,
KN95, surgical-white)

Table 3. Face identification results in realistic occluded AR datasets (* refers to the data reported in
[13], and names without * signifies data reported in the original papers. “-” represents the missing
data in their reported papers). In addition, 1/2 refers to protocol 1 and 2, correspondingly. The best
performance is highlighted as bold.

Models
Accuracy

AR
(sg 1/2)

AR
(scarf 1/2)

Baseline-L9 97.5/94.72 97.64/89.03

Baseline-ResNet18 100/99.58 99.96/99.30

ALOB-L9 (ours) 100/99.03 99.86/98.61
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Table 3. Cont.

Models
Accuracy

AR
(sg 1/2)

AR
(scarf 1/2)

ALOB (ours) 100/99.72 100/99.58

* L29 98.02/96.44 98.78/96.76

Seg-DGDNet (2023) [43] 99.71/98.73 100/99.03

MSLM (2022) [13] 99.84/98.80 100/99.37

PDSN (2019) [11] 99.72/98.19 100/98.33

RPSM (2016) [26] 96/84.84 97.66/90.16

DDF (2020) [40] -/98 -/94.10

* LUMIRC (2020) [29] 97.35/- 96.7/-

MaskNet (2017) [18] 90.90/- 96.70/-

NMR (2017) [44] 96.9/- 73.5/-

LMA (2016) [25] -/96.30 -/93.70

MLERPM (2013) [45] 98.0/- 97.0/-

SCF-PKR (2013) [46] 95.65/- 98.0/-

StringFace (2010) [27] -/82.00 -/92.00

SRC (2008) [22] 87.0/- 59.50/-

Table 4. Face verification results in synthetic occluded datasets (* refers to data obtained from running
the provided model [10] by ourselves, and data without * represent the reported results in FROM).
The best performance is highlighted as bold.

Models
Accuracy/TAR@FAR = 1×10−3

LFW-OCC-2.0
(Face–Occlusion)

LFW-OCC-3.0
(Face–Occlusion)

Baseline-ResNet18 93.40/64.00 90.08/61.73

ALOB (ours) 94.87/78.93 92.05/71.57

FROM (2022) [10] 94.70/76.53 91.60 */70.27 *

Table 5. Face verification accuracies (%) in Face–Face and Face–Mask test cases. (Testing pairs in
MFR2 are provided in UPA, and “-” represents the missing data in their reported papers). The best
performance is highlighted as bold.

Models
Accuracy

LFW
(Face–Face)

LFW-Masked
(Face–Mask)

MFR2
(Face–Mask)

Baseline-ResNet18 98.27 96.80 91.76

ALOB (ours) 98.77 97.62 93.76

UPA (2022) [16] 98.02 97.60 92.38

LPD (2020) [15] 94.82 94.28 88.76

INFR (2019) [12] 97.66 93.03 90.63

PDSN (2019) [11] - 86.72 -

DFM (2018) [47] - 92.88 -

We first evaluated our model on AR for face identification corresponding to two protocols
with two occlusions, sunglasses (sg) and a scarf, and included the results in Table 3. The
gallery set is used for identifying the person in the problem set, which contains six images
per person in protocol 1 and only one photo per person in protocol 2. The accuracy can
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be calculated separately in terms of different occlusions. The same types of sunglasses and
scarves are included during training for MSML and ALOB. MSML incorporates LightCNN-29
(L29) [42] as its backbone, which includes residual blocks in the architecture. Table 3 illustrates
that the ALOB model trained in ResNet18 consistently surpasses other methods on AR. We
also trained our model in L9, a lighter framework than L29, without residual blocks. ALOB-L9
obtained higher accuracies than MSML by more than 0.2% in the problem set of sg (protocols
1 and 2) and scarf (protocol 2), respectively. The performance of the baseline L9 was worse
than that of L29 reported in MSML, but our method can attain a better performance than
MSML. On average, the proposed method improved by more than 1.5% and 5.5% in terms
of accuracy for sg and gained around 1% and 3.5% in accuracy for the scarf problem set,
corresponding to two different protocols, compared to Seg-DGDNet [43], PDSN [11], and
RPSM [26]. In terms of protocol 1, ALOB remarkably outperformed other OFR methods,
which only reported data on protocol 1 [22,44–46] by achieving almost 100% accuracy (more
than a 2% improvement in ALOB with different backbones). OFR models with only results
from protocol 2 [25,27,41] obtained around 94% accuracy on the scarves datasets, while ALOB
attained better performance with an accuracy of 99%. Compared to MaskNet [18], trained
only under the supervision of identity labels, that is, the same as our method, ALOB with
different backbones achieved higher accuracies, significantly surpassing more than 9% and 3%
in the sg and scarves datasets under protocol 1. Furthermore, our models outperformed the
baselines in all test cases, which implies a cooperation between the GRL and FPP to remove
the corruption from the extracted features instead of the useful ones for the classification.

We conducted more challenging experiments for face verification in the synthetic
occluded datasets shown in Table 4. Two versions of occluded LFW, LFW-OCC-2.0, and
LFW-OCC-3.0 were constructed by the random occlusion generator [10], representing
43.09% and 52% occluded parts in LFW images, respectively. The models were evaluated
in terms of their accuracy and another strict metric, the TAR, which was computed with the
FAR set to 1× 10−3. Not surprisingly, the baseline ResNet18 was significantly improved by
more than 1.5% in accuracy and 10% in the TAR for both datasets. Our model obtained
better results than FROM in terms of accuracy and the TAR. The ALOB method and
FROM both constructed a 512-dimensional face embedding for the final face classification.
However, the ALOB attained more than 0.1% and around a 1.5% improvement in both
datasets regarding accuracy and the TAR. The proposed method sustains competitive
performances in more complex datasets.

Experiments in Masked Datasets: To evaluate the effectiveness and robustness of the
ALOB model, we employed our model for FR and MFR, including realistic and synthetic
types of face masks. We compared the ALOB model to other models targeted for OFR
and MFR for all the clean and masked face datasets shown in Table 5. We retrained our
model using the same occlusions stated in the UPA for fair a comparison. In our training,
masks were randomly assigned to the faces, while a masking tool was applied to mask the
faces in the UPA. The proposed method still shows its superiority under training through
the random masking of faces. The proposed model achieves the best accuracy of 93.76%
on MFR2 (Face–Mask) compared to all the OFR and MFR methods. The ALOB model
also gained the best performance on LFW-Masked, improving by 0.02% compared to the
UPA, which obtained 97.60% in accuracy. Our model outperformed other state-of-the-art
methods for OFR, such as PDSN [11], INFR [12] DFM [47], and the MFR model LPD [15],
by at least 4.5% on average for OFR methods and 3% for the MFR model in LFW-Masked,
respectively. We also conducted experiments for our model in terms of FR using the same
model targeted for MFR to evaluate its generalizability. It is seen in Table 5 that ALOB
exceeded other methods and the baseline ResNet18. Table 6 summarizes the performance
of the ALOB model with the stricter metric, the TAR. When compared to the baseline
ResNet18 in terms of accuracy and the TAR, our model has an upgradation performance
for FR, revealing that Trimmer detects harmful or confusing features that maximize the loss
calculated against the identity labels and preserves the significant features in Identifier, as
we stated before.
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Table 6. Comparison of TAR @ FAR = 1× 10−3 between the baseline ResNet18 and ALOB in Face–Face
and Face–Mask test cases. The best performance is highlighted as bold.

Models
TAR@FAR = 1×10−3

LFW
(Face–Face)

LFW-Masked
(Face–Mask)

MFR2
(Face–Mask)

Baseline-ResNet18 88.40 83.07 56.11

ALOB 95.90 89.63 66.83

4.4. Discussion of λ

The weight coefficient, λ, in Equation (13) controls the trade-off between the face
recognition loss in Identifier, L f , and the loss for corrupted feature prediction in Trimmer,
Lm. We designed experiments to find the optimal value of λ, as demonstrated in Table 7. It
was tested with λ ε

[
0, 1× 10−3, 1× 10−2, 1× 10−1, 0.5, 1, 2, 3

]
under the same training

configuration stated in Section 4.2 on the LFW-OCC-2.0, LFW-OCC-3.0, and MFR2 datasets.
Small values suppress the performance for occlusion prediction, while large values cause
the model to emphasize occlusion prediction instead of face classification. Obviously, the
optimal value is 1.0.

Table 7. Face verification accuracies and TAR impacted by different weight coefficients in Equation
(13) on three datasets. The best performance is highlighted as bold.

λ
Accuracy/TAR@FAR = 1×10−3

LFW-OCC-2.0
(Face–Occlusion)

LFW-OCC-3.0
(Face–Occlusion)

MFR2
(Face–Mask)

λ0 92.45/66.10 91.82/67.43 91.89/57.11

λ0.001 94.22/72.13 91.28/70.27 91.76/52.34

λ0.01 94.38/77.13 91.88/69.77 92.01/57.33

λ0.1 94.13/74.17 90.33/58.47 92.51/57.86

λ0.5 92.32/66.67 89.85/59.33 90.14/58.83

λ1.0 94.87/78.93 92.05/71.57 93.76/66.83

λ2.0 93.78/73.70 91.65/66.17 92.01/60.33

λ3.0 93.67/67.4 91.37/65.77 92.13/60.85

4.5. Ablation Study

Various ablation studies were conducted in this subsection to explore the impact of dif-
ferent parts of our model. We chose occluded and real-world masked datasets, LFW-OCC-
2.0, LFW-OCC-3.0, and MFR2, as the testing datasets used for the ablation experiments.
The removed module is specified in the model names, where ALOB -G/-F/-G-F represents
GRL/FPP/both GRL and FPP removed. The performance of the models was evaluated by
the two metrics defined in Section 4.1. Note that all the models utilized ResNet18 as the
backbone and the same configuration as the ALOB model stated in Section 4.2.

Analysis of the GRL and FPP: The experimental results for examining the GRL and
FPP individually (ALOB-G and ALOB-F) under different test scenarios are illustrated in
Table 8. In ALOB-F, we replaced f f − f f ′ , defined in Section 3.3, by f f − f m, which is
a simple subtraction between features that was extracted from Identifier and Trimmer.
Whether or not the GRL or FPP is removed, the performance drops in terms of accuracy
and the TAR when the FAR is set to 1× 10−3. Here, there is severe degradation in the TAR
for all the testing datasets, decreasing by nearly 6% on average when the GRL is removed
or FPP is replaced by a simple subtraction between two features, f f and f m. These results
showcase the importance of each component in our models, with the absence of one of
these submodules leading to a significant degradation in performance.
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Table 8. Ablation studies. The first two experiments investigated the effectiveness of the GRL or FPP
by removing them in the ALOB-G and ALOB-F, respectively. Two modules, the GRL and FPP, were
removed in the last two experiments, where the features from Trimmer and Identifier are summed in
ALOB-G-F (sum) or concatenated in ALOB-G-F(concat). The best performance is highlighted as bold.

Models
Accuracy/TAR@FAR = 1×10−3

LFW-OCC-2.0
(Face–Occlusion)

LFW-OCC-3.0
(Face–Occlusion)

MFR2
(Face–Mask)

ALOB-G 92.45/66.10 91.82/67.43 91.89/57.11

ALOB-F 94.62/74.27 90.35/64.10 91.51/60.59

ALOB-G-F (sum) 94.38/70.47 92.02/70.10 91.51/62.01

ALOB-G-F (concat) 94.45/74.77 91.77/70.13 92.01/63.84

ALOB 94.87/78.93 92.05/71.57 93.76/66.83

Analysis of the proposed method: We also designed experiments for comparing our
model with other combinations of two subnetworks to show the superiority of our model.
The GRL and FPP were removed, and the summation of two features was utilized to form
the 512-dimensional face embedding for the final classification. The two feature vectors
contained discriminative information in the ALOB-G-F (sum), such that its sum augmented
the prominent features. It is seen in Table 7 that the proposed model outperforms the ALOB-
G-F (sum) in terms of the two metrics. Another model, ALOB-G-F (concat), concatenates
two features to generate a 1024-dimensional face embedding, but we still compare it to
our 512-dimensional face embedding in the ALOB model. Although ALOB-G-F (concat)
contains more parameters for face recognition, our model can sustain a slightly higher
accuracy in all the datasets. There is still a gap between the proposed model and the ALOB-
G-F (concat) regarding the TAR, decreasing by roughly 3% in terms of feature concatenation.
These experimental results meet our expectations. With FPP, features relevant to the
masked feature f m are excluded from f f . This way, the output face embedding is the
most discriminative was to describe images. These two experiments demonstrate the
effectiveness of the design of our model to tackle the issues of OFR.

4.6. Visualization of the Proposed Model
4.6.1. Feature Visualization

To demonstrate the goal of Trimmer, detecting the harmful features for occluded and
clean face classification, we utilized GradCAM++ and GradCAM [48] to visualize the
feature maps produced from the second-to-last convolution layer. The clean face images
were selected from the original LFW datasets. The occluded samples were selected from
LFW-OCC-2.0 and LFW-OCC-3.0. Visualizations of the features learned by Trimmer are
presented in Figure 5. CAM assigns brighter colors to obvious features with higher weights
in the feature map. Figure 5 confirms that Trimmer can extract the corrupted features.
Specifically, brighter colors signify that higher weights are assigned in the surrounding
areas of the face, such as the hairs in the clean face images, and obvious colors are located
in corrupted features in terms of the occluded images.
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Figure 5. Visualizations of the predicted harmful features extracted from Trimmer in clean and
occluded images. We selected the second last convolution layer in the ResNet18 as the targeted layer
for computing the CAM [48]. The higher weights are assigned with brighter color.

4.6.2. Feature Space Visualization

To explore the improvement of our proposed method in coping with facial occlu-
sions in depth, we also qualitatively compared our model to the other models defined
in Section 4.4 for the ablation experiments. Five different identities were selected from
LFW-OCC-2.0 with 20 sample images, and each model generated 512-dimensional face
embedding for the final face recognition. T-SNE [49] converts the 512D feature space to a 2D
feature space for convenient visualization, and the results are presented in Figure 6. Note
that we trained all the presented models on OCC-CASIA-WebFace, including the baseline
ResNet18. Compared to other models, the proposed model enhances intra-class compact-
ness and inter-class discrepancy and reduces the ambiguities in the decision boundaries
among different classes.
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5. Conclusions

This work presents a simple yet efficient double-network framework for occlusion-
robust face recognition, which consists of contrastively learning the corrupted features
against the identity labels only and then removing the harmful information from the final
face embedding for the final classification. The ALOB model tackles the problem of having
to label the locations of occlusions by hand in a novel way and still sustains the performance
of FR, MFR, and OFR compared to existing methods that function under the guidance of
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occlusion learning. Furthermore, we provide quantitative and qualitative experiments to
illustrate the effectiveness and generality of our approach to addressing face recognition.
To further improve the performance of OFR, we will consider incorporating our model into
pretrained models to initially assign better feature extractors in Identifier and Trimmer. A
straightforward choice is using a deep neural network such as ResNet50 trained on the
targeted objects as a good initialization for each subnet.
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