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Abstract: This paper proposes an adaptive distributed hybrid control approach to investigate the
output containment tracking problem of heterogeneous wide-area networks with intermittent com-
munication. First, a clustered network is modeled for a wide-area scenario. An aperiodic intermittent
communication mechanism is exerted on the clusters such that clusters only communicate through
leaders. Second, in order to remove the assumption that each follower must know the system matrix
of the leaders and achieve output containment, a distributed adaptive hybrid control strategy is
proposed for each agent under the internal model and adaptive estimation mechanism. Third, suffi-
cient conditions based on average dwell-time are provided for the output containment achievement
using a Lyapunov function method, from which the exponential stability of the closed-loop system is
analyzed. Finally, simulation results are presented to demonstrate the effectiveness of the proposed
adaptive distributed intermittent control strategy.

Keywords: heterogeneous clustered network; output containment; aperiodic intermittent control;
adaptive estimation; average dwell-time condition

1. Introduction

Multi-agent systems in distributed cooperative settings have been a research focus
because of their widespread applications, including spacecraft formation flying [1], mobile
robots [2], and sensor networks [3]. An increasing number of studies consider various
cooperative control problems under two types of network frameworks: leaderless and
leader-following [4,5]. In the leader-following framework involving consensus with only
one leader, a set of agents must reach the tracking trajectory of interest. In some real-world
scenarios, agents are not forced to reach the same value or trajectory. As a special class of
cooperative controls, containment control aims to drive all followers into a desirable region
formed by multiple independent leaders [6]. In general, multi-agent systems can be divided
into two broad classes according to their dynamics: homogeneous and heterogeneous [7,8].
Homogeneity signifies that the dynamics of the agents are identical, whereas heterogeneity
signifies nonidentical dynamics, which makes the containment problem more challenging
but practical and prospective.

Recently, output containment control (OCC) has attracted considerable attention for
heterogeneous multi-agent systems with state variables of different dimensions. Using
the internal model principle, OCC of heterogeneous multi-agent systems was studied
under both state and output feedback designs in [9]. OCC of heterogeneous multi-agent
systems was investigated using an output regulation technique by designing an optimally
distributed PID-like controller in [10]. Specific limitations or task requirements, such as
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transmission delays [11], fixed-time [12], and input saturation [13], have been reported for
OCC of heterogeneous multi-agent systems in recent literature. For more complex envi-
ronments or certain specific task scenarios, bipartite formation-containment was studied
for heterogeneous multi-agent systems in [14]. In [15], formation-containment control was
investigated for heterogeneous linear multi-agent systems with unbounded transmission
delays. In general, by applying the output regulation technique, a distributed observer
or internal model is introduced to estimate the leader’s signal for each heterogeneous
follower. Thus, the abovementioned studies generally require each follower to know the
matrix S of the leader system [10–15], which may be unrealistic in some situations. In
case of the unknown system matrix, some effective adaptive control methods, such as
the leaning algorithms [16,17] and the adaptive estimation [18–20], have recently been
developed. In [18], an adaptive approach was proposed to estimate the system matrix for
each follower using a distributed adaptive estimation technique. In the case with multiple
leaders, an adaptive distributed observer was designed to achieve the OCC of a multi-agent
system in [19], in which only the system matrix S was estimated. To know the system
matrices of the leaders, a novel adaptive OCC was studied under both state-feedback
and dynamic output-feedback in [20]. However, few studies have considered the OCC
of heterogeneous multi-agent systems over clustered networks. Thus, in this study, we
investigate the adaptive OCC problem over clustered networks, particularly over more
complex wide-area networks.

In general, complex networks in real-world applications may comprise several smaller
subnetworks, such as the post-disaster emergency communication networks in [21]. There-
fore, the investigation of the synchronization of wide-area networks is important. In-
tuitively, wide-area networks exhibit more complex phenomena than a simple network
pattern due to task requirements or wide-area scenarios. Consequently, increasing attention
has recently been paid to various control problems. A consensus control problem was
investigated for clustered networks with impulsive communication in [22]. Furthermore, a
static output feedback control was considered in [23] to achieve consensus. In [24], output
consensus of clustered networks was achieved using a reduced-order observer. Subse-
quently, the work was extended to heterogeneous clustered networks to achieve output
consensus in [25]. In the case of inter-cluster intermittent communication, an intermittent
output tracking control was proposed for heterogeneous multi-agent systems over clustered
networks in [26]. However, few studies have focused on clustered networks with multiple
leaders, which inspired us to address the OCC problem for clustered networks.

Due to limited resources, physical device failures, and communication barriers, dis-
tributed intermittent control is desired owing to its effective and economical communication
mode. Periodic [27–29] and aperiodic [30–32] intermittent control have been reported for
multi-agent systems. To achieve containment in the case of periodic intermittent commu-
nication, intermittent containment control was investigated for second-order multi-agent
systems in [33]. In [34], periodic intermittent containment control was explored for nonlin-
ear multi-agent systems subjected to unknown disturbances. This control strategy was also
extended to heterogeneous multi-agent systems in [35]. In contrast to periodic intermit-
tent control, aperiodic intermittent control, which consists of aperiodic time intervals, is
more realistic. For example, the wind power in [36] suffered from unstable wind speed.
Considering time-delay and aperiodic intermittent communication, second-order multi-
agent systems were exponentially stabilized utilizing a distributed aperiodic intermittent
control strategy in [37]. In [38], a novel distributed aperiodic intermittent communication
scheme was proposed for linear multi-agent systems with disturbances. By introducing
time-scale theory, aperiodic intermittent containment control was investigated for a het-
erogeneous multi-agent system in [39]. However, the sum of the communication and
non-communication lengths is required for the exponential stability in the abovementioned
aperiodic intermittent control methods. To relax this strict constraint, a simple but practical
condition is desired for distributed aperiodic intermittent controls.
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Motivated by the above discussion, in this study, we propose a distributed aperiodic
intermittent control approach to solve the output containment problem for a heterogeneous
multi-agent system, without expecting all followers to know the system matrix S of the
leader. To this end, a distributed adaptive observer is used to estimate the matrix S.
Based on this, an adaptive distributed hybrid controller is designed using a dynamic
compensator. Using a Lyapunov function method and the output regulation technique,
sufficient conditions for the adaptive intermittent OCC are derived. The main contributions
of this paper are as follows:

• A distributed adaptive approach is designed for the internal leaders to estimate the
system matrix S of the homogeneous exogenous leaders. Compared with [37–39], this
approach is more practical and extends to a wide-area network.

• Distributed hybrid controllers are designed separately for the internal leaders and
followers to achieve output containment tracking. Specifically, the distributed aperi-
odic intermittent controller is designed for the internal leader, whereas the continuous
dynamic feedback controller is designed for the follower based on the internal model.

• Sufficient conditions for the exponential stability of the closed-loop system are derived,
where intermittent control rate and control parameters are calculated based on the
average dwell-time and regulator equations.

The remainder of this paper is organized as follows. Section 2 presents essential
preliminaries and formulates the problem statement and framework. The main results of
the developed hybrid control algorithms and theories are presented in Section 3. Simulation
examples are provided in Section 4. Finally, conclusions are presented in Section 5.

2. Preliminaries and Problem Formulation

In this section, we first introduce the basics of directed graph topology and the study
problem based on a clustered hybrid communication network.

2.1. Notations

Rm×n denotes the set of m× n real matrices. 1n and In denote the column vector with
n elements as 1 and the n−dimensional identity matrix, respectively. ⊗ is the Kronecker
product. P > 0 (P < 0) denotes a positive (negative) definite matrix. The induced 2-norm
of the matrix or Euclidean vector norm is denoted as ‖ • ‖. Let λmax(•) and λmin(•) be
the maximum and minimum eigenvalues, respectively. inf{τi} and sup{τi} denote the
largest lower and smallest upper bounds of the set {τi}, respectively. diag{A1, A2, · · · , An}
denote a block-diagonal matrix with arbitrary matrices Ai ∈ Rm×m, i = 1, · · · , n. For
any column vector ζ = col(w1, w2, · · · , wq) ∈ Rqn with any vector wi ∈ Rn, we define
Mq

n(ζ) = [w1, w2, · · · , wq]. dist(yi, C) = infy0∈C‖yi − y0‖2 denotes the Euclidean distance
from yi ∈ Rn to a set C ⊆ Rn.

Definition 1. Define C ⊆ Rn. For any yi, yj ∈ C and any λ ∈ [0, 1], the set C is convex if
(1− λ)yi + λyj ∈ C. A convex hull, denoted as Co(Y), is the minimal convex set containing all

points in Y = {y1, y2, · · · , yM0}, that is, Co(Y) =
{

∑M0
r=1 αryr|yr ∈ Y, αr ≥ 0, ∑M0

r=1 αr = 1
}

.

2.2. Communication Network Modeling

A directed graph G = (V , E ,A) is typically used to describe the communication
network for a group of autonomous agents, where the node set V = {υ1, υ2, · · · , υN}
denotes the set of N agents. The edge set E = {(υi, υj) : i, j ∈ V} denotes the set of
communication links between agents. A directed edge (υi, υj) implies that agent υi can
receive information from neighboring agent υj. Meanwhile, if (υi, υj) ∈ E , the weight is
defined as aij = 1; otherwise, aij = 0. Thus, A = [aij] ∈ RN×N is the adjacency matrix
associated with the directed graph G. Additionally, the Laplacian matrix of the graph G is
defined as L = [lij] ∈ RN×N , where lii = ∑N

j=1,i 6=j aij and lij = −aij(i 6= j).
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Regarding multi-area scenarios, the communication network G is spilt into M sub-
networks described as Gk = (Vk, Ek,Ak) (k = 1, 2, · · · , M), which are called clusters in
sequence. It is assumed that each subnetwork has a spanning tree with Nk followers
and an internal leader indexed as lk as its root. Thus, N followers belong to the sets
V = {V1,V2, · · · ,VM} with ∂k−1 = ∑k−1

j=0 Nj (∂0 = 0). The clusters satisfy the follow-

ing properties: Vk 6= ∅,
⋃M

v=1 Vk = V , and Vv
⋂ Vk = ∅ (v 6= k). In addition, for each

cluster Gk, we define a Laplacian matrix Lk = [lij] ∈ RNk×Nk and a leader adjacency
matrix Wk = diag(ω∂k−1+1,lk , · · · , ω∂k−1+Nk ,lk ), where ω∂k−1+ı,lk = 1 (ı = 1, 2, · · · , Nk) if
ε∂k−1+ı,lk ∈ E , and ω∂k−1+ı,lk = 0 if ε∂k−1+ı,lk /∈ E . Thus, the global interaction of all agents in
Gk is denoted as Hk = Lk + Wk.

As mentioned above, because communication among clusters is only implemented
by M internal leaders, let GL be a directed graph to describe the communication network
associated with the above leaders, which are indexed as lk (LM = {l1, · · · , lM}). Similarly,
Lint = [llk lv ] ∈ RM×M is obtained for leaders. The objective of this paper is to drive
the internal leaders to move into a desired region spanned by M0 exogenous leaders,
which are indexed as l0

r ,LM0 = {l0
1 , · · · , l0

M0
}. Thus, the interaction relationships of these

M̄ = M + M0 agents can be modeled using a directed graph ḠL. We define the adjacency
matrix for each leader asWr = diag(ωl1l0

r
, ωl2l0

r
, · · · , ωlM l0

r
), where ωlk l0

r
= 1, if the leader

lk is connected to the exogenous leader l0
r ; otherwise, ωlk l0

r
= 0. Combining Lint andWr, we

can define Hr =
1

M0
Lint +Wr. The necessary assumptions regarding the above descriptions

are introduced below.

Assumption 1. There exists at least one directed path from the internal leader l0
r (lk) to followers

in the same cluster.

Figure 1 illustrates the connectivity of the communication network associated with
the followers i(i = 1, · · · , 7), internal leaders l1, l2, and exogenous leaders l0

1 , l0
2 .

Figure 1. Wide-area network framework with hybrid communication.

Lemma 1 ([10]). Under Assumption 1, the matrix Hr = 1
M0

Lint +Wr is invertible. A square
matrix A is stochastic if all of its entries are non-negative and the entries of each row add up to 1.

Lemma 2 ([40]). Under Assumption 1, for M-matrix H̄ = ∑M0
r=1 Hr, there exists a matrix Ξ̄ =

diag(δl1 , δl2 , · · · , δlM ) with positive scalar δlk > 0 satisfying (δl1 , δl2 , · · · , δlM )T = H̄−T1M,
such that Ξ̄H̄ + H̄TΞ̄ > 0. Similar to H̄, a corresponding Ξk exists for each Gk, satisfying
Ξk Hk + HT

k Ξk > 0.
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2.3. Problem Statement

Consider a general wide-area communication network, where there are N heteroge-
neous followers and M0 exogenous leaders with the following dynamics.{

ẋi(t) = Aixi(t) + Biui(t), i ∈ Gk

yi(t) = Cixi(t),
(1)

and {
ẋl0

r
(t) = Sxl0

r
(t), r ∈ LM0

yl0
r
(t) = Dxlr (t),

(2)

where xi(t) ∈ Rni , ui(t) ∈ Rmi , and yi(t) ∈ Rp are the state, control input, and output of
the ith follower, respectively. Similarly, the state, input, and output of the l0

r th leader are
denoted as xl0

r
(t) ∈ Rn0 , ul0

r
(t) ∈ Rm0 , and yl0

r
(t) ∈ Rp, respectively. The constant real

matrices Ai ∈ Rni×ni , Bi ∈ Rni×mi , Ci ∈ Rp×ni , S ∈ Rn0×n0 , and D ∈ Rp×n0 .
Motivated by [18], the system matrix S of exogenous leaders may be unknown to other

agents. By introducing an internal model and adaptive control method, the dynamics of
M1 internal leaders are modeled as{

ẋlk (t) = Slk (t)xlk (t) + ulk (t), k ∈ LM

ylk (t) = Dxlk (t),
(3)

where xlk (t) ∈ Rn0 , ulk (t) ∈ Rm0 , ylk (t) ∈ Rp, and Slk (t) denote the state, input, output,
and the estimation of S, respectively. In addition, the following assumptions are necessary.

Assumption 2. The pairs (Ai, Bi) and (Ai, Ci) are stabilizable and detectable, respectively.

Assumption 3. The real parts of all eigenvalues of S are positive.

Assumption 4. There exist the following matrix equations with corresponding solution pairs
(Πi, Ui) (i = 1, 2, · · · , N). {

ΠiS = AiΠi + BiUi,

CiΠi = D.
(4)

For the case with multiple leaders in this study, we investigate the output containment
problem of multi-area networks, which can be described in detail as follows.

Definition 2. The heterogeneous multi-agent system (1)–(3) over the clustered network can achieve
output containment if for all general initial states, all followers’ outputs converge to the desired
convex hull formed by the exogenous leaders as time t tends to infinity, that is,

lim
t→∞

dist(ylk (t), Co(Y(t))) = 0, k ∈ LM

lim
t→∞

(yi(t)− ylk (t)) = 0. i ∈ Gk
(5)

3. Main Results

In this section, by proposing an adaptive distributed intermittent control strategy,
sufficient conditions for output containment are derived using the output feedback.

3.1. Distributed Hybrid Adaptive Control Strategy

An aperiodic intermittent control mechanism is introduced because of the inevitable
intermittent communication. Based on a non-periodic time sequence, the framework of
aperiodic intermittent communication is intuitively developed and illustrated in Figure 2.
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Figure 2. Aperiodically intermittent communication structure.

In this framework, it is clearly shown that 0 = T0 < T1 < · · · < Tm < · · · such that the
aperiodic time sequence can be denoted as {Tm}∞

m=0. There exists an aperiodic time interval
τm in the non-periodic period Tm = Tm+1 − Tm satisfying 0 < τm < Tm. This implies that
each aperiodic intermittent period [Tm, Tm+1) is composed of two parts: [Tm, Tm + τm]
and (Tm + τm, Tm+1). In general, the time widths, [Tm, Tm + τm] with communication and
(Tm + τm, Tm+1) without communication, are also referred to as the work and rest time
intervals, respectively. In addition, continuous communication is considered in each cluster
Gk. By introducing this aperiodic intermittent control method, the global heterogeneous
clustered network can be described as follows:

H̄(t) = H̄, t ∈ [Tm, Tm + τm]

H̄(t) = 0, t ∈ (Tm + τm, Tm+1)

Hk(t) = Hk. t ∈ [Tm, Tm+1)

Assumption 5. Based on the aperiodic intermittent control mechanism, there exist scalars γ1 > 0,
γ2 > 0, and h > 0 such that the following average intermittent intervals are defined as follows:

$1 , lim
m→∞

inf ∑m
s=0 τs

m + 1
, $2 , lim

m→∞
sup ∑m

s=0(Ts+1 − Ts)

m + 1
, h , lim

m→∞
sup ∑m

s=0 Ts+1 − Ts − τs

m + 1
,

satisfying m ≥ m∗ ≥ 1, $2 > $1 > 0, and $2 > h > 0.

Remark 1. According to the abovementioned description of aperiodic intermittent communication,
the average time intervals $1, $2, and h can be observed and defined based on the time-scale theory.
Each communication period comprises a pair of work and rest time intervals, which implies that
$2 ≥ $1 > 0 over the time sequence {Tm}∞

m=0, and $2 > h > 0 is obtained for the aperiodic
intermittent communication. Under Assumption 5, a novel criterion for intermittent control can be
derived, in which the intermittent rate is related to the defined average time intervals. Additionally,
in Assumption 1, the leader is the root of the spanning tree, which ensures that the Laplacian
matrix Lint(Lk) has no eigenvalues with negative real-parts for each clustered network GL(GK).
Assumption 2 is used to guarantee the existence of the gain matrices such that the closed-loop
system is stable and the observer is convergent. Under Assumption 3, the exogenous signals can be
unbounded, which is more challenging than the cases when the matrix S has zero eigenvalues or
eigenvalues with negative real-parts. Assumption 4 is the standard condition for the solvability of
the linear output regulation problems.

To achieve containment tracking over the clustered network, we design a distributed
hybrid control for the heterogeneous multi-agent system. Specifically, a distributed inter-
mittent controller is proposed for the internal leader lk as follows:

ulk (t)=d

 ∑
v∈LM

alk lv(xlv(t)−xlk (t))+ ∑
r∈LM0

ωlk l0
r
(xl0

r
(t)−xlk (t))

, t∈ [Tm, Tm+τm]

ulk (t)=0, t ∈ (Tm + τm, Tm+1)

(6)
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where the control gain d is an arbitrary positive constant.
To estimate the system matrix S of the exogenous leader, we design distributed

adaptive estimation laws for the internal leaders and followers as follows:
Ṡlk (t) = γ1

(
∑

v∈LM

alk lv(Slv(t)− Slk (t))

)
+ ∑

r∈LM0

ωlk l0
r
(S− Slk (t)),

Ṡi(t) = γ2

(
∑

j∈Gk

aij(Sj(t)− Si(t)) + ωilk (Slk (t)− Si(t))

)
,

(7)

where Si(t) and Slk (t) denote the estimation of the system matrix S, γ1 and γ2 > 0 are
positive constants.

By introducing the compensator technique, an adaptive distributed hybrid controller
with output feedback design for each heterogeneous follower takes the following form:

ui(t) = K1i x̂i(t) + K2i(t)zi(t), i ∈ Gk
˙̂xi(t) = Ai x̂i(t) + Biui(t)− FiCi(xi(t)− x̂i(t)),

żi(t) = Si(t)zi(t) + d( ∑
j∈Gk

aij(zj(t)− zi(t)) + ωilk (xlk (t)− zi(t))), t ∈ [Tm, Tm+1)
(8)

where x̂i(t) denotes the estimation of xi(t), zi(t) ∈ Rn0 represents the state of the ith internal
model, K1i, K2i(t), and Fi are the control gains.

3.2. Error System Modeling

To analyze the convergence of the adaptive estimation laws (7), two error variables
are defined as follows: {

S̃lk (t) = Slk (t)− S,

S̃ilk (t) = Si(t)− Slk (t), i ∈ Gk
(9)

Furthermore, for k = 1, 2, · · · , M, we define SL(t) = [S̃T
l1
(t), S̃T

l2
(t), · · · , S̃T

lM
(t)]T and Sk(t) =

[S̃T
∂r−1+1,lk

(t), S̃T
∂r−1+2,lk

(t), · · · , S̃T
∂r−1+Nk ,lk

(t)]T. Define H̄ = [H̄T
1L, · · · , H̄T

kL, · · · , H̄T
ML]

T and
H̄k = 1Nk ⊗ H̄kL. From (7), it follows that{

ṠL(t) = −γ1(H̄ ⊗ In0)SL(t),

Ṡk(t) = −γ2(Hk ⊗ In0)Sk(t) + γ1(H̄k ⊗ In0)SL(t).
(10)

To estimate the states of the leaders, a second form of the error variables is defined
as follows: {

elk l0
r
(t) = xlk (t)− xl0

r
(t),

eilk (t) = zi(t)− xlk (t). i ∈ Gk
(11)

Regarding the leader-following tracking, we define the following error for each
internal leader:

elk (t) = ∑
v∈LM

alk lv(xlv(t)− xlk (t)) + ∑
r∈LM0

ωlk l0
r
(xl0

r
(t)− xlk (t)). (12)

Moreover, we define eL(t) = [eT
l1
(t), eT

l2
(t), · · · , eT

lM
(t)]T ∈ RMn0 , xL(t) = [xT

l1
(t), xT

l2
(t),

· · · , xT
lM
(t)]T ∈ RMn0 , and x̄r(t) = 1M ⊗ xl0

r
(t). Next, we rewrite eL(t) as eL(t) = −∑r∈LM0

(Hr ⊗ In0)(xL(t)− x̄r(t)). Given φ(t) = −∑r∈LM0
(Hr ⊗ In0)

−1eL(t), we obtain

φ(t) = xL(t)−

 ∑
r̄∈LM0

(Hr̄ ⊗ In0)

−1

∑
r∈LM0

(Hr ⊗ In0)x̄r(t). (13)
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Defining φ(t) = xL(t) − Φ(t) and Φ(t) =
(

∑r̄∈LM0
(Hr̄ ⊗ In0)

)−1
∑r∈LM0

(Hr ⊗ In0)

x̄r(t) implies that Φ̇(t) = (IN ⊗ S)Φ(t), according to the leader’s dynamics described
by (2). Since S̃lk (t) = Slk (t) − S, we define Ŝ(t) = block diag{S̃l1(t), S̃l2(t), · · · , S̃lM (t)}
for convenience. Combining (2), (6), and (7), the dynamics of φ(t) under the intermittent
control can be expressed as follows:{

φ̇(t) = Ŝ(t)φ(t) + Ŝ(t)Φ(t) + (IN ⊗ S− dH̄ ⊗ In0)φ(t), t ∈ [Tm, Tm + τm]

φ̇(t) = Ŝ(t)φ(t) + Ŝ(t)Φ(t) + (IN ⊗ S)φ(t). t ∈ (Tm + τm, Tm+1)
(14)

Similarly, for i ∈ Gk, we define Ŝk(t) = block diag{Slk (t), · · · , Slk (t)} ∈ RNk×Nk ,
ek(t) = [eT

∂r−1+1,lk
(t), eT

∂r−1+2,lk
(t), · · · , eT

∂r−1+Nk ,lk
(t)]T , and xk(t) = 1Nk ⊗ xlk (t). Using (2),

(7), and (8), the error system of the followers within each cluster Gk is written as follows:
ėk(t) =Sk(t)ek(t) + Sk(t)xk(t)− Ŝk(t)ek(t)

− d(Hk ⊗ In0)ek(t) + H̄keL(t), t ∈ [Tm, Tm + τm]

ėk(t) =Sk(t)ek(t) + Sk(t)xk(t)− Ŝk(t)ek(t). t ∈ (Tm + τm, Tm+1)

(15)

3.3. Output Containment Analysis

Lemma 3. Under Assumptions 1 and 3, given the system (1) with an adaptive observer in (7),
for any general initial states Si(0) and S(0), the trajectories of S̃lk (t) and S̃ilk (t) are exponentially
stable as t→ ∞.

Proof. According to Lemma 1, H̄ is a non-negative M-matrix, which implies that all
eigenvalues of H̄ have positive real parts. Let µ0 = R(σmin(H̄)) > 0, then it follows
from (10) that ṠL(t) ≤ −γ1µ0SL(t). That is,

‖SL(t)‖ ≤ ‖SL(0)‖e−γ1µ0t. (16)

As t→ ∞, this implies that e−γ1µ0t → 0. Then, the error lim
t→∞

S̃lk (t) = 0.

Similarly, within each cluster from (10), by denoting µk = R(σmin(Hk)) and
µ̄k = max{R(σmax(H̄k))}, we obtain Ṡk(t) ≤ −γ2µkSk(t) + γ1µ̄kSL(t). That is, ‖Sk(t)‖ ≤
‖Sk(0)‖e−γ2µkt + ‖Λk‖

∫ t
0 e−γ2µk(t−τ)e−γ1µ0τdτ with Λk = INk ⊗ γ1µ̄k‖SL(0)‖In0 . Thus,

we obtain

‖Sk(t)‖ ≤
(
‖Sk(0)‖ −

‖Λk‖
γ2µk − γ1µ0

)
e−γ2µkt +

‖Λk‖
γ2µk − γ1µ0

e−γ1µ0t. (17)

From (16) and (17), for γ2µk 6= γ1µ0, we conclude that e−γ2µkt → 0 and e−γ1µ0t → 0 as
t→ ∞. That is, lim

t→∞
S̃lk (t) = 0 and lim

t→∞
S̃ilk (t) = 0 are derived. Thus, the system matrix S

can be estimated by all other agents using the proposed adaptive algorithm.
To achieve output containment, a feedforward control strategy is utilized as shown

in (7), in which the control gain K2i is determined under the solution of regulator Equation (4).
Because all followers do not know S, their estimate Si(t) is used to calculate the solution
of (4) based on an adaptive control approach. Thus, using Lemma 1 in [41], the following
lemma is derived.

Lemma 4. Under Assumptions 2–4, considering the multi-agent system (1)–(3), for any initial
state ζi(0), we obtain the following equation:

ζ̇i(t) = −QT
i (t)(Qi(t)ζi(t)− bi), (18)
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where Qi(t) = ST
i (t) ⊗

[
Ini 0ni×mi

0p×ni 0p×mi

]
− In0 ⊗

[
Ai Bi
Ci Di

]
, bi = vec

([
Ei
Fi

])
, and ζi(t) =

vec
([

Πi(t)
Ui(t)

])
, which have a unique solution if lim

t→∞
(Si(t) − S) = 0. Moreover, letting

Mq
(ni×mi)

(ζi(t)) = [ΠT
i (t), UT

i (t)]
T , we have

lim
t→∞

([
Πi(t)
Ui(t)

]
−
[

Π∗i
U∗i

])
= 0, (19)

where (Π∗i , U∗i ) is the solution of the regulator Equation (4).

Remark 2. In this paper, we extend the adaptive algorithm from the output regulation problem
in [18] to the output containment problem over an intermittent communication network. Using
Lemma 3, we achieve lim

t→∞
(Si(t) − S − (Slk (t) − S)) = 0 exponentially. This implies that the

proposed adaptive observer can estimate S. Furthermore, using Lemma 4, it is easy to deduce that

there exists a pair (Π∗i , U∗i ), such that lim
t→∞

([
Πi(t)
Ui(t)

]
−
[

Π∗i
U∗i

])
= 0. Meanwhile, the control gain

K2i can be calculated based on the adaptive control method and regulator Equation (4). In this paper,
we considered the adaptive containment tracking problem for heterogeneous multi-agent systems.
Since the leaders’ dynamics can only be known to the neighboring agents, an adaptive algorithm
has to be proposed to estimate the unknown system information for the other agents. It should be
noted that the online reinforcement learning approach (or adaptive dynamic programming) [16] or
policy iteration approach [17] were proposed to solve the optimal control of multi-agent systems
with completely unknown system information. The optimal containment control of multi-agent
systems with wide-area networks will be our future work.

Considering the underlying graph ḠL with intermittent communication, sufficient
conditions for the exponential stability of the switched system (14) are obtained using an
aperiodic intermittent control method.

Theorem 1. Suppose that Assumptions 1, 3, and 5 are satisfied. Given the switched error system
(14), lim

t→∞
φ(t) = 0 is achieved exponentially if the following conditions are satisfied:

(1) Given the appropriate matrices Q > 0 and P > 0, there exist scalars d > 0, β > 0, ν0 > 0,
θ > 0, and ρ̄ > 0, such that{

PS + ST P + θP + 2ν0P + Q− dρ̄P < 0,

PS + ST P + θP + 2ν0P− βP < 0.
(20)

(2) Given the appropriate scalars α > 0 and σ > 0, then the aperiodic intermittent rates
$1

$2−$1
> β

α and $1
$2−$1

> β
σ .

Proof: See Appendix A.

Remark 3. Unlike [37–39], herein, Assumption 5 is applied for the aperiodic intermittent control
mechanism. Therefore, the switched system (14) can be exponentially stabilized if (20) is feasible. In
addition, the exponential convergence index is determined under the two appropriate intermittent
rates derived from the inequality (A18). The stability of switched systems (14) not only relies on the
control gain d, but also satisfies the intermittent rate $1

$2−$1
> β

α under Assumption 5. Moreover,

α > σ implies that $1
$2−$1

> β
σ .

Remark 4. Compared with the results in [37–39,42], herein, a novel stability criterion is derived
for the aperiodic intermittent containment control, in which the two derived intermittent rates
consist only of the average time intervals τ̄1 and τ̄2, and scalars α, β, and σ. Based on the developed
intermittent rates, the final exponential convergence index is determined directly by comparison
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with [42]. Unlike [39], in this study, the current time sequence value m is removed from the
obtained intermittent rates. The proposed aperiodic intermittent control method can be applied to
various systems.

Sufficient conditions for intermittent OCC under adaptive and intermittent control
methods are then presented.

Theorem 2. Under Assumptions 1–5, considering the heterogeneous multi-agent system (1)–(3),
leader-following output consensus is achieved within each cluster under the following conditions:

(1) Given appropriate scalars ε1k > 0, ε2k > 0, γ2 > 0, µk > 0, and d > 0, the following
inequality holds: {

γ1µ0 −R(σmax(S)) > 0,

γ2µk −R(σmax(S)) > 0.
(21)

(2) Given Ai + BiK1i and Ai + FiCi are Hurwitz matrices, let K2i(t) = Ui(t)− K1iΠi(t)
with the solution (Ui(t), Πi(t)).

Proof: See Appendix B.

Remark 5. Because the states of heterogeneous agents cannot be obtained, an observer approach
is utilized to estimate the state information under output feedback. In contrast to [19,20] with
continuous communication, an adaptive distributed intermittent control strategy is proposed to
estimate the output information and S of exogenous leaders. Although the proposed strategy is
challenging, it is more realistic.

Remark 6. In [41], it is assumed that the exogenous signal is bounded. To relax this constraint, As-
sumption 3 is applied in this study. Additionally, this assumption is necessary regarding the intermittent
control scheme. To exponentially stabilize the switched error system (15), γ1µ0 −R(σmax(S)) > 0 is
derived, which implies that Ŝ(t)Φ(t) exponentially decays to zero.

4. Numerical Examples

In this section, a simulation example is provided to demonstrate the effectiveness of the
developed hybrid control methods for output containment. To simplify the description, we
consider a complex network with four followers, two internal leaders, and two reference
leaders. The intermittent communication network with the followers i(i = 1, · · · , 4),
internal leaders l1, l2, and exogenous leaders l3, l4 is shown in Figure 3.

Figure 3. Heterogeneous intermittent communication network.
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The dynamics of the system (1) with four heterogeneous followers are as follows:

A1 =

−1 1 0
0 0 1
0 −1 0.5

, B1 =

0 0
0 0
1 0.2

, C1 =
[
0 0 1

]
.

A2 =

−1 1 0
0 0 1.5
0 −1 2

, B2 =

0 0
0 0
1 2

, C2 =
[
0 0 1

]
.

A3 =

[
0 1
−2 −0.8

]
, B3 =

[
0
1

]
, C3 =

[
0 1

]
.

A4 =

[
0 1
−1.5 −1

]
, B4 =

[
0

1.2

]
, C4 =

[
0 1

]
.

Moreover, the system matrices of leaders are given as follows:

S =

[
0 1
−1 0

]
, D =

[
1 0

]
.

Example 1. Based on Assumption 2, to illustrate the validity of Theorem 1, K2i(t) can be obtained
using the adaptive regulator equations. Moreover, K1i and K∗2i are given as follows:

K11 =

[
−0.0410 −0.7243 −2.6574
−0.0082 −0.1449 −0.5315

]
, K∗21 =

[
2.6369 −0.7448
−1.9726 −0.1490

]
.

K12 =

[
−0.0350 −0.5246 −1.6757
−0.0700 −1.0493 −3.3514

]
, K∗22 =

[
1.6582 −0.5421
2.3164 −1.0843

]
.

K13 =
[
0.0004 0.0013

]
, K∗23 =

[
0.7987 −0.9996

]
.

K14 =
[
0.0039 0.0104

]
, K∗24 =

[
0.8229 −0.4127

]
.

The gain matrices Fi of the developed observers are given as follows:

F1 =

−0.8346
−0.3165
1.3837

, F2 =

−0.6589
−0.2983
3.4072

, F3 =

[
0.0035
0.0128

]
, F4 =

[
0.0043
0.0114

]
.

We set parameters d = 1, α = 0.2, and β = 0.3, and choose the matrix P > 0 as

P =

[
1.1576 −0.1373
−0.1373 1.1301

]
.

From (A19), we set the aperiodic intermittent rate as $1
$2−$1

= β
σ ≥

3
2 . Under Assump-

tion 5, two time intervals are described as τm = 0.6 + 0.1 sin(t) and Tm+1 − Tm − τm =
0.4− 0.1 sin(t). To simplify the analysis, we choose the initial states xi(0), zi(0), and xlr (0)
within the interval [−1, 1]. For ease of expression, the aperiodic intermittent control inputs
of the internal leaders are expressed as follows:

ulk (t) = d( ∑
v∈LM

alk lv(xlv(t)− xlk (t)) + ∑
r∈LM0

ωlk l0
r
(xl0

r
(t)− xlk (t))), t ∈ [Tm, Tm + τm]

ulk (t) = 0, t ∈ (Tm + τm, Tm+1)

The characteristic of aperiodic intermittent control input is intuitively reflected in
Figures 4 and 5, from which the control input converges to zero based on the developed
distributed aperiodic intermittent control approach. That is, the designed intermittent rates
under Assumption 5 are effective for aperiodic intermittent control. The state trajectories
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xlk (t) are displayed in Figure 6, from which xl1(t) and xl2(t) enter the desired set spanned
by leaders xl3(t) and xl4(t). That is, containment tracking is realized by the proposed
adaptive distributed aperiodic intermittent control strategy.
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Figure 4. Intermittent control inputs ulk1(t) of the internal leaders.
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Figure 5. Intermittent control inputs ulk2(t) of the internal leaders.
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Figure 6. State trajectories xlk
(t) of all leaders.

The effectiveness of Theorem 2 can also be demonstrated in the following example.
We set x̂i(0) within the interval [−1, 1]. By designing an observer-based controller for
each heterogeneous agent, Figures 7 and 8 show the state trajectories of errors ψ(t) =
xi(t)− x̂i(t) (i = 1, 2, 3, 4), from which the proposed observer can successfully estimate
and utilize the output information of heterogeneous agents. By defining output errors
eilk = yi − ylk (i ∈ Gk) within each cluster, the evolution of the tracking errors of the
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followers and the leader within each cluster are shown in Figures 9 and 10. The simulation
results show that the follower i can track the leader lk(i ∈ Gk).
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Figure 7. Observer error trajectories ψi(t).
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Figure 8. Observer error trajectories ψi(t).
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Figure 9. Output trajectories eil1 (t) within the cluster G1.

In order to make a comparison, we considered the two control strategies in this paper
and the reference [26], where four followers, two internal leaders and one exogenous
leader were considered in the clustered network. Under the distributed hybrid control
strategy proposed in [26], the output trajectories of all agents were shown in Figure 11,
which indicated that all followers can track the output trajectory of the exogenous leader.
When an output containment control problem is considered for the multi-agent system
in [26], by using the distributed adaptive control strategy proposed in this paper, set
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g = 1, · · · , N, l1, · · · , lM+M0 , Figure 12 shows that the output trajectories of the four
heterogeneous followers enter the desired set spanned by two leaders on output. The
abovementioned simulation results demonstrate the effectiveness of the developed hybrid
control method.
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Figure 10. Output trajectories eil2 (t) within the cluster G2.

Figure 11. Output trajectories of all agents.

Figure 12. Output trajectories yg(t) of all agents.

5. Conclusions

In this study, a heterogeneous clustered network framework with multiple leaders
was developed with applications in wide-area scenarios and complex tasks. We investi-
gated the intermittent output containment problem of heterogeneous multi-agent systems.
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Considering that followers may not know the system matrix S of the reference leader,
we designed an adaptive distributed intermittent controller to estimate the matrix S of
the leaders. The solution of the regulator equations was obtained using the developed
adaptive control algorithm. By introducing the average dwell-time conditions, we applied a
common Lyapunov-based function to prove that the developed switched-error system can
be exponentially stabilized under aperiodic intermittent control. Linear matrix inequalities
were used to compute the controllers, intermittent rates, and other parameters. Simula-
tion examples were presented to verify the effectiveness of the proposed hybrid control
strategy. In the future, we will further consider a finite-time containment tracking problem
for wide-area networks with cyber-attack and optimal containment control of practical
networked systems.
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Appendix A

Proof of Theorem 1. According to Lemmas 1 and 2, there exists a diagonal matrix Ξ̄ > 0
and scalar ρ̄ > 0, such that Ξ̄H̄ + H̄TΞ̄ ≥ ρ̄Ξ̄. From (14), we can construct an appropriate
Lyapunov function as follows:

V(φ(t)) = φT(t)(Ξ̄⊗ P)φ(t), (A1)

where P > 0 is the solution of (20).
Based on the aperiodic intermittent control, the switched error system (14) can be

exponentially stabilized, as shown below.
For t ∈ [Tm, Tm + τm], the time derivative of (A1) along the trajectory of system (14) is

given as

V̇(φ(t)) =2φT(t)(Ξ̄⊗ P)φ̇(t)

=φT(t)(Ξ̄⊗ (PS+ST P)−d(Ξ̄H̄+H̄TΞ̄)⊗ P)φ(t)+2φT(t)(Ξ̄⊗ P)(Ŝ(t)φ(t)

+ Ŝ(t)Φ(t))

≤φT(t)(Ξ̄⊗ (PS + ST P−dρ̄P))φ(t)+2φT(t)(Ξ̄⊗ P)(Ŝ(t)φ(t)+Ŝ(t)Φ(t)). (A2)

From (16), this implies that ‖Ŝ(t)‖ ≤ ‖Ŝ(0)‖e−γ1µ0t ≤ ‖Ŝ(0)‖. By denoting
ν0 = ‖Ŝ(0)‖ > 0, it implies that 2φT(t)(Ξ̄⊗ P)Ŝ(t)φ(t) ≤ 2ν0φT(t)(Ξ̄⊗ P)φ(t). From (A2), it
can be deduced that 2φT(t)(Ξ̄⊗ P)Ŝ(t)Φ(t) ≤ θφT(t)(Ξ̄⊗ P)φ(t) + 1

θ ‖Ξ̄⊗ P‖‖Ŝ(0)Φ(0)‖2
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e−(2γ1µ0−2R(σmax(S)))t with θ > 0 and 2γ1µ0 − 2R(σmax(S)) > 0. Moreover, letting
µ = 1

θ ‖Ξ̄⊗ P‖‖Ŝ(0)Φ(0)‖2 > 0 and σ = 2γ1µ0 − 2R(σmax(S)) > 0, we have

V̇(φ(t)) ≤−φT(t)(Ξ̄⊗Q)φ(t)+φT(t)(Ξ̄⊗ (PS+ST P+θP+2ν0P+Q−dρ̄P))φ(t)+µe−σt

≤ −φT(t)(Ξ̄⊗Q)φ(t) + µe−σt. (A3)

From (A3), by denoting α = λmin(Q)
λmax(P) , it implies that V̇(φ(t)) < −αφT(t)(Ξ̄⊗ P)φ(t) +

µe−σt, from which we can deduce that V(φ(t)) ≤ V(φ(T0))e−αt + µ(T0)
∫ t

0 e−α(t−τ)e−στdτ.
Letting α > σ, we obtain

V(φ(t)) ≤
(

V(φ(Tm))−
µ(Tm)

α− σ

)
e−α(t−Tm) +

µ(Tm)

α− σ
e−σ(t−Tm). t ∈ [Tm, Tm + τm] (A4)

Similarly, for t ∈ (Tm + τm, Tm+1), it follows from (A1)–(A4) that

V̇(φ(t)) =2φT(t)(Ξ̄⊗ P)φ̇(t)

=φT(t)(Ξ̄⊗ βP)φ(t)+φT(t)(Ξ̄⊗ (PS+ST P−βP))φ(t)+2φT(t)(Ξ̄⊗ P)(Ŝ(t)φ(t)

+ Ŝ(t)Φ(t))

≤βφT(t)(Ξ̄⊗ P)φ(t) + µe−σt, (A5)

where β > 0. From (A5), this implies that V(φ(t)) ≤ V(φ(T0))eβt + µ(T0)
∫ t

0 eβ(t−τ)e−στdτ,
that is,

V(φ(t)) ≤
(

V(φ(T0)) +
µ(T0)

σ + β

)
eβt − µ(T0)

σ + β
e−σt. (A6)

Furthermore, it holds that

V(φ(t)) ≤
(

V(φ(Tm + τm)) +
µ(Tm + τm)

σ + β

)
eβ(t−Tm−τm)

− µ(Tm + τm)

σ + β
e−σ(t−Tm−τm). t ∈ (Tm + τm, Tm+1) (A7)

However, using the developed aperiodic intermittent control approach, the stability of
the switched error system (14) must be proven exponentially.

From (A4) and (A7), a form of exponential inequalities is obtained for t ∈ [Tm, Tm+1).
Thus, the following derivation process is implemented according to intermittent intervals.

Letting ε = µ
α−σ = µ

σ+β , it follows from (A4) that

V(φ(t)) ≤ (V(φ(T0))− ε(T0))e−α(t−T0) + ε(T0)e−σ(t−T0)

≤ V(φ(T0))e−α(t−T0) + ε(T0)e−σ(t−T0)

≤ V(φ(T0)) + ε(T0). t ∈ [T0, T0 + τ0] (A8)

From (A4) and (A7), we obtain

V(φ(t)) ≤(V(φ(T0 + τ0)) + ε(T0 + τ0))eβ(t−T0−τ0) − ε(T0 + τ0)e−σ(t−T0−τ0)

≤(V(φ(T0))e−ατ0 + ε(T0)e−στ0)eβ(t−T0−τ0) + ε(T0)e−στ0+β(t−T0−τ0)

≤V(φ(T0))e−(α+β)τ0+β(T1−T0) + 2ε(T0)e−(σ+β)τ0+β(T1−T0). t ∈ (T0 + τ0, T1) (A9)
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Similar to (A9), we have

V(φ(t)) ≤(V(φ(T1))− ε(T1))e−α(t−T1) + ε(T1)e−σ(t−T1)

≤V(φ(T0))e−(α+β)τ0−αt+β(T1−T0) + 2ε(T0)e−(σ+β)τ0−αt+β(T1−T0)

+ ε(T0)e−σ(t−T0)

≤V(φ(T0))e−(α+β)τ0+β(T1−T0) + 2ε(T0)e−(σ+β)τ0+β(T1−T0)

+ ε(T0)e−σ(T1−T0). t ∈ [T1, T1 + τ1] (A10)

Similarly, from (A9) and (A10), we obtain

V(φ(t)) ≤V(φ(T0))e−(α+β)(τ0+τ1)+β(t−T0) + 2ε(T0)e−(σ+β)τ0−(α+β)τ1+β(T2−T0)

+ 2ε(T0)e−σ(T1+τ1−T0)+β(t−T1−τ1)

≤V(φ(T0))e−(α+β)(τ0+τ1)+β(T2−T0) + 2ε(T0)e−(σ+β)τ0−(α+β)τ1+β(T2−T0)

+ 2ε(T0)e−σ(T1+τ1−T0)+β(T2−T1−τ1). t ∈ (T1 + τ1, T2) (A11)

From (A10) and (A11), we define V(φ(t)) = V̂(φ(t)) + Ψ(t). Then, according to
intermittent intervals, the following derivation processes are derived for V̂(φ(t)) and Ψ(t).

V̂(φ(t)), is analyzed as follows.
When t ∈ [Tm, Tm + τm], it implies that

V̂(φ(t)) ≤ V̂(φ(Tm))e−α(t−Tm)

≤ V̂(φ(T0))e−α ∑m−1
s=0 τs−α(t−Tm)+β ∑m

s=1(Ts−Ts−1−τs−1)

≤ V̂(φ(T0))e−α ∑m−1
s=0 τs+β ∑m

s=1(Ts−Ts−1−τs−1). m ≥ 1 (A12)

Similarly, when t ∈ (Tm + τm, Tm+1), we obtain

V̂(φ(t)) ≤ V̂(φ(Tm + τm))eβ(t−Tm−τm)

≤ V̂(φ(T0))e−α ∑m
s=0 τs+β ∑m

s=1(Ts−Ts−1−τs−1)+β(t−Tm−τm)

≤ V̂(φ(T0))e−α ∑m
s=0 τs+β ∑m+1

s=1 (Ts−Ts−1−τs−1). m ≥ 1 (A13)

Under Assumption 5, for m ≥ m∗, we can conclude that −α ∑m−1
s=0 τs + β ∑m

s=1(Ts −
Ts−1 − τs−1) < 0 if α$1 > β($2 − $1). Moreover, $1m ≤ ∑m−1

s=0 τs and Tm−T0
$2
≤ m can be

derived. Thus, using (A12), we obtain

V̂(φ(t)) ≤ V̂(φ(T0))e−α ∑m−1
s=0 τs+β ∑m

s=1(Ts−Ts−1−τs−1)

≤ V̂(φ(T0))e−(α+β)∑m−1
s=0 τs+β(Tm−T0)

≤ V̂(φ(T0))e
− (α+β)$1(Tm−T0)

$2
+β(Tm−T0). m ≥ m∗ (A14)

Similarly, from (A13), we obtain

V̂(φ(t)) ≤ V̂(φ(T0))e−α ∑m
s=0 τs+β ∑m+1

s=1 (Ts−Ts−1−τs−1)

≤ V̂(φ(T0))e−(α+β)∑m
s=0 τs+β(Tm+1−T0)

≤ V̂(φ(T0))e
− (α+β)$1(Tm+1−T0)

$2
+β(Tm+1−T0). m ≥ m∗ (A15)
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Next, similar derivations are obtained for Ψ(t). Because ε(T0) > 0, σ > 0, and α > σ,
it can be deduced that ε(T0)e−σ(T1−T0) ≤ 2ε(T0)e−σ(T1−T0) and 2ε(T0)e−(σ+β)τ0−(α+β)τ1 ≤
2ε(T0)e−(σ+β)(τ0+τ1). Thus, from (A10), it implies that

Ψ(t) ≤2ε(T0)e−σ ∑m−1
s=0 τs+β ∑m

s=1(Ts−Ts−1−τs−1)(
1 + e−(σ+β)(T1−T0−τ0) + · · ·+ e−(σ+β)∑m

s=1(Ts−Ts−τs)
)

. t ∈ [Tm, Tm + τm] (A16)

Similarly, from (A11), we obtain

Ψ(t) ≤2ε(T0)e−σ ∑m
s=0 τs+β ∑m+1

s=1 (Ts−Ts−1−τs−1)(
1 + e−(σ+β)(T1−T0−τ0) + · · ·+ e−(σ+β)∑m

s=1(Ts−Ts−τs)
)

. t ∈ (Tm + τm, Tm+1) (A17)

The condition σ$1 > β($2− $1) implies that−σ ∑m−1
s=0 τs + β ∑m

s=1(Ts− Ts−1− τs−1) < 0.
Under Assumption 5, using (A16) and (A17), we deduce

Ψ(t) ≤2ε(T0)e−σ ∑m−1
s=0 τs+β ∑m

s=1(Ts−Ts−1−τs−1)(
1 + e−(σ+β)(T1−T0−τ0) + · · ·+ e−(σ+β)∑m

s=1(Ts−Ts−τs)
)

≤2ε(T0)e−σ ∑m−1
s=0 τs+β ∑m

s=1(Ts−Ts−1−τs−1)(
1 + e−(σ+β)h + · · ·+ e−(σ+β)∑m

s=1 h
)

≤2ε(T0)e
− (σ+β)$1(Tm−T0)

$2
+β(Tm−T0)

(
1− e−mh(σ+β)

1− e−(σ+β)

)
. (A18)

Combining (A14), (A15), and (A18), it follows from (A10) and (A11) that for m ≥ m∗

V(φ(t)) ≤V(φ(T0))e
(− (α+β)$1

$2
+β)(Tm−T0)

+ 2ε(T0)e
(− (σ+β)$1

$2
+β)(Tm−T0)

(
1− e−mh(σ+β)

1− e−(σ+β)

)
, t ∈ [Tm, Tm+1) (A19)

where − (α+β)$1
$2

+ β < 0 and − (σ+β)$1
$2

+ β < 0 are inferred according to Assumption

5. Let T0 = 0, e(−
(α+β)$1

$2
+β)Tm → 0 and e(−

(σ+β)$1
$2

+β)Tm → 0 are obtained as Tm → ∞.
Meanwhile, as Tm → ∞, mh approaches ∞, which implies that e−mh(σ+β) → 0. From (A19),

V(φ(t)) ≤ V(φ(0))e(−
(α+β)$1

$2
+β)t

+ 2ε(0)
1−e−(σ+β) e(−

(σ+β)$1
$2

+β)t with m > m∗, which implies that
lim
t→∞

V(φ(t)) = 0 and lim
t→∞

φ(t) = 0. Then, we say that the developed switched error

system (14) is stabilized, which means that the proposed distributed aperiodic intermittent
controller (6) can achieve containment tracking.

Considering ḠL, we denote the local output error for the lkth leader as

êlk (t) = ∑
v∈LM

alk lv(ylv(t)− ylk (t)) + ∑
r∈LM0

ωlk l0
r
(yl0

r
(t)− ylk (t)). (A20)

We define ey(t) = [êT
l1
(t), êT

l2
(t), · · · , êT

lM
(t)]T ∈ RMp, y(t) = [yT

l1
(t), yT

l2
(t), · · · , yT

lM
(t)]T

∈ RMp, and ȳr(t) = 1M ⊗ yl0
r
(t). Subsequently, we can rewrite the error ey(t) as ey(t) =

−∑r∈LM0
(Hr ⊗ Ip)(y(t)− ȳr(t)), which can be translated as follows:

ê(t) = y(t)−

 ∑
r̄∈LM0

(Hr̄ ⊗ Ip)

−1

∑
r∈LM0

(Hr ⊗ Ip)ȳr(t), (A21)
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where ey = −∑r∈LM0
ê(t).

From (A21), as t→ ∞ and error ê(t) approaches zero, we obtain

y(t) =

 ∑
r̄∈LM0

(Hr̄ ⊗ Ip)

−1

∑
r∈LM0

(Hr ⊗ Ip)ȳr(t)

= ∑
r∈LM0



 ∑

r̄∈LM0

Hr̄

−1

⊗ Ip

(Hr ⊗ Ip)(1M ⊗ yl0
r
(t))


= ∑

r∈LM0



 ∑

r̄∈LM0

Hr̄

−1

Hr1M

⊗ yl0
r
(t)

, (A22)

where Hr and
(

∑r∈LM0
Hr

)−1
are non-negative according to Lemma 1. This implies that((

∑r̄∈LM0
Hr̄

)−1
Hr1M

)
≥ 0. Moreover, because

∑
r∈LM0


 ∑

r̄∈LM0

Hr̄

−1

Hr1M

 =

 ∑
r̄∈LM0

Hr̄

−1 ∑
r∈LM0

Hr1M



=

 ∑
r̄∈LM0

Hr̄

−1 ∑
r∈LM0

Hr

1M

= 1M, (A23)

the sum of each row of ∑r∈LM0

((
∑r̄∈LM0

Hr̄

)−1
Hr1M

)
is 1. Furthermore, because lim

t→∞
ê(t)

= D lim
t→∞

φ(t) = 0, we conclude that lim
t→∞

(
y(t)−∑r∈LM0

((
∑r̄∈LM0

Hr̄

)−1
Hr1M

)
⊗ yl0r

(t)
)

= 0. Furthermore, we define αr = [αT
1r, αT

2r, · · · , αT
Mr]

T. Thus, ∑r∈LM0

((
∑r̄∈LM0

Hr̄

)−1
Hr1M

)
= ∑r∈LM0

αr⊗ yl0
r
(t), whose rows are denoted as ylk (t)−∑r∈LM0

αkryl0
r
(t). From (A23), this

implies that ∑r∈LM0
αr = 1M, under which lim

t→∞

(
ylk (t)−∑r∈LM0

αkryl0
r
(t)
)
= 0. According

to Definitions 1 and 2, M internal leaders can be guided into the convex set formed by M0
leaders on output; that is, output containment is achieved for the leaders.

Appendix B

Proof of Theorem 2. First, we must prove that ek(t) is exponentially stable. From (3), we
obtain ‖xk(t)‖ ≤ ‖xk(0)‖eR(σmax(S))t. Using Lemma 3, it follows from (3) and (15) that

‖Sk(t)xk(t)‖≤‖Sk(0)−
Λk

γ2µk−γ1µ0
‖e(−γ2µk+R(σmax(S)))t+

‖Λk‖
γ2µk − γ1µ0

e(−γ1µ0+R(σmax(S)))t, (A24)

which implies that lim
t→∞

Sk(t)xk(t) = 0 considering (17). Following Theorem 1, lim
t→∞

ŜeL(t)

= 0 is obtained, which implies that lim
t→∞

H̄keL(t) = 0. Furthermore, using Lemma 3, it

implies that Ŝk(t) is bounded and lim
t→∞

Sk(t) = 0, which further implies that lim
t→∞

(Sk(t)−
Ŝk(t)) < 0. Thus, we confirm that (15) is stable, which means that the proposed distributed
hybrid controller can achieve consensus tracking within each cluster.

Next, output consensus tracking within each cluster Gk must be realized based on the
intermittent control and adaptive algorithm.
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By introducing the adaptive algorithm, it follows from (8) that

ui(t) = K1i x̂i(t) + K2i(t)zi(t), i ∈ Gk (A25)

where K2i(t) = Ui(t)− K1iΠi(t). From (7) and (8), by denoting ψi(t) = xi(t)− x̂i(t), we
obtain ψ̇(t) = Ai + FiCi, implying that lim

t→∞
ψ(t) = 0 by choosing appropriate Fi, which

satisfies that Ai + FiCi is a Hurwitz matrix.
Furthermore, we define x̄i(t) = xi(t)−Π∗i xlk (t). By applying the intermittent con-

trol mechanism, the dynamics of ϕ(t) can be derived according to the general aperiodic
intermittent intervals.

For t ∈ [Tm, Tm + τm], using (3), (7), and (8), we obtain

˙̄xi(t) =ẋi(t)−Π∗i ẋlk (t)

=Aixi(t) + Bi(K1ixi(t) + K2i(t)zi(t)) + BiK1i(x̂i(t)− xi(t))−Π∗i Sxlk (t)

−Π∗i (Slk (t)− S)xlk (t) + Πid(H̄k ⊗ In0)φ(t). (A26)

From (4), letting K2i = U∗i − K1iΠ∗i , we obtain

˙̄xlk (t) =(Ai + BiK1i)xi(t) + (BiUi(t)− BiK1iΠi(t))zi(t)− (AiΠ∗i + BiU∗i )xlk (t)

−Π∗i (Slk (t)− S)xlk (t) + BiK1i(x̂i(t)− xi(t)) + Π∗i d(H̄k ⊗ In0)φ(t)

=(Ai + BiK1i)x̄i(t) + BiK1i(Π∗i −Πi(t))zi(t) + Bi(Ui(t)−U∗i )zi(t)

+ BiK∗2i(zi(t)− xlk (t))−Π∗i (Slk (t)− S)xlk (t) + BiK1i(x̂i(t)− xi(t))

+ Π∗i d(H̄k ⊗ In0)φ(t). (A27)

Similarly, when t ∈ (tc + τc, tc+1), we obtain

˙̄xi(t) =(Ai + BiK1i)x̄i(t) + BiK1i(Π∗i −Πi(t))zi(t) + Bi(Ui(t)−U∗i )zi(t)

+ BiK∗2i(zi(t)− xlk (t))−Π∗i (Slk (t)− S)xlk (t) + BiK1i(x̂i(t)− xi(t)). (A28)

From (A19) and (A24), it implies that lim
t→∞

φ(t) = 0 and lim
t→∞

ek(t) = 0, which further

implies that lim
t→∞

(zi(t) − xlk (t)) = 0. Using Lemma 3, we obtain lim
t→∞

(Slk (t) − S) = 0.

Then, lim
t→∞

(Ui(t)−U∗i ) = 0 and lim
t→∞

(Π∗i −Πi(t)) = 0 are obtained using Lemma 4. From

(A26)–(A28), we conclude that lim
t→∞

x̄i(t) = 0 if Ai + BiK1i is a Hurwitz matrix. Thus, as

t→ ∞, the output error is denoted as follows:

lim
t→∞

(yi(t)− ylk (t)) = lim
t→∞

(Ci x̄i(t)) = 0. (A29)

Thus, output consensus is achieved within each cluster Gk. From (A19) and (A29), we
obtain lim

t→∞
dist(ylk (t)−Co(Y(t))) = 0 and lim

t→∞
(yi(t)− ylk (t)) = 0. Furthermore, following

Definition 2, we infer that

lim
t→∞

(y`(t)− Co(Y(t))) = 0 (` = 1, · · · , N, l1, · · · , lM). (A30)

Consequently, leader-following output containment is achieved for the developed
clustered network.
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