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Abstract: The relative position of the orchard robot to the rows of fruit trees is an important parameter
for achieving autonomous navigation. The current methods for estimating the position parameters
between rows of orchard robots obtain low parameter accuracy. To address this problem, this
paper proposes a machine vision-based method for detecting the relative position of orchard robots
and fruit tree rows. First, the fruit tree trunk is identified based on the improved YOLOv4 model;
second, the camera coordinates of the tree trunk are calculated using the principle of binocular
camera triangulation, and the ground projection coordinates of the tree trunk are obtained through
coordinate conversion; finally, the midpoints of the projection coordinates of different sides are
combined, the navigation path is obtained by linear fitting with the least squares method, and the
position parameters of the orchard robot are obtained through calculation. The experimental results
show that the average accuracy and average recall rate of the improved YOLOv4 model for fruit tree
trunk detection are 5.92% and 7.91% higher, respectively, than those of the original YOLOv4 model.
The average errors of heading angle and lateral deviation estimates obtained based on the method
in this paper are 0.57◦ and 0.02 m. The method can accurately calculate heading angle and lateral
deviation values at different positions between rows and provide a reference for the autonomous
visual navigation of orchard robots.

Keywords: orchard robot; autonomous navigation; positional parameters; machine vision; YOLO

1. Introduction

With the rapid development of sensor technology and computer technology, robotic
autonomous navigation technology has been applied in orchards on a large scale [1–3].
Autonomous navigation technology is the key technology to realize the intelligence of
agricultural equipment in orchards, which is conducive to reducing the work intensity of
operators, improving work efficiency, and enhancing the quality of operations [4–6].

Autonomous navigation technology mainly perceives the dynamic environment
around the vehicle through a variety of sensors to plan and navigate the path and com-
plete operations, such as orchard weeding [7,8], furrowing and fertilizing [9–11], and
picking [12,13]. Commonly used navigation methods are classified as Global Navigation
Satellite Systems (GNSS)/Global Positioning Systems (GPS) [14,15], Light Detection and
Ranging (LIDAR) [16,17], vision sensors [18,19], and multi-sensor fusion navigation [20].
Wei Shuang et al. [21] proposed a pure tracking model based on the GNSS autonomous
navigation path search method for agricultural machines and pre-sighting point search. In
straight-line navigation, the root mean square error of navigation is 3.79, 4.28, and 5.39 cm
when the speed is 0.8, 1.0, and 1.2 m/s, respectively. Luo Xiwen et al. [22] developed an
automatic navigation control system based on DGPS; the maximum error of this system is
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less than 15 cm, and the average error is less than 3 cm in straight-line navigation when
the tractor is at a speed of 0.8 m/s. However, when the fruit tree branches and leaves are
luxuriant, the canopy is closed, and the environment between the rows of the tree is almost
in the semi-closed state. Satellite signals are then blocked by the canopy, leading to certain
limitations of the positioning and navigation method based on GNSS/GPS positioning
and navigation methods subject to certain limitations. Liu Weihong et al. [23] proposed
an orchard inter-row navigation method based on 3D LiDAR, the method in the real pear
orchard with mobile robot tracking of tree rows at a speed of 1.35 m/s. The maximum
lateral deviation obtained is less than 22.1 cm. 3D LiDAR and subject to weather condi-
tions. It is expensive, greatly increasing the cost of inputs in orchard environments, and
therefore difficult to use universally. Han Zhenhao et al. [24] proposed an orchard visual
navigation path recognition method based on the U-Net network, which uses a camera to
collect images and semantically segment the road information in the image to calculate
the navigation path. Using this method to drive in the orchard road with a width of about
3.1 m, the average distance error ratio is 1.4%, which is about 4.4 cm, and the average
processing time of a single frame of image is 0.154 s.

In recent years, deep learning has made breakthrough progress in image classification
research and has also driven the rapid development of target visual detection [25–27]. Deep
learning-based target detection models include two-stage target detection models and
single-stage target detection models [28,29]. Two-stage target detection models have higher
detection accuracy but slower detection speed; therefore, most real-time detection tasks
currently use single-stage target detection models. Typical single-stage detection models
include the YOLO [30–32] family of models and the SSD [33] model. Xie Shuang et al. [34]
used an improved YOLOv8 model for tea recognition, which combines deformable convo-
lution, an attention mechanism, and improved spatial pyramid pooling, thus enhancing
the model’s ability to learn complex target invariance, reducing the interference of irrele-
vant factors, and achieving multi-feature fusion, which improves the detection accuracy.
Wang et al. [35] constructed a model that fuses YOLO v5s and the attention mechanism
of convolutional neural network model YOLO_CBAM for the detection of spiny calyx
lobelia weed. They devised a method for slicing high-resolution images. This method
constructs the dataset by calculating the overlap rate to reduce the possibility of loss of
details due to compression of high-resolution images during training, and the final accuracy
is 92.72%. Tian et al. [36,37] successfully achieved the detection of grape maturity and weed
identification and localization through the improved YOLOv4 algorithm. The experimental
results show that this method has high accuracy.

By summarizing the work of relevant researchers, we can find that when working,
orchard robots or agricultural robots mostly need navigation satellite systems for absolute
positioning. However, in the actual working process, due to the obstruction of the tree
canopy, the orchard robot may not be able to receive satellite signals normally. At this time,
the orchard robot needs to obtain its relative pose with the tree row through its own sensors
in real time. In this way, the orchard robot can navigate autonomously in the tree row.

This paper proposes a method based on a binocular camera to determine the positional
parameters of an orchard robot. When the orchard robot advances between rows, the
binocular camera acquires images and transmits them to the improved YOLOv4 model for
fruit tree trunk detection, obtains the camera coordinates of the trunks, and then obtains
the ground projection coordinates of each trunk after coordinate conversion. The ground
projection coordinates of different sides of the orchard robot are combined to take the
midpoint, the least squares method is used to fit a straight line to the midpoint to obtain the
navigation path, and the heading angle and lateral deviation values of the orchard robot
are obtained through calculation.

2. Materials and Methods

In this paper, the proposed method for estimating the positional parameters between
rows of orchard robots consists of four parts: fruit tree trunk detection, fruit tree trunk
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localization, navigation path calculation, and calculation of positional parameters. The
detection of fruit tree trunks is based on the improved YOLOv4 model to detect the trunks
on both sides of the orchard robot; the positioning of fruit tree trunks is based on the
parallax principle after the binocular camera acquires the image to obtain the camera
coordinates of the fruit tree trunks; the calculation of the navigation path is based on the
camera coordinates of the fruit tree trunks obtained from the previous step through the
coordinate transformation to obtain the ground projection coordinates, the combination of
projection coordinates of the different sides of the orchard robot to take the mid-point; and
the mid-point is calculated using the least-squares method. The least squares method is
used to fit the midpoint to a straight line; the attitude parameters are obtained by calculating
the straight line relationship between the fitted straight line and the vehicle base coordinate
system.

2.1. Hardware Composition

In this study, the electric-driven tracked orchard operation platform designed by the
College of Engineering of Nanjing Agricultural University is used as the mobile carrier,
which is driven by two 48 V DC servo motors; the motors are driven and controlled by
one dual-channel servo motor driver; the upper computer is the New Creation Cloud
Embedded Industrial Controller with an external display screen; STM32 is selected as the
lower computer to control the servo motor driver of the mobile carrier; the vision sensor
uses the ZED2i (polarized version) high-definition camera; the camera’s focal length f is
1.8 mm, the base distance b is 120 mm, and the camera captures the left and right images
with a resolution of 1280 × 720. The overall scheme of the system is shown in Figure 1:
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2.2. Technological Route

The technical flow of the machine vision-based inter-row position estimation and
navigation method for orchard robots at night is shown in Figure 2.

2.3. Improvements to the YOLOv4 Algorithm
2.3.1. YOLOv4 Algorithm

The YOLO family of algorithms is one of the most advanced target detection algo-
rithms in the world. The YOLOv4 algorithm uses the CSPDarknet53 as the backbone
network for feature extraction. It uses the CBM module (consisting of Convolution, Nor-
malization, and Mish activation functions) and the CBL module (consisting of Convolution,
normalization, and LeakyReLU activation functions) for feature extraction. It also joins
the Spatial Pyramid Pooling Networks (SPPNet) and Path Aggregation Network (PANet)
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modules for feature extraction while adding two network modules, SPPNet and PANet,
so that the target detection accuracy of the YOLOv4 algorithm is better than that of the
YOLOv3 algorithm. Additionally, the YOLOv4 algorithm adds image enhancement during
training, thus further expanding the dataset.
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2.3.2. Improvement of the YOLOv4 Algorithm

In this paper, the YOLOv4 algorithm is used to detect fruit tree trunks. When the
orchard robot travels between rows, the environment is relatively complex, and the detec-
tion accuracy of fruit tree trunks is an important prerequisite to ensure that the orchard
robot can safely navigate. Therefore, it is necessary to carry out certain optimizations of the
YOLOv4 algorithm so as to improve the detection accuracy of fruit tree trunks.

In this paper, we introduce an efficient channel attention mechanism ECA module,
as shown in Figure 3, where k = 5 is used as an example. The ECA module maintains the
dimensionality of the channel, performs a global average pooling (GAP) operation on the
channel, and generates the channel weights using a Sigmoid activation function (σ) after
one-dimensional convolution. Finally, it multiplies the channel weights with the original
feature layer one by one to obtain a new feature layer, where the convolution kernel scale k
can be adaptively determined and is proportional to the channel dimension. Therefore, if
the channel dimension C is known, then the convolutional kernel scale k can be obtained by
calculating Equation (1). The ECA module adds little computational effort to the algorithm
and improves performance in all aspects.

k = ψ(C) =

∣∣∣∣∣ log2(C)
a′

+
b
′

a′

∣∣∣∣∣
odd

(1)
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where |*|odd denotes the nearest odd number to |*|, and a′ and b′ are function coefficients.
In this paper, a′ takes the value of 2, and b′ takes the value of 1.

In the YOLOv4 algorithm, the input dataset outputs three kinds of feature layers—
52× 52× 256, 26× 26× 512. and 13× 13× 1024—after feature extraction by the backbone
feature extraction network CSPDarknet53. Here, the 52 × 52 × 256 and 26 × 26 × 512 are
input into the PANet module after one convolution, and the 13 × 13 × 1024 feature layer is
input into PANet after channel stacking and three convolutions after the SPP module. In
this paper, the channel attention mechanism ECA module is added to these three feature
layers before channel stacking and five convolution operations in PANet. In the PANet
module, there are two up-samplings of the feature layer. This paper adds an ECA module
after up-sampling and performs an enhanced feature extraction operation on the feature
layer after up-sampling. This paper, therefore, adds five ECA modules to the original
YOLOv4 algorithm and obtains the optimized new algorithm ECA5-YOLOv4 algorithm.
The network model of the ECA5-YOLOv4 algorithm is shown in Figure 4.
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2.4. Fruit Tree Trunk Positioning
2.4.1. Fruit Tree Trunk Camera Coordinates

Fruit tree trunks are detected by improving the YOLOv4 model on the left and right
images captured by the binocular camera. After detecting the fruit tree trunks, the fruit tree
trunks are matched, and when the same fruit tree trunks in the left and right images are
matched successfully, the pixel parallax D and image parallax d of the same fruit tree trunks
in the left and right images are obtained; according to the principle of triangulation of the
binocular camera, the camera coordinates of the fruit tree trunks are obtained (XC, YC, ZC).
The method in this paper is to project the ground so the YC coordinates do not need to be
solved to simplify the calculation process. The pixel coordinates of the geometric center
of the fruit tree trunk in the left image are (uL, vL), and the image coordinates are (xL, yL);
the pixel coordinates of the geometric center of the fruit tree trunk in the right image are
(uR, vR), and the image coordinates are (xR, yR):

D = (uL − uR) (2)

d = (xL − xR) (3)

Binocular camera left and right camera optical centers were expressed by OL, OR, with
OL as the origin, horizontally to the right for the axis XL positive direction, vertically down
for the axis YL positive direction, and horizontally forward for the positive direction of the
ZL, to establish the camera coordinate system OL-XLYLZL. f indicates the focal length of the
binocular camera in mm; b indicates the baseline of the left and right cameras in mm. The
structure of the binocular camera is shown in Figure 5.
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The principle of conversion of pixel coordinates to image coordinates and the similar-
ity triangle relationship between image coordinates and camera coordinates is rendered
as follows:

XC =
ZC · (uL − u0)

fx
(4)

where fx denotes the pixel coordinate system u-axis scale factor, respectively, and u0
denotes the amount of lateral translation of the image coordinate system origin in the pixel
coordinate system.

According to the triangulation method,

ZC =
f · b
d

=
f · b

xL − xR
(5)
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The horizontal coordinates of the geometric center of the fruit tree trunk in the pixel
coordinate system, uL, uR in the left and right images, respectively:{

uL = f ·xL
fx

+ u0

uR = f ·xR
fx

+ u0
(6)

From Equations (5) and (6), the depth ZC is obtained as follows

ZC =
fx · b

uL − uR
(7)

Substituting Equation (7) into Equation (4), there is:

XC =
b · (uL − u0)

uL − uR
(8)

The coordinates (Xc, Zc) of the fruit tree trunk in the planar coordinate system XLOLZL
are obtained from Equations (7) and (8) where, b, u0, fx are camera internal parameters,
which can be obtained by camera calibration.

2.4.2. Fruit Tree Trunk Coordinate Conversion

Using the coordinate system and conversion relationship shown in Figure 6, this
paper will provide the orchard operation platform on the ground projection for the ground
coordinate system origin O: the binocular camera installed in the front of the vehicle in the
center; binocular camera geometric center of the projection of the ground for the point F;
⇀

OF for the ground coordinate system axis Z positive direction; horizontally to the right for
the axis of the X-positive direction; and the establishment of the ground coordinate system
XOZ. The ground coordinate system can be obtained by the camera coordinate system in
the planar coordinate system XLOLZL. The translation of X and Z direction is X0 and Z0,
respectively. When the camera coordinates are converted to ground coordinates, the Y-axis
direction is not to be calculated. The fruit tree trunk in the plane coordinate system XLOLZL
coordinates for (XC,ZC), and, in the ground, coordinate system coordinates for (Xg,Zg); the
conversion relationship is shown in Equation (9).{

Xg = XC − X0
Zg = ZC + Z0

(9)
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2.5. Calculation of Navigation Path and Attitude Parameters

When the orchard robot is traveling between rows, the binocular camera is used to
locate the tree trunks. Then, the coordinate conversion is used to obtain the sitting mark
of a plurality of fruit tree trunks in the ground coordinate system as Gi(Xgi,Zgi). Among
them, the coordinate point of Gi(Xgi,Zgi) < 0 is regarded as being located on the left side
of the orchard operation vehicle, and at this time, the left-side sitting mark is GLj(Xglj,Zglj).
The coordinate point of Xgi ≥ 0 is regarded as being located on the right side of the orchard
operation vehicle, and at this time, the right-side sitting mark is GRk(Xgrk,Zgrk).

The combination of points on the left and the right is taken to be the midpoint, with a
total of j × k midpoints, denoted Cj,k(Xj,k,Zj,k).{

Xj,k =
Xglj+Xgrk

2

Zj,k =
Zglj+Zgrk

2

(10)

2.5.1. Navigation Path Calculation

The obtained j × k midpoints are fitted with a straight line using the least squares
method, and the calculated straight line is the navigation path, noting that the fitted straight
line is Z = a1X + a0. The calculation process is as follows:

j× k
j,k
∑

j=1,k=1
Xj,k

j,k
∑

j=1,k=1
Xj,k

j,k
∑

j=1,k=1
X2

j,k

·
[

a0
a1

]
=


j,k
∑

j=1,k=1
Zj,k

j,k
∑

j=1,k=1
Xj,kZj,k

 (11)

Find a0 and a1 from Equation (11):

a0 =

j,k
∑

j=1,k=1
X2

j,k

j,k
∑

j=1,k=1
Zj,k−

j,k
∑

j=1,k=1
Xj,k

j,k
∑

j=1,k=1
Xj,kZj,k

(j×k)·
j,k
∑

j=1,k=1
X2

j,k−
(

j,k
∑

j=1,k=1
Xj,k

)2

a1 =

j,k
∑

j=1,k=1
Xj,kZj,k−

j,k
∑

j=1,k=1
Xj,k

j,k
∑

j=1,k=1
Zj,k

j,k
∑

j=1,k=1
X2

j,k−
(

j,k
∑

j=1,k=1
Xj,k

)2

(12)

2.5.2. Calculation of Postural Parameters

The positional relationship of the orchard operation platform when traveling between
rows is shown in Figure 7, and the traveling direction of the vehicle is the same as the
positive direction of the Z-axis, which can be expressed by X = 0. Therefore, the heading
angle ϕ of the vehicle can be obtained by calculating the angle between X = 0 and Z = a1X +
a0; the lateral deviation λ of the vehicle can be obtained by calculating the perpendicular
distance from the origin O to the fitted straight line Z = a1X + a0. The calculation formulas
are shown in (13) and (14):

ϕ = 90◦ − |arctana1| (13)

λ =
|a0|√
1 + a2

1

(14)



Sensors 2023, 23, 8807 9 of 14
Sensors 2023, 23, x FOR PEER REVIEW 10 of 15 
 

 

fit a straight line
Z=a0+a1X

Orchard robot

GLj GRkGj,k

X

Z

λ

φ

…
…

…
…

O

 
Figure 7. Driving position relationship between rows. 

3. Results 
3.1. Data Acquisition and Model Training 

The experimental dataset collection site was located in the College of Engineering, 
Nanjing Agricultural University, and 700 fruit tree trunk images were collected. Data en-
hancement was performed on the images by adding noise and flipping to expand the da-
taset to 1500 sheets, including 1200 sheets for the training set and 300 sheets for the vali-
dation set. The fruit tree trunk part was labeled using the LabelMe tool with the category 
information “tree.” 

In order to verify the higher accuracy of the ECA5-YOLOv4 algorithm, this paper 
replaces the five ECA modules in the model with the new attention mechanism modules, 
SENet module, and CBAM module. The original YOLOv4 algorithm, ECA5-YOLOv4 al-
gorithm, SENet5-YOLOv4 algorithm, and CBAM5-YOLOv4 algorithm were trained for 
500 generations using the same dataset, respectively. The loss functions of the training 
models are shown in Figure 8. 

Training platform: Intel(R) Xeon(R) E5 2689 2.60 GHz CPU, 32 G RAM, NVIDIA Ge-
Force GTX 1070 8 G graphics card. 

Figure 7. Driving position relationship between rows.

3. Results
3.1. Data Acquisition and Model Training

The experimental dataset collection site was located in the College of Engineering,
Nanjing Agricultural University, and 700 fruit tree trunk images were collected. Data
enhancement was performed on the images by adding noise and flipping to expand the
dataset to 1500 sheets, including 1200 sheets for the training set and 300 sheets for the
validation set. The fruit tree trunk part was labeled using the LabelMe tool with the
category information “tree.”

In order to verify the higher accuracy of the ECA5-YOLOv4 algorithm, this paper
replaces the five ECA modules in the model with the new attention mechanism modules,
SENet module, and CBAM module. The original YOLOv4 algorithm, ECA5-YOLOv4
algorithm, SENet5-YOLOv4 algorithm, and CBAM5-YOLOv4 algorithm were trained for
500 generations using the same dataset, respectively. The loss functions of the training
models are shown in Figure 8.

Training platform: Intel(R) Xeon(R) E5 2689 2.60 GHz CPU, 32 G RAM, NVIDIA
GeForce GTX 1070 8 G graphics card.

The evaluation metrics of training results in this experiment include Precision (P),
Recall (R), and Frame rate. P and R are calculated as:

P =
TP

TP + FP
× 100% (15)

R =
TP

TP + FN
× 100% (16)
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where TP denotes the number of correctly detected fruit tree trunks in the picture, FP
denotes the number of detection errors in the picture, and FN denotes the number of missed
targets in the picture.
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Table 1 shows the training results of the original YOLOv4 algorithm, the ECA5-
YOLOv4 algorithm, the SENet5-YOLOv4 algorithm, and the CBAM5-YOLOv4 algorithm.

Table 1. Results of model training.

Model Precision/% Recall/% Frame Rate/(Frame·s−1)

YOLOv4 91.13 87.51 15.47
ECA5-YOLOv4 97.05 95.42 17.59

SENet5-YOLOv4 94.25 91.01 18.03
CBAM5-YOLOv4 96.83 95.14 17.50

From the result analysis, the ECA5-YOLOv4 algorithm, SENet5-YOLOv4 algorithm,
and CBAM5-YOLOv4 algorithm have shown improvements in precision rate, recall rate,
and frame rate compared to the original YOLOv4 algorithm. Among them, the ECA5-
YOLOv4 algorithm has the highest precision rate and recall rate of 97.05% and 95.42%,
respectively, which are improvements of 5.92%, 2.8%, and 0.22% in precision rate, and 7.91%,
4.41%, and 0.28% in recall rate when compared to the YOLOv4 algorithm, SENet5-YOLOv4
algorithm, and CBAM5-YOLOv4 algorithm, respectively. The SENet5-YOLOv4 algorithm
has the highest frame rate, which is 2.56 fps, 0.44 fps, and 0.53 fps higher than the YOLOv4
algorithm, ECA5-YOLOv4 algorithm, and CBAM5-YOLOv4 algorithm, respectively.

3.2. Posture Parameter Determination Test
3.2.1. Binocular Camera Internal Reference Measurement

In this experiment, a ZED2i (polarized version) HD camera was used; the focal length
f of the binocular camera was 1.8 mm, the base distance b was 120 mm, and the resolution
of the camera grabbing the left and right images was 1280 × 720. The internal parameters
of the camera were calibrated using the Software Development Kit (SDK 4.0) that comes
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with the binocular camera. According to the needs of fruit tree trunk localization, u0 and
result were obtained as 645.25 pixels and 529.88 pixels, respectively.

3.2.2. Experimental Design and Evaluation Indicators

This experiment was carried out in the College of Engineering of Nanjing Agricultural
University, and the orchard robot was driven into the rows of fruit trees and stopped at
any position in the rows, at which time the real values of the heading angle and lateral
deviation of the orchard robot were measured and recorded as ϕt, λt; the values measured
by the method in this paper are estimated values and recorded as ϕe, λe. The difference
between the real values of the heading angle and lateral deviation and the estimated values
are the error values and recorded as Eϕ, Eλ, which were taken as the evaluation indexes of
the present experiment. The valuation index is calculated as follows:

Eϕ = |ϕt − ϕe| (17)

Eλ = |λt − λe| (18)

3.2.3. Experimental Results and Analysis

The fruit tree trunks are detected by different models, and the positional parameters
of the orchard robot are also calculated. The fruit tree trunk results are shown in Figure 9,
and the calculation results are shown in Table 2. The ECA5-YOLOv4 image at Site 1 is
enlarged separately, and the effect is shown in Figure 10. In Figure 9, the actual heading
angle and lateral deviation of the orchard robot from Position 1 to Position 3 are 150.2◦

and 0.53 m, 158.5◦ and 0.48 m, and 160.4◦ and 0.52 m, respectively. From Table 2, it can be
seen that the best estimation of the positional parameters of the orchard robot was made by
the ECA5-YOLOv4 model, with the mean values of the errors of heading angle and lateral
deviation being 0.57◦ and 0.02 m. The results were compared with those of the original
YOLOv4, SENet5-YOLOv4, and CBAM5-YOLOv4 models; the mean values of errors were
reduced by 1.50◦ and 0.01 m, 0.86◦ and 0.03 m, and 0.60◦ and 0.03 m, respectively.
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Table 2. Test results of pose parameters determination.

Site

YOLOv4 ECA5-YOLOv4 SENet5-YOLOv4 CBAM5-YOLOv4

Heading
Angle
ϕe/◦

Lateral
Deviation

λe/m

Heading
Angle
ϕe/◦

Lateral
Deviation

λe/m

Heading
Angle
ϕe/◦

Lateral
Deviation

λe/m

Heading
Angle
ϕe/◦

Lateral
Deviation

λe/m

1 152.9 0.48 151.1 0.50 151.9 0.46 152.2 0.48
2 156.2 0.45 158.0 0.49 156.7 0.52 157.5 0.45
3 161.6 0.50 160.7 0.55 159.6 0.48 159.9 0.46

mean value
of error 2.07 0.03 0.57 0.02 1.43 0.05 1.17 0.05
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4. Discussion

In this study, based on the YOLOv4 model, the ECA5-YOLOv4 model is obtained by
introducing five ECA attention mechanism modules into the PANet module of the model,
and the ECA5-YOLOv4 model can efficiently and accurately detect the trunks of fruit trees,
which can provide a guarantee for obtaining the positional parameters of the orchard robot.

(1) Compared with the original YOLOv4, SENet5-YOLOv4, and CBAM5-YOLOv4
models, the accuracy of the ECA5-YOLOv4 model for fruit tree trunks improved by 5.92%,
2.8%, and 0.22%, respectively;

(2) The estimation method of inter-row position parameters of the orchard robot
proposed in this paper obtains the mean values of the errors of heading angle and lateral
deviation as 0.57◦ and 0.02 m, with low errors, which can provide a theoretical basis for the
orchard robot to navigate between the rows of fruit trees.
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