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Abstract: Heart diseases rank among the most fatal health concerns globally, with the majority being
preventable through early diagnosis and effective treatment. Electrocardiogram (ECG) analysis is
critical in detecting heart diseases, as it captures the heart’s electrical activities. For continuous
monitoring, wearable electrocardiographic devices must ensure user comfort over extended periods,
typically 24 to 48 h. These devices demand specialized algorithms with low computational complexity
to accommodate memory and power consumption constraints. One of the most crucial aspects of ECG
signals is accurately detecting heartbeat intervals, specifically the R peaks. In this study, we introduce
a novel algorithm designed for wearable devices, offering two primary attributes: robustness against
noise and low computational complexity. Our algorithm entails fitting a least-squares parabola to
the ECG signal and adaptively shaping it as it sweeps through the signal. Notably, our proposed
algorithm eliminates the need for band-pass filters, which can inadvertently smooth the R peaks,
making them more challenging to identify. We compared the algorithm’s performance using two
extensive databases: the meta-database QT database and the BIH-MIT database. Importantly, our
method does not necessitate the precise localization of the ECG signal’s isoelectric line, contributing
to its low computational complexity. In the analysis of the QT database, our algorithm demonstrated
a substantial advantage over the classical Pan-Tompkins algorithm and maintained competitiveness
with state-of-the-art approaches. In the case of the BIH-MIT database, the performance results
were more conservative; they continued to underscore the real-world utility of our algorithm in
clinical contexts.

Keywords: R-peak detection; fast parabolic fitting; wearable ECG devices

1. Introduction

The electrocardiogram (ECG) allows for the convenient measurement of cardiac elec-
trical activity. Successive waveforms, known as the P wave, QRS complex, and T wave,
characterize each cardiac cycle on the ECG. These waveforms represent the depolarization
and repolarization activities in the cells of the atrium and ventricle. Automatic detection of
ECG waveforms provides essential information for diagnosing cardiac disease. This broad
field continues to be an active research topic, as evidenced by recent publications [1,2]. Due
to the significant morphological variation of ECG signals, it is not easy to design automatic
and widely applicable algorithms. This difficulty partly explains the continuous effort
made by researchers in ECG signal processing. ECG detection algorithms aim to improve
classification accuracy and are becoming as reliable and successful as expert cardiologists.

Researchers have extensively investigated automatic R-peak detection as a classic
ECG signal processing problem. The well-known real-time R-peak detection algorithm
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was proposed by Pan-Tompkins [3]. This classical algorithm can process and display the
detection result for each sample after a learning period. However, the complexity of the
Pan-Tompkins algorithm is high, and the detection accuracy is moderate compared with
recently developed algorithms [1,4,5].

Several notable studies have recently been conducted [4,6,7]. However, a problem
with most R-peak detection algorithms is that the computational complexity could be
higher, and they require impractical assumptions, e.g., they usually need a global statistical
knowledge of the entire input signal [3,8–11].

On the other hand, researchers have focused on developing efficient sensing algorithms
suitable for wearable ECG devices [5,12–15]. The authors proposed a simple real-time R-
peak detector with low computational cost [16]. As in many previous works, the authors
of [15] customized the input parameters of the algorithm for optimal performance on the
MIT-BIH arrhythmia database, which may not be suitable for other databases. Moreover,
it is not robust to noise. According to the comprehensive review by the authors, several
studies are mentioned in Chapter 4 that achieve a transcendental level of success in de-
termining the R peak. Nevertheless, the algorithm’s performance is susceptible to heart
rate variations.

Researchers have successfully used two-parameter parabolic fitting to detect R points
of ECG signals [1,7]. However, these methods are not suitable for wearable devices since
they use computationally complex processes such as high-order band-pass filters, iso-
electric line localization, and wavelet filtering. Additionally, one needs a comprehensive
understanding of the complete ECG signal.

The proposed method utilizes single-parameter parabolic fitting to extract a feature
known as parabolic height. This feature detects partial P peaks, or candidates, by com-
paring them with a parabolic height threshold. Then, the best candidates are designated
as R points of the ECG signal. Afterwards, this threshold is adapted to different signal
amplitudes. The proposed algorithm does not require calculating and estimating the iso-
electric line of the ECG signal, nor does it require any prior filtering. The authors tested
the algorithm on two databases, QT and BIH-MIT. The results show that the proposed
algorithm performs very well compared to previous work in terms of robustness to noise
and reduced computational resources. It is essential to highlight that the algorithm pre-
sented in this document improves the performance of the previous algorithm, called LDR,
by reducing the number of operations and the performance of the detection of maximum
and minimum points.

2. Materials and Methods

This paper proposes a novel algorithm for R-peak detection, considering the limitations
of computational resources commonly found in wearable ECG devices. We tested the
algorithm for detecting R peaks in ECG signals from two widely used research databases:
the QT database and BIH-MIT database. These ECG signals were obtained following ethical
guidelines, as reported in [17–20]. We conducted all programming for this work on the
MATLAB platform.

The QT database contains a total of 105 15 min ECGs. We chose the ECGs in this
database to represent various QRS and ST-T morphologies with real-world variability,
aiming to challenge detection algorithms [18]. The sampling rate in this database is 360 Hz,
allowing for a total of 86,995 beats from 82 recordings to be stored, and the remaining 23,
sel30-sel52, were not considered due to the absence of QRS annotations. This number is
consistent with the results of other studies [5].

The BIH-MIT database contains 48 ECG records, each containing a 30 min ECG
signal [19]. They used the entire dataset, totaling 109,490 beats. Twenty-five recordings
contain fewer common arrhythmias. The recordings have a sampling rate of 360 Hz with
a resolution of 11 bits at a 10 mV interval. The ECG recordings have acceptable quality,
high and sharp P and T waves, negative R waves, small R peak amplitudes, wider R waves,
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muscle noise, deviation from baseline, sudden changes in beat morphology, multiform
PVCs, long pauses, and irregular heart rhythms.

This work ignores all non-beat annotations defined by Physionet [19]. Note that both
databases offer two channels of ECG signals. This study used only the first channel to
develop and test the algorithm.

To be consistent with most of the R-peak detection studies [3,5,8–12,14,15], we used
quantitative comparisons in terms of sensitivity (S), positive predictability (P), and detection
error (DER), as defined in Equations (1)–(3):

S(%) =
TP

TP + FN
(1)

P(%) =
TP

TP + FP
(2)

DER(%) =
FN + FP
TP + FP

(3)

The true positive (TP) is defined as the number of R peaks detected, false negative
(FN) is the number of true R peaks that was not detected, and false positive (FP) is the
number of detected R peaks that is not detected. Sensitivity represents the percentage of
true beats correctly detected, whereas positive predictability presents the percentage of
true beats detected.

A problem with the BIH-MIT and QT databases is that the beat annotations are often
not located at peak R. This poses a severe problem when evaluating the detectors, as it
introduces a temporal fluctuation in the time stamps of peak R. For this reason, we made a
readjustment to the original annotations. After applying the algorithm to each recording,
they automatically calculated the TP, FN, and FP indices using the new beat annotations,
with a tolerance of 40 ms [20]. This tolerance is consistent with similar work, although
sometimes implicit.

3. Fast Parabolic Fitting for ECG Signals

Parabolic fitting aims to extract from a neighborhood of a point in the ECG signal
a feature that indicates that the point is the R point and that the neighborhood is part
of the R peak. Parabolic fitting has already been successfully applied in the analysis of
ECG signals [1,17]. One of the significant advantages of parabolic fitting is that it is not
necessary to calculate the isoelectric line of the ECG signal. However, in such schemes, a
parabola fitting uses two parameters: window width and parabola height, increasing the
computational cost and affecting the performance of wearable devices. The computational
cost increases by the number of additional operations required, such as 6L + 2 additions,
2L + 4 multiplication, and 2 divisions.

In response to the prior inconveniences, we have introduced a novel approach to
parabolic fitting, employing only one parameter. This modification substantially reduces the
number of addition and multiplication operations, effectively improving the computational
cost, a critical factor in enhancing the performance of wearable devices. Furthermore,
our approach eliminates division operations, resulting in a more efficient and streamlined
process. Figure 1 shows the parabolic approximation at an R peak.

For each point (n, y(n)) of the ECG signal, the best fitting parabola has the follow-
ing form:

y′(i) = a(n− i)2 + y(n). (4)

where i ∈ {n− w, . . . , n− 1, n, n + 1, . . . , n + w}, y(n) is the original ECG signal, a(n − i)2

is the parabola, and y′(n) is the adjustment of the signal ECG with the fitting parabola.
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Figure 1. Parabola fitting at a P peak.

This adjustment in the equation allows us to extract from a neighborhood of values
the representative values that can be adjusted to a maximum or minimum value in the
analysis window, allowing us to improve detection and ensure that detection is successful.
The length of a window is

L = 2w + 1. (5)

The polynomial coefficient a is calculated by minimizing the following quadratic error
criterion:

V(a) =
1
2

n+w

∑
i=n−w

e(i)2 (6)

The first derivative of V(a) is computed as

∂V(a)
∂a

=
n+w

∑
i=n−w

e(i)
∂e(i)

∂a
=

n+w

∑
i=n−w

(
y′(i)− y(i)

)∂e(i)
∂a

. (7)

Since
∂e(i)

∂a
=

∂y′(i)
∂a

= (n− i)2, (8)

The error (i) = y′(i)− y(i), therefore

∂V(a)
∂a

=
n+w

∑
i=n−w

(
a(n− i)2 + y(n)− y(i)

)
(n− i)2. (9)

To minimize the criterion of Equation (4), the following equation must be solved:

0 =
n+w

∑
i=n−w

(
a(n− i)2 + y(n)− y(i)

)
(n− i)2. (10)
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Solving (10) for a, it yields

0 =
n+w

∑
i=n−w

a(n− i)2 + y(n)− y(i) (11)

n+w

∑
i=n−w

y(i)− y(n) = a
n+w

∑
i=n−w

(n− i)2 (12)

∑n+w
i=n−w y(i)− y(n)

∑n+w
i=n−w(n− i)2 = a. (13)

Given that ∑n+w
i=n−w(n− i)2 is constant for any y(n)

C =
1

∑n+w
i=n−w(n− i)2 (14)

and
n+w

∑
i=n−w

y(i)− y(n) = −Ly(n) +
n+w

∑
i=n−w

y(i). (15)

Equation (13) is simplified

a = C

(
−Ly(n) +

n+w

∑
i=n−w

y(i)

)
. (16)

Calculation for the coefficient a at each sample of the ECG signal requires L + 1 addi-
tions and 2 multiplications, which makes this algorithm more suitable for implementation
on low-cost microprocessors. On the other hand, if a is negative, it indicates that the peak
is upward, and if positive, the peak is downward. The parabola defined with the optimal
parameter of Equation (16) is called the best-fit parabola.

The parabolic height (H) is defined as the absolute of the difference between the
highest point and the lowest point of the best-fit parabola, which is computed as shown
in (17) and this value H is used to detect the R peaks:

H = |a|w2. (17)

Figure 2 shows four parabolic approximations at different discrete time instants:
n = 158, n = 186, n = 196, and n = 265. In the first case H = 0.03, it is easy to see that
there is no peak. In the second case, the P wave is present with H = 0.25. In the third case,
it does correspond to an R peak with H = 3.42. In the fourth case it is H = 0.25, even
though the peak is downward. The natural strategy is to propose a threshold Hth, such that
if H > Hth, then at time n there is an R peak. In each of the analysis windows, a value of
H was obtained, where this coincides with the maximum value in height, and in the last
point, it was established as a minimum value.

Figure 3 shows one of the biggest problems faced by R-peak detection algorithms in
ECG signals. The figure shows an R peak in the sel808 recording and a noise peak in the
sel102 recording. Both signals, from the QT database, have different isoelectric lines. The R
peak has a parabolic height of H = 1.1 and the false peak is higher with H = 1.6. Under
the threshold strategy of Hth = 1.5, the false peak would result in a false positive and the R
peak would result in a false negative. The need arises for Hth to be variable, depending on
the typical amplitude of the R peaks in the signal.
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4. Fast Parabolic Fitting Algorithm R Peak for Detection

In general, the algorithm consists of four processes: H calculation for each sample,
searching for R peak candidates, searching for the best candidate for R peak, and adaptation
of the parabolic height threshold (Hth), see Figure 4.



Sensors 2023, 23, 8796 7 of 17
Sensors 2023, 23, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 4. The proposed algorithm structure. 

Each ECG signal sample has its parabolic height (𝐻) calculated, and if 𝐻 > 𝐻௧, then 
that time is defined as an R-peak candidate. If a candidate has been the best candidate for 
a certain time, it is recorded as an R peak, then the 𝐻௧ threshold is updated. 

The search for the best candidate starts when the first candidate is found and ends 
when a discrete time 𝑛ௗ  elapses without the best candidate being replaced. For an 
ECG signal point to be detected as an R peak, it must first be detected to pass as a candi-
date, then as a best candidate, and remain as such for 𝑛ௗ samples. If a signal R peak 
does not pass any of these three stages, it will be discarded, which will cause the number 
of false positives to increase. 

For instance, with a threshold of 𝐻௧ = 2.1, Figure 5 shows five candidates at times: 𝑛 = 187 , 𝑛 = 195 , 𝑛 = 196 , 𝑛 = 197 , 𝑛 = 198 . At time 𝑛 = 196 + 𝑛ௗ , the search for 
the best candidate ends, and it is designated that at 𝑛 = 196, there is an R peak. 

 
Figure 5. Search for the best R-peak candidate on an ECG signal. 

In ECG signals, there is a large variability in the amplitude of R peaks; therefore, it is 
not possible to select a fixed value for 𝐻௧. If the 𝐻௧ threshold is quite large, more points 
with low parabolic height will qualify as candidates and it becomes more likely that the 
number of false positives will increase. Conversely, if the 𝐻௧ threshold is quite small, a 

180 196 220 240 266 280 300
Discrete time (n)

− 1.5

− 1

− 0.5

0

0.5

1

1.5

2

2.5

3

EC
G

 (m
V)

QTDB, record: sel808

First candidate

Best candidate

Last candidate

Figure 4. The proposed algorithm structure.

Each ECG signal sample has its parabolic height (H) calculated, and if H > Hth, then
that time is defined as an R-peak candidate. If a candidate has been the best candidate for a
certain time, it is recorded as an R peak, then the Hth threshold is updated.

The search for the best candidate starts when the first candidate is found and ends
when a discrete time ncand elapses without the best candidate being replaced. For an ECG
signal point to be detected as an R peak, it must first be detected to pass as a candidate,
then as a best candidate, and remain as such for ncand samples. If a signal R peak does not
pass any of these three stages, it will be discarded, which will cause the number of false
positives to increase.

For instance, with a threshold of Hth = 2.1, Figure 5 shows five candidates at times:
n = 187, n = 195, n = 196, n = 197, n = 198. At time n = 196 + ncand, the search for the
best candidate ends, and it is designated that at n = 196, there is an R peak.
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Figure 5. Search for the best R-peak candidate on an ECG signal.

In ECG signals, there is a large variability in the amplitude of R peaks; therefore, it is
not possible to select a fixed value for Hth. If the Hth threshold is quite large, more points
with low parabolic height will qualify as candidates and it becomes more likely that the
number of false positives will increase. Conversely, if the Hth threshold is quite small, a
true R peak with parabolic height less than the threshold will not qualify as a candidate,
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thus increasing the number of false negatives. Therefore, the way the threshold is adapted
is crucial for the performance of the algorithm.

The threshold Hth is adapted using a weighted arithmetic mean of the parabolic
heights of the last M detected R peaks.

4.1. Pseudo Codes for the Proposed R-Peak Detection Algorithm

The proposed algorithm is described, in detail, by means of pseudo code in Algorithm 1.
A discrete time window of width L = 2w + 1 moves along the ECG signal. At each time
n, the parabolic height H of the signal is calculated. When the height H is greater than a
threshold Hth, at time n there is an R-peak candidate. Once the first candidate is detected,
the algorithm searches for the best candidate in a variable interval, called the candidate
interval. The candidate search ends after a time ncand, when no other best candidate has
been found. Similarly, the threshold value Hth is updated, by means of an average of the
heights of the last M R peaks that have been detected. With this strategy, the threshold is
adapted to the parabolic heights of the R peaks of the various ECG signals. This average
is weighted by the constant parameter αH . If a time nth elapses without finding a new
candidate after the last R peak was found, then the value of Hth is reduced by adding the
minimum value Hmin, as if an R peak with parabolic height H = Hmin had been found and
then averaged. This process is repeated every nth that no new R peak is found. ns is the
last discrete time that an R peak should be detected, but it was not. The last part of the
algorithm comprises the guarantee that Hmin ≤ Hth ≤ Hmax.

Algorithm 1: Pseudo code for the R-peak detection proposed method

A window is moved along the signal for n = w to n = N − w
a is calculated at n a← C

(
−Ly(n) + ∑n+w

i=n−w y(i)
)

H is calculated at n H ← |a|w2

Check for a new candidate at n if (H > Hth)
Flag for a found candidate candidateFound ← true
Check if the new candidate is the best one if (H > Hbest)
Update the new best candidate location nbest ← n
Update the new best candidate height Hbest ← H

end
end

Check for ending the peak search
if (n− nbest > ncand and

candidateFound==true)
For restarting a new peak search candidateFound ← false
A new R peak is registered R_Peaks � n
Hth update for new R peak Hth ← αH M_mean(Hbest )
For checking the absence of new R peaks ns ← nbest

end
Check for absence of new R peaks if (n− ns > nth)
Hth decreasing for finding new R peaks Hth = αHM_mean(Hmin )
For checking the absence of new R peaks ns ← n

end
Assuring Hmin ≤ Hth ≤ Hmax Hth ← saturation(Hth )

Algorithm 2 describes the pseudo code to calculate the average of the last M P peaks
detected by the algorithm. This function is also used to decrement the Hth threshold when
there are no new R peaks.
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Algorithm 2: Pseudo code for the M_mean function

M_mean(H)
Shifting the last M R-peak heights hM ← hM−1

hM−1 ← hM−2
...
h1 ← H

Mean of R-peak heights h← ∑M
i=1 hi/M

return h

Algorithm 3 shows the pseudo code for limiting the Hth threshold value.

Algorithm 3: Pseudo code for the saturation function

saturation(h)
Assuring Hmin ≤ Hth ≤ Hmax if (h < Hmin )

h← Hmin
else if (h > Hmax )

h← Hmax
else

return h

The proposed algorithm has only eight numerical parameters: Hmin, Hmax, αH , ncand,
nth, ns, L, and M, that must be updated according to the different databases where it
is tested.

4.2. Analysis of Computational Complexity

The proposed algorithm was implemented on a desktop computer in MATLAB lan-
guage. However, for the implementation of the algorithm in wearable devices, it is nec-
essary to program low-power microcontrollers or programmable logic devices such as
FPGA. One way to compare the computational complexity of algorithms is very common
to use the number of registers and operations of addition, multiplication, and comparison.
Compared to some of the more advanced portable implementations (see Table 1), the
proposed algorithm is competitive. The number of resources is similar or lower than the
alternative proposals.

Table 1. Computational complexity comparison.

Year Method Register Adder Multiplier Comparator

2023 This algorithm 9 23 4 7
2019 Nguyen et al. [5] 4 11 4 1
2015 Castells and Carrabina [15] 41 8 1 14
2011 Wang et al. [21] NA 14 5 15
2011 Elgendi [13] 6 15 11 4
2006 Hoang et al. [22] 21 23 1 1
1999 Jun et al. [23] 4 67 33 4

5. Results
5.1. Detection Results for the QT Database

The proposed algorithm was implemented in MATLAB. The numerical values of the
parameters were defined by performing an exhaustive search. Table 2 shows the values
that gave the best performance of the algorithm for the QT database.
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Table 2. Algorithm parameter values for simulations with the QT database.

Parameter Value

Hmin 0.3
Hmax 1.1
αH 0.335

ncand 70
nth 480
L 17
M 4

Table 3 presents the performance of the proposed algorithm for the QT database. The
detection error (DER) is 0.17%, the sensitivity (S) is 99.9%, and the positive predictability
(P) is 99.88%. It is noteworthy that a total of 47 (57.3%) records had a DER of 0%, i.e.,
without any false negative or false positive. The values shown in Table 3 were calculated
considering the entire dataset and no result was minimized.

Table 3. Performance evaluation of the proposed algorithm for the QT database.

Record Total TP FN FP S (%) P (%) DER
(%) Record Total TP FN FP S (%) P (%) DER

(%)

sel100 1134 1134 0 0 100 100 0 sel16420 1063 1063 0 0 100 100 0
sel102 1088 1088 0 0 100 100 0 sel16483 1087 1087 0 0 100 100 0
sel103 1048 1048 0 0 100 100 0 sel16539 922 922 0 0 100 100 0
sel104 1109 1109 0 0 100 100 0 sel16773 1008 1008 0 1 100 99.90 0.10
sel114 862 862 0 4 100 99.54 0.46 sel16786 925 925 0 0 100 100 0
sel116 1185 1185 0 1 100 99.92 0.08 sel16795 761 761 0 0 100 100 0
sel117 766 766 0 0 100 100 0 sel17152 1628 1628 0 0 100 100 0
sel123 756 756 0 0 100 100 0 sel17453 1047 1047 0 0 100 100 0
sel213 1642 1641 1 0 99.94 100 0.06 sele0104 804 804 0 0 100 100 0
sel221 1247 1236 11 0 99.12 100 0.88 sele0106 896 896 0 3 100 99.67 0.33
sel223 1309 1308 1 0 99.92 100 0.08 sele0107 812 812 0 4 100 99.51 0.49
sel230 1077 1077 0 0 100 100 0 sele0110 872 872 0 4 100 99.54 0.46
sel231 732 732 0 0 100 100 0 sele0111 907 907 0 0 100 100 0
sel232 865 865 0 2 100 99.77 0.23 sele0112 684 684 0 1 100 99.85 0.15
sel233 1533 1532 1 0 99.94 100 0.07 sele0114 699 698 1 0 99.86 100 0.14
sel301 1351 1351 0 2 100 99.85 0.15 sele0116 558 558 0 4 100 99.29 0.72
sel302 1500 1500 0 1 100 99.93 0.07 sele0121 1436 1429 7 1 99.51 99.93 0.56
sel306 1040 1040 0 0 100 100 0 sele0122 1415 1414 1 0 99.93 100 0.07
sel307 853 853 0 0 100 100 0 sele0124 1121 1121 0 0 100 100 0
sel308 1294 1289 5 12 99.61 99.08 1.31 sele0126 945 945 0 1 100 99.89 0.11
sel310 2012 2012 0 0 100 100 0 sele0129 671 670 1 29 99.85 95.85 4.47
sel803 1026 1026 0 0 100 100 0 sele0133 840 840 0 0 100 100 0
sel808 903 903 0 3 100 99.67 0.33 sele0136 809 809 0 0 100 100 0
sel811 704 704 0 0 100 100 0 sele0166 813 813 0 0 100 100 0
sel820 1159 1159 0 0 100 100 0 sele0170 897 897 0 0 100 100 0
sel821 1557 1557 0 0 100 100 0 sele0203 1246 1246 0 6 100 99.52 0.48
sel840 1180 1180 0 0 100 100 0 sele0210 1063 1063 0 0 100 100 0
sel847 801 801 0 12 100 98.52 1.50 sele0211 1575 1575 0 0 100 100 0
sel853 1113 1113 0 0 100 100 0 sele0303 1045 1044 1 2 99.90 99.81 0.29
sel871 917 917 0 1 100 99.89 0.11 sele0405 1216 1216 0 0 100 100 0
sel872 990 990 0 0 100 100 0 sele0406 959 959 0 0 100 100 0
sel873 859 859 0 0 100 100 0 sele0409 1737 1737 0 0 100 100 0
sel883 892 892 0 1 100 99.89 0.11 sele0411 1202 1202 0 1 100 99.92 0.08
sel891 1267 1267 0 3 100 99.76 0.24 sele0509 1028 1028 0 0 100 100 0

sel14046 1260 1259 1 0 99.92 100 0.08 sele0603 870 869 1 0 99.89 100 0.11
sel14157 1081 1081 0 0 100 100 0 sele0604 1031 1031 0 0 100 100 0
sel14172 663 663 0 0 100 100 0 sele0606 1442 1442 0 0 100 100 0
sel15814 1036 1028 8 4 99.23 99.61 1.16 sele0607 1184 1184 0 1 100 99.92 0.08
sel16265 1031 1031 0 0 100 100 0 sele0609 1127 1126 1 0 99.91 100 0.09
sel16272 851 851 0 0 100 100 0 sele0612 751 751 0 0 100 100 0
sel16273 1112 1112 0 0 100 100 0 sele0704 1094 1093 1 1 99.91 99.91 0.18

Total 86,995 86,953 42 105 99.95 99.88 0.17
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The algorithm performs well on most records and its maximum DER is less than 1%,
except for four records: sel308, sel847, sel15814, and sele0129. The false negative type is
mostly due to the R peak being wider and lower than most of the R peaks, as is the case for
the false positive present in Figure 6.
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On the other hand, false positives are mainly due to high-frequency noise, as shown
in Figure 7. This phenomenon could be reduced by using band-pass filtering, but it would
increase the computational complexity of the algorithm. Despite this, the results are
still very satisfactory for the QT database with respect to other algorithms published in
the literature.
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A comparison of the performance of the proposed algorithm with other algorithms
is shown in Table 4. The proposed algorithm is superior to the others, except in positive
predictability (P) by the algorithm of Pandit et al. [12].

Table 4. Performance algorithms comparison for the QT database.

Year Method Total Beats S (%) P (%) DER (%)

2023 This algorithm 86,995 99.95 99.88 0.17
2019 Nguyen et al. [5] * 85,353 99.94 99.78 0.29
2017 Pandit et al. [12] * 86,435 99.87 99.91 0.27
2015 Johnson et al. [8] 86,409 99.33 99.86 0.81
2013 Elgendi [13] * 85,353 99.76 99.42 0.82
2004 Martinez et al. [9] 86,892 99.92 99.88 0.20
1985 Pan and Tompkins [3] 85,353 99.60 98.35 2.07

* Algorithms for wearable devices.

5.2. Detection Results for the BIH-MIT Database

The sampling frequency in the BIH-MIT database is 360 Hz, and in the QT database,
it is 250 Hz. This difference necessitates a readjustment of the algorithm parameters.
Unfortunately, at this stage of the research, it was not possible to develop a methodology to
readjust the parameters considering only the change in the sampling period; therefore, it
was necessary to conduct the readjustment using brute force. This is because the BIH-MIT
database has some records with higher levels of low frequency. In such records, false peaks
are very similar to real ones, but closer to each other, which demanded a higher value for
the parameter αH , and consequently, other parameters are needed to be readjusted. Table 5
shows the parameters of the proposed algorithm rescaled for the BIH-MIT database.

Table 5. Algorithm parameter values for simulations with the BIH-MIT database.

Parameter Value

Hmin 0.45
Hmax 0.9
αH 0.45

ncand 115
nth 691
L 35
M 4

Table 6 presents the performance of the proposed algorithm against all records. The
mean value of sensitivity (S) is 99.65%, the mean value of positive predictability (P) is
99.63%, and the mean value of error deviation (DER) is 0.67%. The algorithm works with
acceptable efficiency, except for the following records: 108, 201, 203, 207, and 210, where
it yields some false positives and negatives due to the high level of noise contained in
these records.

Table 6. Performance evaluation of the proposed algorithm for the BIH-MIT database.

Record Total TP FN FP S (%) P (%) DER
(%) Record Total TP FN FP S (%) P (%) DER

(%)

100 2273 2273 0 0 100 100 0 201 1963 1895 68 0 96.54 100 3.46
101 1865 1863 2 6 99.89 99.68 0.43 202 2136 2129 7 0 99.67 100 0.33
102 2187 2185 2 0 99.91 100 0.09 203 2980 2876 104 29 96.51 99 4.46
103 2084 2084 0 0 100 100 0 205 2656 2640 16 0 99.40 100 0.60
104 2229 2228 1 16 99.96 99.29 0.76 207 1860 1841 19 181 98.98 91.05 10.75
105 2572 2564 8 12 99.69 99.53 0.78 208 2955 2929 26 11 99.12 99.63 1.25
106 2027 2024 3 3 99.85 99.85 0.30 209 3005 3005 0 0 100 100 0
107 2137 2136 1 2 99.95 99.91 0.14 210 2650 2605 45 3 98.30 99.89 1.81
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Table 6. Cont.

Record Total TP FN FP S (%) P (%) DER
(%) Record Total TP FN FP S (%) P (%) DER

(%)

108 1763 1747 16 31 99.09 98.26 2.67 212 2748 2748 0 0 100 100 0
109 2532 2529 3 0 99.88 100 0.12 213 3251 3247 4 4 99.88 99.88 0.25
111 2124 2123 1 1 99.95 99.95 0.09 214 2262 2256 6 6 99.74 99.74 0.53
112 2539 2539 0 0 100 100 0 215 3363 3362 1 0 99.97 100 0.03
113 1795 1795 0 16 100 99.12 0.89 217 2208 2207 1 1 99.96 99.96 0.09
114 1879 1878 1 6 99.95 99.68 0.37 219 2154 2154 0 0 100 100 0
115 1953 1953 0 0 100 100 0 220 2048 2048 0 0 100 100 0
116 2412 2394 18 3 99.25 99.88 0.87 221 2427 2423 4 1 99.84 99.96 0.21
117 1535 1535 0 0 100 100 0 222 2483 2481 2 1 99.92 99.96 0.12
118 2278 2278 0 5 100 99.78 0.22 223 2605 2604 1 0 99.96 100 0.04
119 1987 1987 0 1 100 99.95 0.05 228 2053 2050 3 17 99.85 99.18 0.97
121 1863 1861 2 0 99.89 100 0.11 230 2256 2256 0 2 100 99.91 0.09
122 2476 2476 0 0 100 100 0 231 1571 1571 0 1 100 99.94 0.06
123 1518 1518 0 0 100 100 0 232 1780 1780 0 3 100 99.83 0.17
124 1619 1617 2 3 99.88 99.82 0.31 233 3079 3078 1 0 99.97 100 0.03
200 2601 2597 4 8 99.85 99.69 0.46 234 2753 2752 1 0 99.96 100 0.04

Total 109,490 109,120 373 373 99.66 99.66 0.68

The proposed algorithm is comparable with some outstanding ones in the literature
for R-peak detection, as shown in Table 7, where the comparison of the proposed algorithm
is shown.

Table 7. Performance algorithms comparison for the BIH-MIT database.

Year Method Total Beats S (%) P (%) DER (%)

2023 This algorithm 109,490 99.66 99.66 0.68
2021 Bae et al. [10] 109,510 99.83 99.82 0.34
2019 Nyugen et al. [5] * 109,494 99.80 99.71 0.49
2016 Kim and Shin [14] * 109,494 99.90 99.91 0.19

2015 Castell-Rufas and
Carrabina [15] * 109,494 99.43 99.67 0.88

2014 Dohare et al. [11] 109,966 99.21 99.34 1.45
1985 Pan and Tompkins [3] 116,137 99.76 99.56 0.68

* Algorithms for wearable devices.

5.3. Evaluating the Robustness to Noise of R-Peak Detection Algorithm

In the MIT-BIH arrhythmia database, there are many records, such as 121, 202, 200, 200,
217, 105, and 108, which are greatly affected by noise, including baseline drift and muscle
noise. These records were used to evaluate noise robustness in some previous work [5,24].
Table 8 shows comparisons of the DER values of the proposed method with the other ten
studies. The DER value of the proposed algorithm is comparable to that of previous works
on the same records, which are heavily contaminated by noise.

In Bae [10], R-peak detection is tested in the presence of white noise. To records 102
and 105, Gaussian white noise is added to the ECG signal, for a signal-to-noise ratio (SNR)
between 0.5 dB and 80 dB, and then the R-peak detection algorithm is applied. Record 102
is chosen because it is a relatively clean noise signal and record 105 is just the opposite. In
this work, a comparison is made with the results from [10]. Gaussian white noise is added
to the ECG signal with a certain signal-to-noise ratio according to the power of the ECG
signal by means of the MATLAB command: y = awgn(y,SNR,‘measured’), where y is the
ECG signal.

Table 9 shows the results for record 102. The sensitivity (S) starts to degrade from
SNR = 60 dB with the algorithm of [10] and with the proposed algorithm, the degradation
starts at SNR = 5 dB. As for the positive predictability (P), the results of [10] start to degrade
at SNR = 40 dB and that of this work at SNR = 5 dB.
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Table 8. Comparisons of the DER from the proposed method with other studies for noisy records.
The highest DER value in each column is shown in bold.

Methods Year
Record

121 202 200 217 105 108

Proposed algorithm 2023 0.11 0.33 0.46 0.09 0.78 2.67
Nyugen et al. [5] 2019 0.16 0.09 0.35 0.09 1.21 1.53

Quadratic filtering [7] 2015 0 0 0.19 0.27 1.59 4.08
Wavelet transform [24] 2014 0.1 0.09 0.3 0.23 0.81 8.4

Elgendi’s algorithm [13] 2013 0.11 0.19 0.23 0.18 1.87 1.59
Linear filtering [25] 2013 0.11 0.09 0.15 0.09 1.25 0.57

S-transform [26] 2010 0.16 0.09 0.23 0.23 1.24 2.44
Artificial neural network [27] 2009 0.16 0.33 0.31 0.64 0.23 0.51

Mathematical morphology [28] 2014 0.7 0.37 0.5 0.23 1.01 0.68
Adaptive Mathematical

morphology [29] 2016 0.11 0.09 0.19 0.45 1.44 1.13

Four QRS waveform templates [30] 2017 0.11 0.19 0.73 0.14 1.61 2.4

Table 9. Performance comparison for record 102 in [10] varying signal-to-noise ratio.

NSR (dB) S (%) in [10] S (%) P (%) in [10] P (%)

0.5 64.29 80.29 65.76 54.53
1 74.81 84.77 78.24 56.47
5 88.16 99.09 89.26 66.84
10 94.47 100 94.73 90.78
15 97.12 100 97.48 99.68
20 98.49 100 98.67 100
40 99.50 100 99.68 100
60 99.86 100 100 100
80 100 100 100 100

For a noisier record, 105, Table 10 shows that the sensitivity results of [10] degrade at
SNR = 60 dB and at 20 dB for the proposed algorithm; in positive predictability, the results
start to degrade at SNR = 40 dB in [10] and at 20 dB for this algorithm. In both tables, it
is demonstrated that the proposed algorithm resists more noise before the performance
indices start to degrade. It can also be observed that the proposed algorithm is more robust
under the influence of noise.

Table 10. Performance comparison for record 105 in [10] varying signal-to-noise ratio.

NSR (dB) S (%) in [10] S (%) P (%) in [10] P (%)

0.5 65.51 84.53 68.11 70.13
1 74.69 88.53 75.04 72.35
5 84.88 99.26 86.11 85.87
10 92.65 99.57 93.97 91.63
15 95.65 99.65 96.93 99.00
20 97.63 99.61 98.09 99.15
40 99.11 99.69 99.38 99.34
60 99.26 99.69 99.49 99.34
80 99.34 99.69 99.53 99.34

6. Discussion

The proposed method utilizes single-parameter parabolic fitting, at each ECG sample,
to extract a feature known as parabolic height. This feature detects partial P peaks, or
candidates, by comparing them with a parabolic height threshold. Then, the best candidates
are designated as R points of the ECG signal. Adapting such threshold to different ECG
signal amplitudes is critical to the proposed method.
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The algorithm designed for wearable devices requires low computational resources,
because it does not need calculating and estimating the isoelectric line of the ECG signal, nor
any prior filtering. The computational complexity of algorithms is persistent in using the
number of registers and operations of addition, multiplication, and comparison. Compared
to some of the more advanced portable implementations [5,13,15,21–23], the proposed
algorithm is competitive.

The results derived from the application of the proposed algorithm to the QT database
reveal that the performance of this algorithm is slightly superior with the state-of-the-
art algorithms specialized in wearable devices [5,12,13] and demonstrate considerable
competence, even in comparison with complex algorithms not specialized in wearable
devices [3,8,9]. False negatives are primarily due to the R peak being broader and lower
than most R peaks. False positives are mainly due to high-frequency noise.

We observe more modest results when evaluating the algorithm’s performance for the
BIH-MIT database. The algorithm works with acceptable efficiency, except for the five most
noisy records, where it yields many false positives and negatives due to the high noise
level in these records. Nevertheless, considering that the ECG signals were recorded before
1989 [19] using older technology, a modern ECG signal acquired with current technology
could be quieter than the mentioned records.

We perform two distinct types of analysis to assess the algorithm’s resilience against
noise interference. First, we compare DER with other algorithms using six records that are
notably susceptible to various forms of noise, including baseline drift and muscle noise.
As employed in previous studies [5,24], these records serve as a standard for evaluating
noise robustness.

Second, we subject R-peak detection to a rigorous test for the presence of white noise.
To evidence the benefit of the proposed algorithm, Gaussian white noise is intentionally
introduced to the ECG signal, with a specific signal-to-noise ratio determined by the
characteristics of records 102 and 105, each with varying SNR levels. We then apply the
R-peak detection algorithm to these modified signals. The results demonstrate that our
proposed algorithm maintains its effectiveness in the presence of higher noise levels in
both records before experiencing performance degradation. Furthermore, it is noteworthy
that our proposed algorithm exhibits superior robustness when compared to the outcomes
obtained in [10] under similar noisy conditions.

An area of opportunity that was detected in this work is that in most R-peak detectors,
it is necessary to adjust the algorithm parameters to a different level. This can be resolved
by establishing metaheuristic optimization strategies [31,32], which can be addressed in
future work to adjust the algorithm parameters for different databases.
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