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Abstract: Batch process monitoring datasets usually contain missing data, which decreases the
performance of data-driven modeling for fault identification and optimal control. Many methods
have been proposed to impute missing data; however, they do not fulfill the need for data quality,
especially in sensor datasets with different types of missing data. We propose a hybrid missing
data imputation method for batch process monitoring datasets with multi-type missing data. In
this method, the missing data is first classified into five categories based on the continuous missing
duration and the number of variables missing simultaneously. Then, different categories of missing
data are step-by-step imputed considering their unique characteristics. A combination of three
single-dimensional interpolation models is employed to impute transient isolated missing values.
An iterative imputation based on a multivariate regression model is designed for imputing long-
term missing variables, and a combination model based on single-dimensional interpolation and
multivariate regression is proposed for imputing short-term missing variables. The Long Short-Term
Memory (LSTM) model is utilized to impute both short-term and long-term missing samples. Finally,
a series of experiments for different categories of missing data were conducted based on a real-world
batch process monitoring dataset. The results demonstrate that the proposed method achieves higher
imputation accuracy than other comparative methods.

Keywords: batch process; data quality; missing data imputation; LSTM neural network

1. Introduction

The batch process is an important production mode in the modern manufacturing
industry. As a highly flexible production method, the batch process is essential in producing
low-volume, high-value-added products, such as chemical and biological materials [1,2].
With the rapid development of the Internet of Things and sensing technology [3], the
monitoring data of batch processes is being recorded more frequently. However, batch
process monitoring data often contains missing values due to factors such as external
environmental conditions, link failures, and sensor equipment degradation. This results in
incomplete and unreliable batch process monitoring data, which poses a significant obstacle
to the subsequent utilization of the data [4]. Especially, missing data will decrease the
performance of data-driven modeling for fault identification and optimal control in batch
processes. Therefore, it is significant to study how to deal with missing data to enhance the
quality of batch process monitoring data.

There are mainly two categories of methods to handle missing data: deletion and
imputation [5,6]. The deletion method may not only lose valuable information within
the data but also destroy the continuity of the time series, leading to inaccurate results in
subsequent data analysis. The imputation method involves replacing missing values with
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predicted values [7], which is more suitable for improving data quality. However, there are
few studies that focus on missing data imputation for batch process monitoring datasets.
Nomikos et al. [8] employed the mean method for imputing missing values. Laila et al. [9]
and Meng et al. [10] introduced a methodology where the unknown observations are
calculated using a weighted combination of scores from the current time point in the new
batch and previously computed scores from a calibration dataset. Shi et al. [11] established
a linear regression model that uses several historical values adjacent to the current time to
predict the missing values. Further research is needed, as the imputation results of these
methods have shown limited effectiveness.

Due to the characteristics of batch processes, such as multiple operating conditions,
multiple batches, and multiple stages, missing data in batch process monitoring datasets
usually presents a complex situation, making it challenging to perform accurate imputation.
Furthermore, batch process monitoring datasets contain different types of missing data and
directly applying an existing single method cannot achieve favorable imputation results.
Consequently, how to combine or improve appropriate imputation models to effectively
impute missing data within batch process monitoring datasets is still a significant problem
to be solved.

In this paper, we propose a hybrid missing data imputation method for batch process
monitoring datasets based on single-dimensional interpolation, a multivariate regression
model, and LSTM. The main contributions are as follows:

• We propose a missing data classification method based on the continuous missing
duration for each variable and the number of variables missing simultaneously. Then
we classify the missing data into five distinct categories: transient isolated missing
values, short-term missing variables, long-term missing variables, short-term missing
samples, and long-term missing samples.

• We design and implement the hybrid missing data imputation method to deal with
different categories of missing data step by step, taking into account the characteristics
of different categories of missing data. This method employs a combination of three
single-dimensional interpolation models that enables the automated detection and
imputation of transient isolated missing values. We design an iterative imputation
based on a multivariate regression model to automatically complete the imputation of
all long-term missing variables. To address short-term missing variables, we propose
a combination model based on single-dimensional interpolation and multivariate
regression by utilizing system fluctuations. We use the LSTM model to impute both
short-term and long-term missing samples.

• We have carried out extensive experiments on a real-world injection molding process
monitoring dataset to demonstrate the effectiveness and accuracy of the proposed
hybrid missing data imputation method.

The remainder of this paper is structured as follows. Section 2 presents the related
works. Section 3 describes the hybrid missing data imputation method designed. Section 4
verifies the validity of the proposed method by taking a real-world injection molding
process monitoring dataset as an example. Section 5 presents the conclusions.

2. Related Works

Many imputation techniques have been proposed for different domain-specific
datasets [12], primarily involving two categories: statistical and machine learning-based
techniques [13,14].

Statistical imputation techniques rely on statistical models to predict missing values.
Simple imputation handles missing values by using methods such as the mode, mean,
or median of the available values [15]. Hot-deck imputation handles missing values by
replacing them with similar object values [16]. Interpolation methods, which mainly in-
clude nearest neighbor interpolation, linear interpolation, and spline interpolation, estimate
missing values by establishing interpolation functions [17]. These techniques perform im-
putation based on temporal continuity and are effective in the case of a handful of missing
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values. Regression imputation involves estimating relationships among variables using
regression modeling [18], which typically includes Linear Regression (LR) and Multivariate
Linear Regression (MLR). This approach can effectively utilize the correlations between
time series data for imputation. Matrix-based methods recover missing data by treating
an entire set of series as a matrix and applying techniques based on matrix completion
principles [19]. These techniques leverage temporal continuity for imputation and mainly
include Singular Value Decomposition (SVD), Principal Component Analysis (PCA), Matrix
Factorization (MF), and Centroid Decomposition (CD)-based methods. PCA-based meth-
ods, SPIRIT [20] and ROSL [21], are effective for datasets with a limited number of time
series or short time series. SVD-based SoftImpute [22] and MF-based TRMF [23] require
data to contain repeating trends, while CD-based CDRec [24] is only effective for correlated
time series. Pattern-based methods utilize pattern-matching techniques for imputation
by leveraging trend similarity. For instance, STMVL [25] derives statistical models from
historical data and requires highly correlated time series. DynaMMo [26] employs Kalman
filters and Expectation-Maximization (EM) for imputation and is adaptable to datasets with
irregular fluctuations.

Machine learning techniques are widely used in various practical application fields,
such as air pollution monitoring [27], industrial process monitoring [2], dam safety moni-
toring [28,29], medical data processing [30], and stock price prediction [31]. To address the
challenges posed by missing data, several machine learning-based methods have gained
significant popularity [12]. The K Nearest Neighbor (KNN) algorithm [32] works by classi-
fying the nearest neighbors of missing values and using those neighbors for imputation
through a distance measure between instances. The Random Forest (RF) algorithm [33,34]
constructs multiple decision trees based on the bootstrapping procedure and gives the final
predictions by the averaged values or majority votes of each tree’s prediction. The K-means
clustering algorithm [35] consists of 2 steps, where the first step gets clusters using K-means
clustering, and then the second step handles missing values using cluster information.
These methods utilize the correlation between time series but do not consider the continuity
in the time dimension. And more advanced neural networks have also been applied to deal
with missing values in time series data. The Extreme Learning Machine (ELM) [36] is an
efficient machine learning model based on a single-layer feedforward neural network and
is suitable for multi-dimensional time series with multiple features. Long Short-Term Mem-
ory (LSTM) [37], which is an improved form of Recurrent Neural Networks (RNNs) [38],
can effectively learn long-term dependencies for predicting multi-dimensional time series.

In summary, although several imputation methods have been proposed, most of them
are typically designed to estimate a specific type of missing data. And these methods
often excel only when handling datasets with specific data characteristics. In practical
domains, such as batch process monitoring datasets, missing data usually presents a
complex situation. These datasets contain different types of missing data, and different
types of missing data exhibit distinct characteristics. Applying a single imputation method
directly may not be effective. Therefore, further research is still needed on how to conduct
classification analysis of missing data and design a hybrid method by employing suitable
imputation techniques tailored to the characteristics of different types of missing data.

3. Methodology
3.1. Data Processing
3.1.1. Data Unfolding

For a typical batch process, the monitoring data is stored in a three-dimensional
matrix, XORG(I × J × T), where I represents the number of batches, J represents the num-
ber of process variables, and T represents the number of sampling moments in a batch.
Since subsequent research on missing data imputation involves analyzing and processing
missing variables at different sampling moments, it is necessary to unfold the original
three-dimensional data along the batch dimension to obtain two-dimensional data, that is,
Xi(J × T) of i(i = 1, . . . , I) batches. As shown in Figure 1, I matrix slices are obtained by
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unfolding the original three-dimensional data along the batch dimension. Each matrix slice
represents a set of values for variable j(j = 1, . . . , J) at sampling moments t(t = 1, . . . , T).
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3.1.2. Missing Data Classifying

The assumption in this paper is to impute missing data based on dataset denoising.
The missing data can arise from data acquisition as well as from data denoising. Regarding
the missing data caused by data acquisition, the causes of missing data in batch process
monitoring can be summarized into the following three cases: (1) Production equipment
outage, acquisition system failures, or data link failures lead to long or short periods of
continuous missing for many variables; (2) Acquisition equipment failures lead to long
or short periods of continuous missing for a few variables; (3) The instability or aging of
acquisition equipment leads to isolated missing values for a few variables.

Based on the cause analysis of missing data, the classification rules for missing data
are defined, as shown in Table 1. ∆t represents the continuous missing duration of a
variable, nv represents the number of variables missing simultaneously during this period.
T0 represents the data sampling interval, Tht1 represents the time threshold at which the
data trend does not change, Tht2 represents the time threshold at which the data trend can
be predicted. Tht1 and Tht2 are set according to the specific situation of different variables
and the practical requirements for data analysis. Variable threshold Thv represents the
critical value for the number of variables missing simultaneously in a certain period (longer
than Tht1), and Thv is set to bn/2c, where n represents the number of variables in batch
process monitoring dataset.

Table 1. Classification rules for missing data in batch process monitoring dataset.

Missing Data Categories Classification Rules

Transient isolated missing values T0 ≤ ∆t ≤ Tht1
Short-term missing variables Tht1 < ∆t ≤ Tht2 and nv < Thv
Long-term missing variables ∆t > Tht2 and nv < Thv
Short-term missing samples Tht1 < ∆t ≤ Tht2 and nv ≥ Thv
Long-term missing samples ∆t > Tht2 and nv ≥ Thv

By calculating the continuous missing duration ∆t for each variable and the corre-
sponding number of variables nv missing simultaneously, and then comparing the calcu-
lated results with the threshold values, the missing data is classified into five categories:
transient isolated missing values, short-term missing variables, long-term missing variables,
short-term missing samples, and long-term missing samples. Short-term and long-term
missing variables are categorized as continuous missing variables, while short-term and
long-term missing samples are categorized as continuous missing samples. Variables with-
out any missing values are referred to as complete variables, while variables with missing
values are referred to as incomplete variables.
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3.2. Missing Data Imputation
3.2.1. Dataset Splitting

Due to the presence of many incomplete variables within the continuous missing
samples, it can be considered that a system outage occurred during this period. The data
segment with continuous missing samples can be seen as a missing data segment. Therefore,
the unfolded dataset needs to be split into several data segments according to the locations
of continuous missing samples and then imputed. Assuming that the dataset X is split
K− 1 times, then the dataset X contains K data segments and K− 1 missing data segments
(data segments with short-term or long-term missing samples):

X =
[
X1, X∗1 , . . . , Xk, X∗k∗ , . . . , XK−1, X∗K−1, XK

]T (1)

where Xk(k = 1, ..., K) represent the k-th data segment, and each data segment Xk con-
tains only transient isolated missing values, short-term or long-term missing variables,
X∗k∗(k

∗ = 1, ..., K− 1) represent the missing data segment between the k-th and (k + 1)-th
data segments.

Variable Missing Proportion (VMP) and Sample Missing Proportion (SMP) are intro-
duced as measures to describe the extent of missing data within each data segment. Taking
data segment Xk ∈ Rmk×n as an example, the sample missing proportion SMPk of Xk and
the variable missing proportion VMPk_j of variable j in Xk are calculated as follows:

SMPk = 1−mint_k/mk
VMPk_j = 1−mint_k_j/mk (2)

where mk is the sample size of Xk, n is the number of variables in Xk, mint_k represents the
sample size without missing values, and mint_k_j represents the number of values that are
not missing in variable j.

3.2.2. Transient Isolated Missing Values Imputation

For transient isolated missing values, the data trend in the time dimension remains
unchanged. The missing values can be estimated using single-dimensional interpolation
models based on temporal continuity. The nearest neighbor interpolation, linear interpola-
tion and cubic spline interpolation are used. Assuming that xi,j (the i-th value of variable j)

in data segment Xk is missing, and
∼
x i,j represents the estimated value of xi,j.

(1) Single-dimensional Interpolation Model
The nearest neighbor interpolation: The interpolation function is established using a

valid value adjacent to xi,j, as shown in Formula (3). The limitation of this method is the

discontinuity at
∼
x i,j.

∼
x i,j = xi−1,j

(
or = xi+1,j

)
(3)

The linear interpolation: The interpolation function is constructed using two valid
value adjacent to xi,j, as shown in Formula (4). While linear interpolation ensures continuity

at
∼
x i,j, it lacks derivability at the endpoints.

∼
x i,j =

1
2
(
xi−1,j + xi+1,j

)
(4)

The cubic spline interpolation: The cubic spline interpolation requires at least four
valid values and constructs the interpolation function using two adjacent values before
xi,j and two adjacent values after xi,j, as shown in Formula (5). The detailed construction
process can be found in reference [39].

∼
x i,j = fspline

(
xi−2,j, xi−1,j, xi+1,j, xi+2,j

)
(5)
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When both values xi,j and xi+1,j are missing simultaneously (Tht1 is set to 2), the
interpolation Formulas (3), (4), and (5) need to be reconstructed, respectively, as shown in
Formulas (6)–(8).

∼
x i,j =

∼
x i+1,j = xi−1,j

(
or = xi+2,j

)
(6){ ∼

x i,j = xi−1,j +
1
3
(
xi+2,j − xi−1,j

)
∼
x i+1,j = xi−1,j +

2
3
(
xi+2,j − xi−1,j

) (7)


∼
x i,j = f (i)spline

(
xi−2,j, xi−1,j, xi+2,j, xi+3,j

)
∼
x i+1,j = f (i+1)

spline
(
xi−2,j, xi−1,j, xi+2,j, xi+3,j

) (8)

where
∼
x i+1,j is the interpolated value of xi+1,j, f (i)spline and f (i+1)

spline, respectively, represent the
cubic spline interpolation functions for xi,j and xi+1,j.

(2) Imputation Process for Transient Isolated Missing Values
To impute the transient isolated missing values xi,j in the data segment Xk, a combina-

tion of the above three interpolation models is employed. Combining these three methods
enables the automated detection and imputation of transient isolated missing values, mak-
ing it an efficient complementary approach. When four adjacent valid values are available,
cubic spline interpolation is utilized for imputation. If the four adjacent values do not
consist of two values before xi,j and two values after xi,j, the cubic spline interpolation
function needs to be adjusted. Taking one value before xi,j and three values after xi,j as an
example, the adjusted cubic spline interpolation function is shown in Formula (9).

∼
x i,j = f (i)spline

(
xi−1,j, xi+1,j, xi+2,j, xi+3,j

)
(9)

When the missing value is located at the endpoint of Xk, meaning that only one side
(either left or right) has an adjacent value, the nearest neighbor interpolation is utilized for
imputation. When two adjacent valid values are available, with one before and one after
xi,j, the linear interpolation is used for imputation.

3.2.3. Continuous Missing Variables Imputation

In the case of a long-term missing variable, significant information in the time dimen-
sion is seriously lost. The missing values of the long-term missing variable can only be
estimated based on the correlation with other complete variables. The multivariate regres-
sion model is suitable for imputing missing values for long-term missing variables. The
model constructs a regression function between the long-term missing variable and other
complete variables based on their correlations. Then, by utilizing the complete variables
as input, the missing values of the long-term missing variable can be predicted. In the
case of a short-term missing variable, the missing values can be estimated by considering
the correlation with other complete variables, together with the data trend in the time
dimension. Therefore, a combination model based on single-dimensional interpolation and
multivariate regression is proposed to impute the missing values of short-term missing
variables by combining the strengths of both models.

(1) Multivariate Regression Model
Three widely used multivariate regression models are chosen for this study: MLR,

RF, and KNN. All three models exhibit robustness and require minimal or no parameters.
Assuming that Xtrain ∈ Rmt×n and Ytrain ∈ Rmt×1 are the input and output of training data,
respectively, and Xtest ∈ Rms×n and Ytest ∈ Rms×1 are the input and output of testing data,
respectively, where mt represents the sample size of the training data, n represents the
number of variables, ms represents the sample size of the testing data.

MLR establishes a linear regression function by considering the correlation between
the incomplete variable and other complete variables. Then, the function is utilized to
predict the missing values. An advantage of the MLR model is its lack of reliance on
hyperparameters. The missing values imputation process using MLR is as follows:
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Step 1: Modeling. Construct the MLR function:

Ytrain = XDθ + ε (10)

where XD is the design matrix for Xtrain and XD = [Itrain, Xtrain], Itrain = [1, ..., 1]T ∈ Rmt×1

is a constant vector, ε = [ε0, ε1, . . . , εm]
T ∈ Rmt×1 is the error vector, θ = [θ0, θ1, ..., θn]

T ∈
R(n+1)×1 is the coefficient vector, θ can be estimated by Formula (11):

∼
θ =

(
XT

DXD

)−1
XT

DYtrain (11)

where
∼
θ is the estimated value of θ, XT

D is the transpose matrix of XD,
(
XT

DXD
)−1 is the

inverse matrix of XT
D and XD.

Step 2: Missing values prediction. Estimate Ytest using Xtest:

Ytest = XP
∼
θ (12)

where XP is the design matrix for Xtest and XP = [Itest, Xtest], Itest = [1, ..., 1]T ∈ Rms×1 is a
constant vector.

RF is an ensemble learning model based on the Classification and Regression Tree
(CART). The RF model requires two hyperparameters n_estimators and m_ f eatures, which
respectively represent the number of trees and the number of selected features. The missing
value imputation process using the RF model is as follows:

Step 1: RF model training.
Step 1.1: Utilize the Bootstrap resampling method to select n_estimators samples from

the original training dataset with replacement, and remove duplicate samples to create a
new training dataset Dt = {Xtrain(1), Ytrain(1)}.

Step 1.2: Train CART decision trees using dataset Dt to generate the trained CART
model CART_model(1). During the training process, randomly select m_ f eatures features
from all the features, and then identify the optimal feature within the selected features as
the splitting point for partitioning each node into left and right segments.

Step 1.3: Repeat Steps 1.1–1.2 n_estimators times to obtain n_estimators CART decision
trees, denoted as the prediction model {CART_model}.

Step 2: Missing values prediction.
Step 2.1: Select the same m_ f eatures features as used in the training process to create a

new testing dataset Xtest(1).
Step 2.2: Input Xtest(1) into the trained model {CART_model (1)} to obtain the first

prediction result Ytest(1).
Step 2.3: Repeat Steps 2.1–2.2 until obtaining n_estimators prediction results.
Step 2.4: Calculate the final prediction result Ytest using the mean method:

Ytest =
1

n_estimators
×∑ n_estimators

i=1 Ytest(i) (13)

The KNN regression model involves considering three factors [40]: the number of
nearest samples (k), the distance measurement method, and the regression prediction rule.
The distance measurement method employs the widely used Euclidean distance, while the
regression prediction rule is based on the mean method. The appropriate value for k can be
determined through cross-validation based on the sample distribution. The missing value
imputation process using KNN is outlined below.

Step 1: Calculate the Euclidean distance between the s-th sample xtest,s in Xtest and
the t-th sample xtrain,t in Xtrain, as shown in Formula (14). Then, calculate the distance
between xtest,s and all the mt samples in Xtrain to obtain the distance vector D(xtest,s, ·) =
[dist(xtest,s, xtrain,1), . . . , dist(xtest,s, xtrain,mt)]

T .
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dist(xtest,s, xtrain,t) =

√
n

∑
i=1

(
xtest,si − xtrain,ti

)2 (14)

where xtest,s(s = 1, . . . , ms) is the s-th sample in Xtest, xtrain,t(t = 1, . . . , mt) is the t-th sample
in Xtrain, n is the number of variables.

Step 2: Choose k nearest samples [(xtrain,1), . . . , (xtrain,k)] in Xtrain according to the k
smallest values in the distance vector D(xtest,s, ·).

Step 3: Calculate the average of the values [(ytrain,1), . . . , (ytrain,k)] in Ytrain that corre-
spond to these k nearest samples, as shown in Formula (15), and set this average value ys
as the predicted value for the sample xtest,s.

ys =
1
k ∑ k

i=1 (ytrain,i) (15)

Step 4: Repeat steps 1–3 to calculate predicted values for all samples in Xtest, then all
values in Ytest are obtained.

(2) Imputation Process for Long-term Missing Variables
Since the multivariate regression model has the limitation that only one variable can

be imputed in each process, an iterative method is designed to overcome this constraint.
The iterative imputation based on the multivariate regression model can automatically
complete the imputation of all long-term missing variables. The model from MLR, RF, or
KNN is selected as multivariate regression model model j. Assuming that X(1)

k ∈ Rmk×n is
the data segment after imputing transient isolated missing values, and nlong_j is the number

of long-term missing variables in X(1)
k . The iterative imputation based on a multivariate

regression model is presented in Algorithm 1.

Algorithm 1 The iterative imputation based on multivariate regression model

Input: X(1)
k ∈ Rmk×n, nlong_j

Output: The imputed data segment X(2)
k ∈ Rmk×n

1. Begin
2. Calculate the variable missing proportion VMPj for each long-term missing variable, and sort

these variables in ascending order by VMPj, get
{
(x_ ,1), (x_ ,2), . . . ,

(
x_ ,nlong_j

)}
;

3. Set X0 = X(1)
k ;

4. For j = 1 to nlong_j:
5. Split Xj−1 into a training dataset Dtrain(j−1) including only complete variables and a testing

dataset Dtest(j−1) including only incomplete variables;

6. Train the multivariate regression model model j by inputting Xtrain(j−1) formed by
n− nlong_j + (j− 1) complete variables from Dtrain(j−1);

7. Input Xtest(j−1) formed by nlong_j − (j− 1) incomplete variables from Dtest(j−1) into model j,

and get the predicted values
(∼

x_ , j

)
for variable

(
x_,j

)
;

8. Impute Xj−1 using
(∼

x_ , j

)
;

9. Set Xj = Xj−1;

10. Return X(2)
k = Xnlong_j ;

11. End

(3) Imputation Process for Short-term Missing Variables
The combination model based on single-dimensional interpolation and multivariate

regression is developed for imputing the missing values of short-term missing variables.
This combination model is based on the property that a missing variable experiences system
fluctuations due to the influence of its related variables. The model utilizes a multivariate
regression model to calculate the system fluctuation and incorporate it into the interpolation
value. By considering the continuity in the time dimension and the correlation among
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different variables, this model significantly enhances imputation accuracy by combining
the strengths of both models.

Taking cubic spline interpolation and MLR as examples, the combination model for
imputing missing values of short-term missing variables is designed. As shown in Figure 2,
variable Y in data segment Xk contains short-term missing from time s2 to time e1. s1 and e2,
respectively, represent the corresponding time with a valid value on the left side of s2 and on
the right side of e1. The continuous missing duration ∆t = |e1 − s2|, and Tht1 < ∆t ≤ Tht2.
Time ta, tb, andtc represent three sampling times in this period. ya represents the predicted
value at time ta, the imputation process for ya based on the combination model is shown
in Figure 3.
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Step 1: Calculate the predicted value ya1 at time ta using cubic spline interpolation by
Formula (8).

Step 2: Calculate the correlation between variable X and the short-term missing
variable Y using Formula (16). If Cov(X, Y) > Thc, variable X is the correlated variable
with Y. Then identify all the correlated variables with Y, denoted as Xj(j = 1, 2, . . . , nc).

Cov(X, Y) =

(
∑ mk

i (xi − x)(yi − y)
)

√
∑ mk

i (xi − x)2∑ mk
i (yi − y)2

(16)

where x = 1
mk ∑ mk

i xi, y = 1
mk ∑ mk

i yi, mk is the sample size, Thc is the correlation threshold,
nc is the number of correlated variables with Y.

Step 3: The variable Y is influenced by its correlated variables, which leads to system
fluctuations. The MLR model and cubic spline interpolation are used to calculate the system
fluctuation ∆1 at ya1 data level:

Firstly, use the MLR model for regression fitting to describe the relationship between
Y and its correlated variables, and the corresponding predicted values ys1 , ys2 , ye1 , ye2 , ya2

at time s1, s2, e1, e2, ta are calculated by Formula (12), where the dataset Xc_y ∈ Rmj×nc

formed by all the correlated variables is used as the testing data, mj is the sample size of
Xc_y, and the sample size of Itest in Formula (12) is set to mj.

Then construct a cubic spline interpolation function based on values ys1 , ys2 , ye1 , ye2

by Formula (8), and get the predicted value ya3 at time ta.
Finally, calculate the system fluctuation ∆2 at ya3 data level by Formula (17). Since

the system fluctuation is influenced by the data level, the relationship between ∆1 and ∆2
satisfies Formula (18). So the system fluctuation ∆1 is calculated by Formula (19).

∆2 = ya3 − ya2 (17)

∆1

ya1

=
∆2

ya3

(18)

∆1 =
ya1

ya3

∆2 (19)

Step 4: Put the system fluctuation back to the original data level, as shown in
Formula (20), and then the final predicted value ya at time ta is calculated:

ya = ya1 − ∆1 (20)

3.2.4. Continuous Missing Samples Imputation

After data splitting, the information between data segments is not only lost in time
dimension but also among different variables. It is difficult to impute short-term and long-
term missing samples using a single-dimensional interpolation model or a multivariate
regression model. We adopt the LSTM model, which can effectively learn long-term
dependencies, to impute continuous missing samples after imputing transient isolated
missing values and continuous missing variables.

(1) LSTM Model
The 5-layer LSTM network for the prediction of missing values in continuous missing

samples is as below.
Input layer: This layer receives input data, where the number of variables in the input

data is consistent with the number of neurons in this layer.
LSTM layer: This layer builds the LSTM model. The LSTM unit structure is shown

in Figure 4. The memory unit in LSTM has four gates: INPUT GATE ( f ), FORGET GATE
(i), UPDATE GATE (g), and OUTPUT GATE (o). c(t) is the unit state, representing the
information learned before time t, which can be seen as long-term memory. h(t) is the
hidden state, representing the output of the network in the current state, which can be
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seen as short-term memory. x(t) is the current time network input value. The forget gate
determines the retention degree of the current state c(t) to the cell state c(t− 1) at the
previous moment. The input gate determines the retention degree of the current state c(t)
to the input x(t). The output gate controls the degree to which c(t) outputs to h(t) in the
current state. Each node in the LSTM model can be calculated as below:

i(t) = σ
(

Wi · [h(t− 1), x(t)]T + bi

)
f (t) = σ

(
W f · [h(t− 1), x(t)]T + b f

)
o(t) = σ

(
Wo · [h(t− 1), x(t)]T + bo

)
g(t) = tanh

(
Wg · [h(t− 1), x(t)]T + bg

)
c(t) = f (t)� c(t− 1) + i(t)� g(t)

h(t) = o(t)� tanh(c(t))

(21)

where f is the forget gate, i is the input gate, g is the update gate, o is the output gate, c is
the unit state, h is the hidden state, σ is the activation function of Sigmoid, W is the weight
matrix, b is the bias term, � represent matrix elements multiplication.
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Lost layer: This layer is used to prevent overfitting [41]. During the training process,
the loss probability Plost is set to 0.5. The input data from the LSTM layer is randomly set to
0 with rate Plost. The remaining data is scaled by the rate 1/(1− Plost) and then input into
the fully connected layer.

Fully connected layer: This layer establishes full connection between the LSTM layer
with the output layer. The number of input neurons in this layer is equal to the number of
neurons in LSTM layer.

Output layer: This layer generates the prediction results. The number of output
neurons is equal to the number of variables in the output data.

(2) Imputation Process for Continuous Missing Samples
The LSTM model takes all the complete data segments before the current moment as

input and predicts the missing values at the current moment. Then the imputed values are
used as input to predict the missing values at the next moment. Therefore, the continuous
missing samples (the missing data segments) are imputed by iteratively executing the
model. The iterative imputation process for the missing data segment X∗k∗ ∈ Rmc×n is as
follows, where mc is the sample size and n is the number of variables. And l represents the
time steps (the length of input data) of the LSTM model.
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Step 1: LSTM model training.
Step 1.1: Generate the training dataset based on data segment Xk

(2) ∈ Rmk×n after
imputing all transient isolated missing values and continuous missing variables.

Step 1.2: Initialize i = 1 and train input data, where the i-th input sample of Xtrain is
Xtrain, i = [xtrain,i, . . . , xtrain,i+l−1]; then train output data, where the i-th output sample of
Xtest is Xtest, i = xtest,i+l .

Step 1.3: Repeat Step 1.2 mk− l times.
Step 1.4: Train the LSTM model modelLSTM based on dataset Xtrain and Xtest, then get

the trained LSTM model modelLSTM_h(0) whose output state is h(0).
Step 2: Missing data prediction.
Step 2.1: Initialize the LSTM model, and input the training dataset Xtrain into

modelLSTM_h(0) to obtain modelLSTM_h(mk) whose output state is h(mk).
Step 2.2: For t = mk+ 1, input the l consecutive samples before time t (i.e., Xtrain, t−1 =

[xtrain,mk−l+1, . . . , xtrain,mk]) into modelLSTM_h(t−1) to obtain the predicted data
∼
xt. Then

update modelLSTM_h(t−1) according to Formula (23) and get modelLSTM_h(t).
Step 2.3: Repeat Step 2.2 until t = mk + mc, then get the predicted data segment

X∗k∗
(1) =

[∼
xmk+1, . . . ,

∼
xmk+mc

]
.

It should be noted that the input of the LSTM model is a vector, so it is necessary to
reconstruct the data matrix into a vector before model training and prediction.

3.3. The Hybrid Missing Data Imputation Method

Considering the various types and high missing proportion of missing data in batch
process monitoring datasets, we propose a hybrid missing data imputation method based
on the above research. The method classifies missing data according to the predefined
classification rules, then combines and improves a single-dimensional interpolation model,
a multivariate regression model, and LSTM to step-by-step impute different categories of
missing data based on their specific characteristics. The pseudocode of this hybrid method
is presented in Algorithm 2.

Algorithm 2 The proposed hybrid missing data imputation method

Input: The original dataset XORG
Output: The imputed complete dataset XIMP
1. Begin
2. Unfolding data along the batch dimension, get the 2D dataset X;
3. Classifying the missing data into five categories: transient isolated missing values, short-term

missing variables, long-term missing variables, short-term missing samples and long-term
missing samples;

4. Splitting dataset X, get X =
[
X1, X∗1 , . . . , Xk, X∗k∗ , . . . , XK−1, X∗K−1, XK

]
;

5. Imputing transient isolated missing values in each data segment Xk using single-dimensional
interpolation models;

6. Xk
(1)(k = 1, ..., K)← The imputed data segments;

7. Standardize each data segment;
8. Imputing long-term missing variables in each data segment Xk using the iterative imputation

based on multivariate regression model, and imputing short-term missing variables in each
data segment Xk using the combination model based on single-dimensional interpolation and
multivariate regression;

9. Xk
(2)(k = 1, ..., K)← The imputed data segments;

10. Imputing short-term missing samples and long-term missing samples (i.e., the missing
data segments X∗k∗ ) using LSTM model;

11. X∗k∗
(1)(k∗ = 1, . . . , K− 1)← The imputed data segments;

12. Complete dataset XIMP ← De-standardize, and transform 2D data to 3D data;
13. End



Sensors 2023, 23, 8678 13 of 21

As shown in Figure 5, the proposed hybrid missing data imputation method consists
of the following eight steps:
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Step 1: Unfolding data: The original three-dimensional dataset XORG is unfolded
along the batch dimension to obtain two-dimensional dataset X.

Step 2: Classifying missing data: According to the missing data classification method
(Section 3.1.2), the continuous missing duration ∆t for each variable and the corresponding
number of variables nv missing simultaneously are calculated. By comparing the calculated
results with the threshold values, the missing data are classified into five categories: tran-
sient isolated missing values, short-term missing variables, long-term missing variables,
short-term missing samples, and long-term missing samples.

Step 3: Splitting dataset: The dataset X is split according to the locations of contin-
uous missing samples, then get X =

[
X1, X∗1 , . . . , Xk, X∗k∗ , . . . , XK−1, X∗K−1, XK

]
, where

Xk(k = 1, . . . , K) represents the k-th data segment (the data segment with transient isolated
missing values, short-term or long-term missing variables), X∗k∗(k

∗ = 1, . . . , K− 1) repre-
sents the missing data segment (the data segment with short-term or long-term missing
samples) between the k-th and (k + 1)-th data segments.

Step 4: Imputing transient isolated missing values: Transient isolated missing val-
ues in each data segment Xk are imputed using three single-dimensional interpolation
models as mentioned in Section 3.2.2, and the corresponding imputed data segments are
Xk

(1)(k = 1, . . . , K).
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Step 5: Standardize each data segment Xk: Taking the variable j in data segment Xk as
an example, values are standardized using z-score standardization:

xz
i, j =

(
xi,j − µj

)
/σj (22)

where xz
i, j is the standardized value of the i-th sample xi,j(i = 1, . . . , mk, j = 1, . . . , n), µj

is the mean of variable j, σj is the standard deviation of variable j, mk and n, respectively,
represent the sample size and the number of variables in Xk.

Step 6: Imputing long-term missing variables and short-term missing variables: For
each data segment Xk

(1), each long-term missing variable are imputed using the iterative
imputation based on multivariate regression model as mentioned in Section 3.2.3 (2), all
short-term missing variables are imputed using the combination model based on single-
dimensional interpolation and multivariate regression as mentioned in Section 3.2.3 (3),
and the corresponding imputed data segments are Xk

(2)(k = 1, . . . , K).
Step 7: Imputing short-term missing samples and long-term missing samples (i.e., the

missing data segments): Taking Xk
(2)(k = 1, . . . , K) as input, all missing data segments

X∗k∗ are imputed using LSTM model as mentioned in Section 3.2.4, and the corresponding
imputed data segments are X∗k∗

(1)(k∗ = 1, . . . , K− 1).
Step 8: De-standardize the imputed data segments and transform two-dimensional

data to three-dimensional data, then get the imputed complete dataset XIMP.

4. Illustration and Discussion
4.1. Data Source and Description

Injection molding, which refers to the process of making semi-finished parts of a certain
shape from molten raw materials, is a typical batch process. A publicly accessible real-
world injection molding dataset [42] is taken as an example, which contains data collected
from both mold temperature control machines and mold sensors. Six process variables are
selected, as shown in Table 2. Under this operating condition, a total of 100 normal batches
with 919 sampling points are obtained, denoted as XORG(100× 6× 919). The dataset needs
to be unfolded along the batch dimension to obtain two-dimensional dataset X(6× 91, 900).
It includes six variables, and the length of each variable is 91,900 sampling points. The
dataset contains data fluctuations, repeating trends between different batches, and dynamic
correlations among different variables.

Table 2. Process variables of a real-world injection molding process monitoring dataset.

Variable Type Variable Description Unit

Process

Screw speed Mm/s
Plasticizing pressure Bar
Nozzle temperature °C
Cylinder pressure Bar
SV1 value opening %
SV2 value opening %

4.2. Performance Evaluation Index

(1) Root Mean Square Error
To measure the missing data imputation accuracy, we adopt the most commonly used

measure in this field: Root Mean Square Error (RMSE) [19]. The RMSE index can reflect
the deviation between the predicted value and the actual value. The smaller the value of
RMSE, the higher the accuracy of the algorithm. Taking variable j as an example, the RMSE
value can be calculated as follows:

RMSEj =

√
1
nj

∑
nj
i=1

(
xi,j −

∼
x i,j

)2
(23)
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where nj is the number of missing values of variable j in data segment Xk, xi,j is the actual

value,
∼
x i,j is the predicted value of xi,j.

(2) Mean Square Error
The performance of KNN, RF, and LSTM models for missing value prediction depends

on the selection of hyperparameters. We adopt Mean Square Error (MSE) to construct the
loss function and utilize 10-fold cross-validation to determine the optimal hyperparameters.
The smaller the value of MSE, the higher the accuracy of the algorithm. The MSE value can
be calculated as follows:

MSE =
1

m× n∑ m
i=1∑ n

j=1

(
xi,j −

∼
x i,j

)2
(24)

where m is the sample size, n is the number of variables, xi,j is the actual value,
∼
x i,j is the

predicted value of xi,j.

4.3. Data Processing

Firstly, the original three-dimensional dataset XORG(100× 6× 919) was unfolded
along the batch dimension to obtain a two-dimensional dataset X(6× 91, 900). According
to the missing data classification rules defined in Section 3.1.2, the categories of missing
data were determined. The dataset X contains two data segments with continuous missing
samples. Therefore, it was split into three data segments and two missing data segments
according to the locations of continuous missing samples, i.e., X =

[
X1, X∗1 , X2, X∗2 , X3

]T .
Data segments X1, X2, X3 contain transient isolated missing values and continuous miss-
ing variables, while the two missing data segments X∗1 , X∗2 are the data segments with
continuous missing samples. In data segment X1, the plasticizing pressure variable contains
continuous missing, while the cylinder pressure and SV2 value opening variables contain
transient isolated missing values. In data segment X2, all variables only contain transient
isolated missing values. In data segment X3, the plasticizing pressure variable contains
continuous missing, while the nozzle temperature, cylinder pressure and SV2 value open-
ing variables contain transient isolated missing values. The data integrity information is
presented in Table 3. Considering the missing proportions of six process variables, we
selected data segment X2 with the lowest missing proportion to evaluate transient isolated
missing value imputation and utilized the plasticizing pressure variable with continuous
missing in data segment X1 to evaluate continuous missing variable imputation.

Table 3. Data integrity information.

Data Segment X1 X2 X3

SMP(k) 0.216 0.037 0.130
Screw speed VMP1(k) 0 0.004 0

Plasticizing pressure VMP2(k) 0.215 0.029 0.129
Nozzle temperature VMP3(k) 0 0 0.002
Cylinder pressure VMP4(k) 0.002 0.002 0.003
SV1 value opening VMP5(k) 0 0 0
SV2 value opening VMP6(k) 0.029 0.017 0.003

4.4. Missing Data Imputation and Results Analysis
4.4.1. Transient Isolated Missing Values Imputation

In order to better compare the performance of different imputation methods, some
transient isolated values in data segment X2 were randomly deleted to obtain four ex-
perimental datasets with missing proportions of 5%, 10%, 15%, and 20%. The detailed
imputation process for transient isolated missing values is shown in Section 3.2.2. The
mean and hot-desk imputation methods were selected as baseline models.

The RMSE values for the predicted values of the six process variables calculated are
shown in Table 4. Experimental results show that the single-dimensional interpolation
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model performs better than the mean and hot-desk imputation methods. This difference
becomes more pronounced with an increasing proportion of missing values. When the
missing proportion reaches 20%, the RMSE value of the single-dimensional interpolation
model for the screw speed variable is 1.129, which is only about 1/3 of that obtained with
the mean method.

Table 4. RMSE of missing data imputation results for transient isolated missing values.

Imputation Method X2
Screw
Speed

Plasticizing
Pressure

Nozzle
Temperature

Cylinder
Pressure

SV1 Value
Opening

SV2 Value
Opening

Single-dimensional
interpolation model

5%
1.051 2.056 3.881 2.089 0.103 0.893

Mean 2.673 3.385 4.532 2.053 0.067 1.426
Hot-deck imputation 1.105 2.734 4.364 2.047 0.032 1.940

Single-dimensional
interpolation model

10%
1.438 2.072 3.659 2.078 0.056 0.912

Mean 2.937 3.619 4.233 2.058 0.099 1.503
Hot-deck imputation 1.935 2.802 4.674 2.049 0.042 1.784

Single-dimensional
interpolation model

15%
1.301 2.089 3.431 2.067 0.055 1.425

Mean 3.801 3.623 4.567 2.108 0.112 1.285
Hot-deck imputation 2.572 2.723 4.347 2.087 0.045 1.731

Single-dimensional
interpolation model

20%
1.129 2.078 3.626 2.074 0.054 1.373

Mean 3.256 3.611 4.910 2.099 0.113 1.891
Hot-deck imputation 2.533 2.805 4.221 2.072 0.051 1.992

4.4.2. Continuous Missing Variables Imputation

To evaluate the performance of different imputation methods for imputing the con-
tinuous missing variable, the continuous missing variable (plasticizing pressure) in the
data segment X1 was imputed. The transient isolated missing values in data segment
X1 were imputed first. Methods based on single-dimensional interpolation model and a
multivariate regression model were used for imputation. The detailed imputation process
for the continuous missing variable is shown in Section 3.2.3.

(1) Hyperparameters Selection
The hyperparameters of the RF and KNN models were selected through 10-fold cross-

validation, and the results are presented in Figure 6. Figure 6a shows that the optimal
parameters n_estimators and m_ f eatures for the RF model are suitable to select 500 and 1,
where n_estimators is the number of CART decision trees and m_ f eatures is the number
of selected features. Figure 6b shows that the optimal parameter k for the KNN model is
suitable for selecting 7, where k is the number of nearest samples.

(2) Imputation Results Analysis
The combination model based on single-dimensional interpolation and multivariate

regression was utilized for imputation, while six baseline models were employed for
comparison. The RMSE values calculated using different methods are presented in Table 5.
Experimental results show that the multivariate regression model performs better than
the single-dimensional interpolation model. And the combination of a single-dimensional
interpolation model and a multivariate regression model exhibits improved imputation
accuracy. In particular, the combination of single-dimensional interpolation and MLR
achieves the highest imputation accuracy, with an RMSE value of only 1.976. This further
indicates the significance of considering both the continuity in the time dimension and the
correlation between variables when dealing with short-term missing variables.
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Table 5. RMSE of missing data imputation results for continuous missing variables.

Imputation Method RMSE

The combination model based on single-dimensional
interpolation and multivariate regression model

Single-dimensional interpolation + MLR 1.976
Single-dimensional interpolation + RF 2.016

Single-dimensional interpolation + KNN 2.159

Single-dimensional interpolation model
Linear interpolation 5.812

Mean 6.031
Spline interpolation 5.903

Multivariate regression model
MLR 4.392

RF 4.204
KNN 4.450

4.4.3. Continuous Missing Samples Imputation

In order to evaluate the imputation accuracy of short-term and long-term missing
samples, the missing data segments X∗1 and X∗2 were imputed based on LSTM model after
completing the imputation of all transient isolated missing values and continuous missing
variables in data segments X1, X2 and X3. The detailed imputation process for continuous
missing sample is shown in Section 3.2.4.

(1) Hyperparameters Selection
The parameters Lr and l have a significant impact on the performance of LSTM, where

Lr represents the learning rate and l represents the time steps. They were optimized
separately, considering their minimal mutual influence. Initially, the LSTM network was
initialized with the following parameters: the number of neurons was set to 120, the number
of iterations was set to 400, the Adam optimization algorithm was used as the Optimizer, a
gradient threshold of 1 was set to prevent gradient explosions, and the dropout rate Plost
was set to 0.

The parameters Lr and l were selected through 10-fold cross-validation. For Lr, the
early stopping technique was applied to prevent overfitting. The frequency of verification
was set to 20, and the tolerance of verification was set to 4. While for l, the dropout rate
was set to 0.2 as a replacement for the early stopping technique to prevent overfitting. The
results obtained for parameters Lr and l through 10-fold cross-validation are shown in
Figure 7.
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As Lr is increased from 0.0001 to 0.1, the MSE curve initially exhibits a rise followed
by a decline. However, when Lr exceeds 0.1, training begins to fail. Therefore, Lr is set to
0.001. The MSE curve for l shows an almost linearly increasing trend, which indicates that
the imputation accuracy will decrease as the historical input data increases. Therefore, l is
set to 1. In addition, when using the lost layer instead of the early stopping technique to
prevent overfitting, the MSE value decreases from 0.315 to 0.198. This indicates that the
lost layer is more effective in preventing overfitting than the early stopping technique.

(2) Imputation Results Analysis
The ARIMA (Autoregressive Integrated Moving Average) [43,44] and ELM [36,45]

were selected as baseline models. ARIMA is a classical time series model that combines
autoregressive, differencing, and moving average components to predict missing values
through data autocorrelation. ELM is an efficient machine learning model based on a
single-layer feedforward neural network that uses multiple features to predict missing
values. The number of hidden layer neurons of both the ELM and LSTM models is the same.
The RMSE values calculated for different models are shown in Table 6. The results show
that the LSTM model exhibits higher imputation accuracy compared to the ARIMA and
ELM models. This indicates that the LSTM model is more effective in capturing long-term
dependencies in time series data.

Table 6. RMSE of missing data imputation results for continuous missing samples.

Imputation
Method

Missing Data
Segment

Screw
Speed

Plasticizing
Pressure

Nozzle
Temperature

Cylinder
Pressure

SV1 Value
Opening

SV2 Value
Opening

LSTM
X∗1

0.842 1.098 2.719 1.093 0.112 0.149
ARIMA 1.691 1.104 2.903 1.007 0.119 0.201

ELM 2.715 1.124 2.812 1.132 0.105 0.218

LSTM
X∗2

0.529 1.071 2.027 1.073 0.094 0.173
ARIMA 1.626 1.176 2.297 1.519 0.113 0.191

ELM 2.371 1.193 2.151 1.168 0.151 0.264

5. Conclusions

In real-world batch process monitoring datasets, missing data usually occurs in differ-
ent patterns. Failing to identify the type of missing data or applying imputation methods
regardless of the missing type may decrease imputation performance. Many imputation
methods have been developed to impute the missing data; however, most of them still
do not fulfill the need for data quality in datasets with different types of missing data.
Therefore, this paper proposes a novel hybrid missing data imputation method to deal with
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different types of missing data in a real-world batch process monitoring dataset. By classi-
fying missing data into five distinct categories, we combine and improve suitable models
to step-by-step impute different categories of missing data based on their unique charac-
teristics. Through experiments taking a real-world injection molding process monitoring
dataset as an example, it can be concluded that missing data pattern analysis combined
with appropriate models to impute missing data has better imputation accuracy. Therefore,
the hybrid method proposed in this paper excels at missing data imputation for complex
batch process monitoring datasets. In practical applications, this method can be employed
to impute missing data in batch process monitoring datasets, and the design concept of
first categorizing and then stepwise imputing based on data features in this method can
also be extended to other datasets containing different types of missing data.

In future research, we plan to conduct studies on the following aspects: The 10-fold
cross-validation method, employed for hyperparameter selection in LSTM models, still
needs some degree of manual tuning; Bayesian Optimization or Successive Halving could
be introduced for automated optimization. Although we have designed a missing data
classification method, automated techniques for missing data classification need to be
further explored. Data noise can potentially impact imputation performance, and methods
such as data cleaning or outlier detection to preprocess the data for noise elimination can be
explored. Furthermore, referring to the benchmark proposed in reference [19], additional
metrics besides RMSE, such as MAE and runtime, can be introduced. A comprehensive
evaluation of imputation accuracy and efficiency could be conducted by selecting suitable
baseline methods and utilizing multiple batch process monitoring datasets, while consider-
ing various factors like the missing block size, the number of sequences, etc. Based on the
evaluation results, the proposed hybrid method might be further improved by enhancing
existing models or introducing new models.
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LSTM Long Short-Term Memory
LR Linear Regression
MLR Multivariate Linear Regression
SVD Singular Value Decomposition
PCA Principal Component Analysis
MF Matrix Factorization
CD Centroid Decomposition
EM Expectation Maximization
KNN K Nearest Neighbor
RF Random Forest
ELM Extreme Learning Machine
RNNs Recurrent Neural Networks
VMP Variable Missing Proportion
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SMP Sample Missing Proportion
CART Classification and Regression Tree
RMSE Root Mean Square Error
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ARIMA Autoregressive Integrated Moving Average
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