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Abstract: Self-supervised monocular depth estimation, which has attained remarkable progress for
outdoor scenes in recent years, often faces greater challenges for indoor scenes. These challenges
comprise: (i) non-textured regions: indoor scenes often contain large areas of non-textured regions,
such as ceilings, walls, floors, etc., which render the widely adopted photometric loss as ambiguous
for self-supervised learning; (ii) camera pose: the sensor is mounted on a moving vehicle in outdoor
scenes, whereas it is handheld and moves freely in indoor scenes, which results in complex motions
that pose challenges for indoor depth estimation. In this paper, we propose a novel self-supervised
indoor depth estimation framework-PMIndoor that addresses these two challenges. We use multiple
loss functions to constrain the depth estimation for non-textured regions. We introduce a pose
rectified network that only estimates the rotation transformation between two adjacent frames of
images for the camera pose problem, and improves the pose estimation results with the pose rectified
network loss. We also incorporate a multi-head self-attention module in the depth estimation network
to enhance the model’s accuracy. Extensive experiments are conducted on the benchmark indoor
dataset NYU Depth V2, demonstrating that our method achieves excellent performance and is better
than previous state-of-the-art methods.

Keywords: deep learning; indoor monocular depth estimation; self-supervised learning; multiple
loss functions; pose rectified network

1. Introduction

Through the visual system, humans acquire information about the external world
and can perceive and judge the surrounding environment accurately. Computer vision
technology, which aims to enable computers to have the ability to perceive the external
environment like humans, has become a significant topic in the current field of computer
research. Depth estimation is a very important problem in the field of computer vision, and
it has a wide range of applications, such as intelligent robots [1], 3D reconstruction [2,3],
autonomous driving [4], augmented reality [5], etc. Deep learning technology has brought
great advantages to depth estimation. It not only has lower requirements for hardware
devices and environmental conditions, but is also convenient and flexible to implement
with high accuracy. Eigen et al. [6] introduced a novel approach to monocular depth
estimation by utilizing a supervised learning methodology. Their method employed a
convolutional neural network architecture that integrated both global and local depth
information. This constituted the inaugural implementation of deep learning methodolo-
gies in addressing the challenges of monocular depth estimation. Numerous supervised
methods [7–12] have been proposed for monocular depth estimation subsequently. To
make effective use of large amounts of relatively cheap label-free data to improve learn-
ing performance, self-supervised methods have emerged. Garg et al. [13] proposed a
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self-supervised convolutional network trained using the color consistency loss between
stereo image pairs as a supervised signal. Godard et al. [14] proposed a left–right depth
consistency loss to train self-supervised networks. However, most of the existing depth
estimation methods [15–17] are designed for outdoor scenes such as cities, campuses, and
roads, and have limited applicability to indoor scenes, which have been relatively less
explored and have unsatisfactory results compared to outdoor situations. This is due to
the fact that indoor scenes are complex, dense, highly continuous, and computationally
demanding, as well as lack distinctive global or local features. Typically, the challenges and
difficulties of indoor monocular self-supervised depth estimation can be summarized as fol-
lows: (1) Structure priors: objects in indoor scenes have less structural regularity compared
to those in outdoor scenes, such as the sky, roads, etc. In indoor scenes, objects are arranged
in a disorderly manner, which poses a great challenge for depth estimation. (2) Challenging
lighting conditions: indoor scenes have more complex lighting conditions than outdoor
scenes, such as dark areas, reflective surfaces, etc. These complex lighting conditions
make it difficult to obtain accurate depth information. (3) Non-textured regions: indoor
scenes often contain some non-textured or low-textured regions, such as walls, ceilings, etc.
These regions can affect the commonly-used photometric loss function for self-supervised
monocular depth estimation and can lead to erroneous estimation. (4) Camera pose: in
outdoor scenes, sensors are usually fixed on moving vehicles, and pose estimation usually
only involves three degrees of freedom; however, in indoor scenes, handheld cameras are
often used and sensors can move arbitrarily, resulting in more complex motions, which
undoubtedly brings challenges to indoor depth estimation.

In recent years, some indoor depth estimation methods have also emerged. Zhou et al. [18]
proposed a new optical-flow-based training paradigm which handles the non-textured
regions. Yu et al. [19] proposed a novel technique that leverages distinctive keypoints,
patch-level warping, and superpixel-based regularization to cope with non-textured re-
gions. Li et al. [20] leveraged structural regularities and integrated normal estimation and
planar region detection as auxiliary tasks to deal with these problems. Ji et al. [21] proposed
two novel modules for depth and pose estimation: a depth factorization module that han-
dles the rapid scale changes in the depth network, and a residual pose estimation module
that mitigates the inaccurate rotation prediction in the pose network, resulting in improved
depth prediction. Bian et al. [22] argued that the rotation between consecutive frames is a
source of noise that affects the training process. Therefore, they suggested a rectification
step to eliminate the rotation. We share the same observation with Bian et al. [22] and
adopt the same strategy. However, we improve upon their work by further modifying the
network architecture and taking into account the effect of non-textured regions in indoor
scenes. The experimental results show significant improvements. In the following, we will
elaborate on our work.

In this paper, we propose PMIndoor, a self-supervised monocular depth estimation
framework, as shown in Figure 1. Our proposed model framework is mainly designed to
address two issues in indoor depth estimation: (i) non-textured regions, and (ii) camera pose.
Regarding the non-textured region problem, indoor scenes usually have many non-textured
regions, such as ceilings, walls, floors, etc. These regions often cause problems for the
commonly-used point-based photometric loss, because these regions usually have similar
values that lead to erroneous point matching. Therefore, we use multiple loss functions to
solve this problem. First, we employ the patch-based multi-view photometric consistency
loss proposed in P2net [19], which uses local patches instead of point-based methods
to obtain photometric loss, thus having better discriminability and accuracy for indoor
scenes. Second, we introduce two loss functions proposed in Structdepth [20]: Manhattan
normal loss and Co-planar loss, which use the structural regularity information of indoor
scenes to attain additional supervision information to solve the problem of non-textured
regions in indoor scenes. The main idea of Manhattan normal loss is to align the normal
vectors predicted from the depth map estimated from the main planes (walls, ceilings,
floors, etc.) with the dominant directions extracted from the image vanishing points, and
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the discrepancy constitutes the Manhattan normal loss. Co-planar loss is to first perform
plane region detection, and then unify the points that are located on the same plane to the
same plane, and compute the loss as Co-planar loss. Regarding the camera pose problem,
indoor scenes (usually captured with handheld devices) have more rotational motion
compared to outdoor scenes (where sensors are usually fixed on vehicles), resulting in pose
estimation that is more difficult and inaccurate. In the paper SC_Depthv2 [22], the authors
demonstrate through rigorous mathematical derivation that rotational motion is irrelevant
to depth estimation. Namely, if the rotational motion cannot be accurately estimated, it
will introduce a lot of noise to depth estimation. Therefore, we propose the Pose Rectified
Network (PRN), which is used to eliminate the rotational motion between adjacent frames,
to improve the accuracy of the model. And we introduce an additional supervision signal,
PRN loss, to constrain the training and to remove the rotational motion between adjacent
frames as much as possible. Furthermore, we incorporate multi-head self-attention modules
(MHSA) into the depth estimation network to improve the accuracy of the depth estimation.
Multi-head self-attention modules can overcome the limitation of the local receptive field
of convolutional neural networks, achieve global perception, and improve the capacity
for modeling of long-distance dependence and global correlation in images. At the same
time, they can make the model pay attention to multiple key regions simultaneously, let
the model extract different semantic information in different representation subspaces,
improve the feature capture ability of different positions and scales in images, and enhance
the model’s expression and generalization ability. We conduct extensive experiments on
the indoor benchmark dataset NYUv2 [23], and the experimental results show that our
method PMIndoor outperforms many previous state-of-the-art methods.

Figure 1. Overview of the proposed PMIndoor. Depth estimation network: we use a U-Net
framework, an encoder–decoder network with skip connections, and insert multi-head self-attention
modules (MHSA) to improve the accuracy of the model. Pose estimation network: we employ
an encoder–decoder structure to estimate the camera motion between two frames. Pose rectified
network (PRN): we introduce a pose rectified network (PRN) before the pose estimation network to
remove the rotational motion between adjacent frames. Multiple loss functions: we use multiple loss
functions including patch-based multi-view photometric consistency loss, Manhattan normal loss, Co-
planar loss, PRN loss, etc., to solve the camera pose problem and the non-textured regions problem.

Our contributions can be summarized as follows:

• We propose a new pose rectified network (PRN) to solve the camera pose problem,
while also using the pose rectified network loss to remove the rotational motion
between adjacent frames.



Sensors 2023, 23, 8821 4 of 15

• We use multiple loss functions, such as patch-based multi-view photometric con-
sistency loss, Manhattan normal loss, and Co-planar loss, to solve the problem of
non-textured regions.

• We add multi-head self-attention (MHSA) modules to the depth estimation network
to improve the expression and generalization of the model.

• The experimental results on the indoor benchmark dataset NYUv2 [23] demonstrate
that our method PMIndoor outperforms many existing state-of-the-art methods.

2. Method

In this section, we introduce the self-supervised monocular depth estimation frame-
work PMIndoor proposed in this paper. We first provide an overview of our framework.
Then, we explain three core components: depth estimation network, pose rectified network,
and multiple loss functions, in detail.

2.1. Overview

The self-supervised monocular depth estimation framework for indoor scenes de-
signed in this paper is shown in Figure 1. Our framework consists of four components:
depth estimation network, pose estimation network, pose rectified network and multiple
loss functions. We use a five-frame (one target frame, 4 source frames) input, which is
fed into the depth estimation network and the pose estimation network, respectively. The
depth estimation network adopts the U-Net architecture, an encoder–decoder network
with skip connections, to estimate the dense depth map. The pose estimation network
employs an encoder–decoder structure to estimate the camera motion between two frames.
Moreover, we introduce a pose rectified network (PRN) before the pose estimation net-
work to address the camera pose problem. We also incorporate a multi-head self-attention
(MHSA) module into the depth estimation network to improve the model’s accuracy. For
the loss functions, we use multiple loss functions including the patch-based multi-view
photometric consistency loss, Manhattan normal loss, Co-planar loss and PRN loss, etc., to
enhance the model’s performance and tackle the challenge of non-textured regions and the
camera pose problem.

2.2. Depth Estimation Network

The depth estimation network used in this paper is based on the U-Net architecture, a
typical encoder–decoder network. The basic structure follows Monodepth2 [17], and skip
connections are added in between to estimate the dense depth map. Moreover, we insert a
multi-head self-attention module (MHSA) between the encoder and the decoder. Multi-
head self-attention modules allow the model to focus on multiple key areas simultaneously,
enabling the model to obtain different semantic information in different representation
subspaces, enhancing the attainment of features at different positions and scales in the
image, and optimizing the model’s expressive and generalization abilities. At the same
time, it can break the limitation of the local receptive field of convolutional neural networks,
achieve global perception, and improve the modeling ability of long-distance dependence
and global correlation in the image. The specific network structure is illustrated in Figure 2.
We employ a four-head self-attention module. The high-dimensional features extracted
by the encoder are projected as the query (Q), key (K), and value (V), and are fed into
the MHSA module for training, as illustrated in Figure 3. This process can be formally
described as follows,

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V = AV. (1)

We also follow the same practice as Monodepth2 [17] regarding the output of the
depth estimation network, which produces four different scale depth maps to construct the
photometric loss, as illustrated in Figure 2.
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Figure 2. Structure of the multi-head self-attention (MHSA). The input tensor is transformed into
the corresponding query (Q), key (K), and value (V), and then fed into the MHSA for learning. A is
computed from Q and K.

Figure 3. Structure of Depth Estimation Network. The input is an RGB image, and the output is four
depth maps of different scales. The network is an encoder–decoder architecture with skip connections,
and a multi-head self-attention module (MHSA) is inserted in the middle to improve the accuracy of
the depth estimation.

2.3. Pose Rectified Network

This paper introduces the pose rectified network (PRN), which aims to eliminate the
rotational motion between consecutive frames and improve the model accuracy for the
camera pose problem. The SC_Depthv2 [22] mathematically proves that the rotational
motion and the depth estimation results are independent. Therefore, an inaccurate esti-
mation of the rotational motion will introduce significant noise to the depth estimation.
Based on this theory, we propose a novel PRN network that is integrated into the existing
depth estimation framework to estimate the rotational motion between consecutive frames.
We then apply a transformation projection using the estimated rotation to eliminate the
rotational motion between the frames, which may otherwise cause more errors.

Figure 4 shows the basic framework of the PRN. The pose rectified network operates
as follows. First, the PRN network estimates the rotational motion between two frames (In
and In+1), and obtains the rotation matrix Rot. Second, it applies the rotation matrix Rot to
warp the second frame (In+1) to align with the first frame (In), and produces a new frame
(I
′
n+1). This way, the rotational motion between the frames (In and I

′
n+1) is removed and

only translational motion remains. Next, it follows the conventional depth estimation steps.
The current frame (In) is fed into DepthNet for depth estimation, and the aligned frames
(In and I

′
n+1) are fed into PoseNet for pose estimation for further learning and training.

The pose rectified network (PRN) has a similar structure to the pose estimation net-
work, a simple encoder–decoder network, employed in SC_Depthv2 [22], but we improve



Sensors 2023, 23, 8821 6 of 15

the structure design of it. To improve the model performance and address the challenges
of long-distance dependency and global correlation modeling in image processing, we
integrate multi-head self-attention modules (MHSA) into the encoder–decoder architecture.
Figure 5 illustrates the structure of the pose rectified network. The output is the camera
rotation rather than the six degrees of freedom pose. Moreover, to clearly show the effect of
rotation removal, we visualize the images of consecutive frames after removing the rotation.
Figure 6 shows the visualization of the PRN warped results.

Figure 4. Pipeline of the proposed Pose Rectified Network (PRN). The relative rotational motion
between two adjacent frames is estimated by feeding them into the PRN, and then the second frame
is rotated to align with the first frame using the estimated rotation, thus removing the rotational
motion between the two frames. The aligned frames are then fed into the basic depth estimation
pipeline for further learning.

Figure 5. Structure of the proposed Pose Rectified Network (PRN). The input is two adjacent frames,
and the output is the relative rotational motion between them. The network is an encoder–decoder
architecture with a multi-head self-attention module (MHSA) in the middle.

2.4. Multiple Loss Functions

We adopt multiple loss functions [19,20,22,24] as the final loss function to address
the issues of non-textured regions and camera pose. The loss function consists of image
patch-based photometric consistency loss, Manhattan normal loss, co-planar loss, PRN loss,
and edge-aware smoothness loss. The following sections will provide detailed descriptions
of each component.
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Figure 6. Visualization of PRN warped results. In and In+1 are two adjacent input frames, and I
′
n+1

is the reconstruction of In+1 after removing the rotation between In and In+1 by the PRN network.
The black areas in I

′
n+1 represent the zero-padding process in image warping.

2.4.1. Patch-Based Multi-View Photometric Consistency Loss

Our loss function is based on the photometric consistency loss, a general loss function
of self-supervised learning, which uses reprojection to calculate the reprojection error.
However, unlike the common loss function in self-supervised learning, we adopt a new
image patch-based photometric consistency loss function proposed in P2Net [19]. This
method uses a support domain-based reprojection to compute the photometric loss, which
can handle non-textured region problems more robustly in indoor scenes. The following
steps show how to calculate the photometric consistency loss based on image patches.

Ωt→s
pi

= KTt→sD(pi)K−1Ωt
pi

, (2)

Ωp =
{(

x + xp, y + yp
)
, x + p ∈ {−N, 0, N} , yp ∈ {−N, 0, N}

}
, (3)

where N is set to 3. Then, based on this, the improved photometric consistency loss function is

LSSIM = SSIM(It[Ωt
pi
], Is[Ωt→s

pi
]), (4)

LL1 =
∥∥∥It[Ωt

pi
]− Is[Ωt→s

pi
]
∥∥∥

1
, (5)

Lph = αLSSIM + (1− α)LL1 , (6)

where α is set to 0.85.

2.4.2. Manhattan Normal Loss and Co-Planar Loss

Indoor scenes often contain large non-textured regions, which pose a significant
challenge for depth estimation. These regions can lead to photometric consistency loss
problems and ineffective mismatching. To address this issue, we incorporate the Manhattan
normal loss and Co-planar loss proposed in Structdepth [20]. The Manhattan normal loss is

Lnorm =
1

Nnorm
∑ MM

p MP
p (1− s(np, nalign

p )), (7)
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where MM
p represents the Manhattan region, MP

p represents the co-planar area, and Nnorm
represents the number of detected pixels located in the Manhattan region. The Co-planar
loss is

Lplane =
1

Nplane
∑
p

MP
p

∣∣∣Dp − Dplane
p

∣∣∣, (8)

where Nplane is the number of pixels in the planar regions Mp, and Dplane
p represents the

obtained co-planar depth. Here, we adopt the same method as Structdepth [20] for planar
region detection. We measure the dissimilarity of planar regions using color and geometry
features. Color is compared by the RGB values of the pixels. Geometry is computed by the
sum of the differences in normal vectors and distances to the origin of the planes. We apply
a graph-based segmentation algorithm [25] to segment the image into planar regions based
on the dissimilarity metric. Moreover, this algorithm has a high segmentation efficiency, as
it can perform image segmentation in near-linear time, with low added complexity, but
still achieve a good improvement of results.

2.4.3. PRN Loss

According to the theory and method in SC_Depthv2 [22], which was introduced in
Section 2.3, we propose the PRN loss as shown in Figure 7. We use the PRN to generate
the image I′n+1 that removes the rotational motion from the adjacent frame images In and
In+1. In theory, there is no rotational motion between In and I′n+1. That is, the Rot2 should
be 0 after applying another PRN to In and I′n+1. Moreover, the Rot3 obtained by In+1 and
I′n+1 should be equal to the Rot1 obtained in the first step. The structure of the PRN loss is
shown in Figure 7. Therefore, we establish the PRN loss as follows:

LRT = max(‖Rot2‖1 − ‖Rot1‖1 + δ, 0), (9)

LRC = ‖Rot3− Rot1‖1, (10)

where δ is set to 0.05.

Figure 7. The structure of the Pose Rectified Network (PRN) loss functions. The proposed PRN is
used to estimate the rotational motion between two adjacent frames, and the corresponding loss
functions are constructed using the Rot1, Rot2, and Rot3 obtained from the PRN to remove the
rotational motion between the adjacent frames.
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2.4.4. Edge-Aware Smoothness Loss

Similar to the general unsupervised depth estimation methods, we use the edge-aware
smoothness loss function proposed in [24] to ensure smooth depth value changes within
the objects:

Lsm = |∂xd∗t |e−|∂x It | +
∣∣∂yd∗t

∣∣e−|∂y It|, (11)

where d∗t = dt/d̄t is the mean-normalized inverse depth.

2.4.5. Total Loss

Therefore, we can obtain the final loss function form by combining the following
loss functions: image patch-based photometric consistency loss, Manhattan normal loss,
Co-planar loss, PRN loss, and edge-aware smoothness loss. Different loss functions are
used to deal with different problems, as described in the previous sections. Image patch-
based photometric consistency loss, Manhattan normal loss, and Co-planar loss are used to
handle the non-textured regions problem, and PRN loss is used to handle the camera pose
problem. The final loss function can be written as follows:

L = Lph + λ1Lsm + λ2LRT + λ3LRC + λ4Lplane + λ5Lnorm, (12)

where λ1 = 0.001, λ2 = 0.5, λ3 = 0.1, λ4 = 0.2, λ5 = 0.1. Regarding the acquisition of
these parameters, we first combine the data from the original papers’ Structdepth [20] and
SC_Depthv2 [22], and then scale and recombine them according to the same method as
in the original papers. We increase the weights of Manhattan normal loss and Co-planar
loss used in Structdepth by a factor of two. Because our improved model has a higher
accuracy, adding these two loss functions on this basis will lead to more improvement. The
performance of these two loss functions depends on the accuracy of the model. A more
accurate model can benefit from using larger weights to impose stronger constraints.

3. Experimental Results
3.1. Implemention Details

We use P2Net [19] without planar consistency loss as our baseline, which is publicly
available and built on Pytorch. The depth estimation network employs an enhanced model
architecture that integrates MHSA for the depth network. The pose estimation network
follows the same methodology as Monodepth2 [17], which infers the relative pose between
two image frames given as the input. Our model uses the Adam [26] optimizer and is
trained for a total of 50. The learning rate adopts a multi-step learning rate reduction
strategy, as in the previous work of Structdepth [20], i.e., the initial learning rate is set to
10−4 , and decays by 0.1 times at the 26th and 36th epochs. In order to speed up training
and obtain better results, we train on the pre-trained model [19]. We employ a unique
training approach. Initially, we train the network model without Manhattan normal loss
and Co-planar loss, with a batch size of 12 for 50 epochs. Subsequently, we add Manhattan
normal loss and Co-planarloss and train for an additional 50 epochs with a batch size of
32 to obtain the final results. This is because of previous work [20], which shows that the
effectiveness of these two losses depends on the accuracy of depth estimation, as well as
to avoid the low quality situation of the initial depth estimation. The training takes about
40 h using NVIDIA GeForce RTX 3090 GPU.

3.2. Dataset and Metrics
3.2.1. NYUv2 [23]

We use the NYUv2 [23] dataset, a common benchmark for indoor depth estimation,
consisting of 582 video scenes captured indoors with a Microsoft Kinect camera. The
original resolution of the images was 640 × 480. We follow the same training segmentation
as previous work [18] and use 283 scenes (approximately 230 K images) for training. Based
on the method of Structdepth [20], we apply Manhattan normal loss and Co-planar loss to
the training set after excluding 18 images that did not have vanishing points. We evaluate
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our model on the official standard test set of 654 images. We also perform data augmentation
on the dataset by randomly flipping, as well as color augmentation. Moreover, we distort all
images, crop 16 pixels from each edge, and resize them to 288 × 384 for training. We use the
camera intrinsic parameters provided by the official [23] and adjust them according to the
cropping and scaling. For training, we use monocular image sequences of five frames each.

3.2.2. Evaluation Metrics

We use two types of evaluation metrics for depth estimation: error and accuracy
metrics. The error metrics consist of the root mean squared error (RMSE), mean log10
error (Log10), and absolute relative error (AbsRel). The accuracy metric is the accuracy
under the threshold (δi < 1.25i, i = 1, 2, 3). Following Monodepth2 [17], we apply a median
scaling strategy to account for the scale ambiguity of the self-supervised monocular depth
estimation and cap the predicted depth to 10 m.

3.3. Results on the NYUv2 [23] Dataset
3.3.1. Quantitative Results

Table 1 shows the quantitative results of our model PMIndoor along with the results of
supervised and self-supervised methods on the NYUv2 [23] dataset. Our model outperforms
several previous self-supervised state-of-the-art methods, namely MovingIndoor [18], Train-
Flow [27], P2Net [19], and Structdepth [20]. In particular, compared to Structdepth [20], our
model achieves lower RMSE (52.8% vs. 54.0%), AbsRel (13.8% vs. 14.2%), and Log10 (5.9%
vs. 6.0%) errors and higher δ1 accuracy (82.0% vs. 80.9%), δ2 accuracy (95.6% vs. 95.4%), and
δ3 accuracy (98.9% vs. 98.8%) than Structdepth [20]. The reason is that Structdepth [20] only
uses Manhattan normal loss and Co-planar loss, while our model employs the proposed
PRN network and PRN loss to eliminate the rotational motion between adjacent frames,
as well as incorporates multi-head self-attention modules to enhance the model’s accuracy,
thereby obtaining better results. Our model also surpasses many previous supervised
learning methods [8,28–33]. However, there is still a gap between our model and the current
state-of-the-art supervised methods. The results of the ablation results are presented in
Section 3.4.

Table 1. Comparison of our method to existing supervised and self-supervised methods on
NYUv2 [23]. Our method is the best among the self-supervised methods here. ↓ indicates that lower
is better; ↑ indicates that higher is better. The best results among supervised and self-supervised
methods are in bold.

Methods Supervision
Error ↓ Accuracy ↑

AbsRel Log10 RMSE δ1 δ2 δ3

Make3D [28] ! 0.349 - 1.214 44.7 74.5 89.7
Liu et al. [29] ! 0.335 0.127 1.060 - - -

Wang et al. [30] ! 0.220 0.094 0.745 60.5 89.0 97.0
Eigen et al. [31] ! 0.158 - 0.641 76.9 95.0 98.8

Chakrabarti et al. [32] ! 0.149 - 0.620 80.6 95.8 98.7
Li et al. [8] ! 0.143 0.063 0.635 78.8 95.8 99.1

Laina et al. [33] ! 0.127 0.055 0.573 81.1 95.3 98.8
VNL [34] ! 0.108 0.048 0.416 87.5 97.6 99.4

MovingIndoor [18] % 0.208 0.086 0.712 67.4 90.0 96.8
TrainFlow [27] % 0.189 0.079 0.686 70.1 91.2 97.8

Monodepth2 [17] % 0.161 0.068 0.600 77.1 94.8 98.7
P2Net(3-frame) [19] % 0.159 0.068 0.599 77.2 94.2 98.4
P2Net(5-frame) [19] % 0.150 0.064 0.561 79.6 94.8 98.6

Structdepth [20] % 0.142 0.060 0.540 81.3 95.4 98.8

Baseline (P2Net [19] w/o planar loss) % 0.166 - 0.612 75.8 94.5 98.5
PMIndoor (Ours) % 0.138 0.059 0.528 82.0 95.6 98.9
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3.3.2. Qualitative Results

To demonstrate the effectiveness of our proposed method, we make the visualization
shown in Figure 8. We compare different models on the NYUv2 [23] dataset, including the
classical network models Monodepth2 [17], Structdepth [20], our model, and we also add
the ground truth images as references to better show the validity of our model. Figure 8
shows that our model achieves higher accuracy, especially in the regions marked by the
blue dashed boxes. For instance, in the first row, our model can better estimate the contours
of the cabinet and the objects on it, while the other two methods perform poorly; for the
second row, our model has a clearer estimation of the ceiling and wall, while with the other
methods, it is hard to distinguish the estimated results; similarly, for the third row, our
method has a very clear contour estimation of the object shown in the image, which is very
close to the ground truth; likewise, for the fourth row, our model can better capture the
details of the furniture, such as the sofa, table, etc., as indicated by the blue dashed boxes.
Thus, it can be seen that our method has a significant improvement over the previous
methods and achieves a good effect.

Figure 8. Qualitative comparison on NYUv2 [23]. Images from the left to right are: input, depth
from [17,20], PMIndoor (Ours), and Ground truth. Our method achieves a higher accuracy and
shows more details.

3.4. Ablation Studies

We conduct comprehensive experiments and ablation studies on the large indoor
benchmark dataset NYUv2 [23] to demonstrate the advantages of our method and the effec-
tiveness of each module. We first perform ablation studies on various network structures
to investigate how they affect the experimental results and the overall model performance;
we then perform ablation studies on different loss functions to examine how they influence
the final results and the overall model performance.

3.4.1. Effects of Network Design for the PMIndoor Network

We conduct ablation studies to evaluate the effectiveness of the pose rectified network
(PRN) and the multi-head self-attention (MHSA) module. First, we perform experiments
without using the PRN and MHSA module as a baseline. For all the experiments, we use
all the proposed loss functions except for the PRN loss. The results are presented in Table 2.
The first row of Table 2 represents the most basic case, where neither the PRN nor MHSA
are applied. The second and third rows represent the cases where the PRN and MHSA are,
respectively, added. The last row represents the case where both the PRN and MHSA are
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integrated. Table 2 indicates that both the PRN and the MHSA module enhance the model
performance. The addition of the pose rectified network (PRN) improves the performance
of the model on several metrics. The AbsRel is decreased from 0.142 to 0.141, and the
RMSE is reduced from 0.540 to 0.538. The δ1 is increased from 81.3% to 81.4%, and the δ2 is
increased from 95.4% to 95.5%. The MHSA module also enhances the model’s performance.
The AbsRel decreases from 0.142 to 0.140, the Log10 decreases from 0.060 to 0.059, and the
RMSE decreases from 0.540 to 0.533. The δ1 increases to 81.8% and the δ2 also increases to
95.5%. When combined with the PRN, these two methods achieve even better results. The
δ1 increases to 82.1%, and the δ2 increases to 95.6%. The AbsRel decreases to 0.138, and the
RMSE decreases to 53.0%. These are substantial improvements over the baseline.

Table 2. Ablation results on the network of our PMIndoor. ↓ indicates that lower is better; ↑ indicates
that higher is better. The best results are in bold.

Methods (w/o PRN Loss)
Error ↓ Accuracy ↑

AbsRel Log10 RMSE δ1 δ2 δ3

Original 0.142 0.060 0.540 81.3 95.4 98.8
PRN-Only 0.141 0.060 0.538 81.4 95.5 98.8

MHSA-Only 0.140 0.059 0.533 81.8 95.5 98.9
Ours (full) 0.138 0.059 0.530 82.1 95.6 98.9

3.4.2. Effects of the Proposed Losses

To assess the effectiveness of the proposed PRN loss and the impacts of Manhattan
normal loss and Co-planar loss, we perform ablation experiments using the same network
architecture, namely adding the PRN and MHSA module to the original network frame-
work. The results are shown in Table 3. The first row indicates the case without employing
the PRN loss, Manhattan normal loss, and Co-planar loss. The second and third rows
indicate the cases where the PRN loss, Manhattan normal loss, and Co-planar loss are
separately employed. The last row indicates the case where all the losses are employed,
comprising the PRN loss, Manhattan normal loss, and Co-planar loss. The experimental
results in Table 3 show that the PRN loss, Manhattan normal loss, and Co-planar loss all
improve the model performance. By adding the PRN loss, we lower the AbsRel from
0.147 to 0.146, and the RMSE from 0.560 to 0.556. We also raise the δ1 and δ2 to 80.7% and
95.4%, respectively. The Manhattan normal loss and the Co-planar loss further boost the
performance. They reduce the AbsRel to 0.138, and the RMSE to 0.530. They also enhance
the δ1 and δ2 to 82.1% and 95.6%, respectively. The combination of these two losses achieves
the best results, especially on the RMSE metric, which decreases to 0.528.

Table 3. Ablation results on losses of our PMIndoor. ↓ indicates that lower is better, ↑ indicates that
higher is better. The best results are in bold.

Methods
Error ↓ Accuracy ↑

AbsRel Log10 RMSE δ1 δ2 δ3

Original 0.147 0.062 0.560 80.6 95.3 98.8
PRN loss-Only 0.146 0.062 0.556 80.7 95.4 98.8

Manhattan loss + Co-planar loss-Only 0.138 0.059 0.530 82.1 95.6 98.9
Ours (full loss) 0.138 0.059 0.528 82.0 95.6 98.9

3.5. Real-Time Performance Comparison

Depth estimation is the process of recovering the depth information of a three-
dimensional scene from a single or multiple two-dimensional images. It is an essential
component for many applications such as autonomous driving, augmented reality, three-
dimensional reconstruction, etc. These applications often demand real-time performance,
which requires depth estimation models to be able to produce accurate depth maps with
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high efficiency. In order to assess the real-time performance of our proposed model, we
perform a frame rate (FPS) test and compare it with several other state-of-the-art depth
estimation methods. The test results are presented in Table 4.

Table 4. Real-time Performance Comparison on NYUv2 [23]. ↓ indicates that lower is better; ↑
indicates that higher is better. The best results are in bold and the second best are underlined.

Methods FPS
Error ↓ Accuracy ↑

AbsRel Log10 RMSE δ1 δ2 δ3

Monodepth2 [17] 45.2 0.161 0.068 0.600 77.1 94.8 98.7
Structdepth [20] 55.8 0.142 0.060 0.540 81.3 95.4 98.8

PMIndoor (Ours) 55.2 0.138 0.059 0.528 82.0 95.6 98.9

As shown in the table, our model attains a remarkable frame rate of 55.2 FPS, which
makes it feasible for real-world applications. In contrast, the Monodepth2 [17] method lags
behind our model in both speed and accuracy aspects. Furthermore, our model preserves
a high depth estimation accuracy that outperforms Structdepth [20], while achieving a
similar frame rate with it. This indicates that our model has a favorable trade-off between
accuracy and efficiency.

4. Conclusions

In this work, we propose a novel indoor depth estimation framework PMIndoor,
which mainly consists of three modules: (a) Pose Rectified Network (PRN): we introduce a
Pose Rectified Network (PRN) before the pose estimation network to remove the rotational
motion between adjacent frames, which can obtain more accurate pose estimation results
and solve the camera pose problem. (b) Multiple Loss Functions: we employ multiple loss
functions (including Patch-based Multi-view Photometric Consistency Loss, Manhattan
normal loss, Co-planar loss, PRN loss, etc.) to simultaneously address the camera pose
problem and non-textured regions. (c) Multi-Head Self-Attention Module: the Multi-Head
Self-Attention Module (MHSA) can enable the model to focus on multiple key regions
at the same time, enhancing the ability of capturing features at different positions and
scales in the image, and improving the expressive and generalization ability of the model.
We incorporate the Multi-Head Self-Attention Module (MHSA) into the depth estimation
network to improve the accuracy of the model. Experimental evaluations demonstrate the
superior performance of our method.
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