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Abstract: Smart healthcare is altering the delivery of healthcare by combining the benefits of IoT,
mobile, and cloud computing. Cloud computing has tremendously helped the health industry
connect healthcare facilities, caregivers, and patients for information sharing. The main drivers for
implementing effective healthcare systems are low latency and faster response times. Thus, quick
responses among healthcare organizations are important in general, but in an emergency, significant
latency at different stakeholders might result in disastrous situations. Thus, cutting-edge approaches
like edge computing and artificial intelligence (AI) can deal with such problems. A packet cannot be
sent from one location to another unless the “quality of service” (QoS) specifications are met. The
term QoS refers to how well a service works for users. QoS parameters like throughput, bandwidth,
transmission delay, availability, jitter, latency, and packet loss are crucial in this regard. Our focus is
on the individual devices present at different levels of the smart healthcare infrastructure and the QoS
requirements of the healthcare system as a whole. The contribution of this paper is five-fold: first, a
novel pre-SLR method for comprehensive keyword research on subject-related themes for mining
pertinent research papers for quality SLR; second, SLR on QoS improvement in smart healthcare
apps; third a review of several QoS techniques used in current smart healthcare apps; fourth, the
examination of the most important QoS measures in contemporary smart healthcare apps; fifth,
offering solutions to the problems encountered in delivering QoS in smart healthcare IoT applications
to improve healthcare services.

Keywords: quality of service; smart healthcare; Internet of Things (IoT); artificial intelligence (AI);
machine learning; cloud computing

1. Introduction

Health is one of the valuable assets for all human beings, and healthcare is the service
which can help and guide in sustaining this asset. Currently, better and more economical
healthcare services are needed more than ever due to the accelerated growth and increase
in population and several diseases. Internet of Things (IoT), mobile, and cloud comput-
ing have greatly assisted the health sector in connecting health centers, caregivers, and
patients for information exchange [1]. This arrangement, known as smart healthcare, is
quite cost-effective for stakeholders for transmitting and receiving medical records. Thus,
health devices generate large amounts of data and require processing as per the system
target. The continuous expansion of smart healthcare systems has led to a massive growth
in IoT healthcare devices, which are globally estimated to number more than 162 billion as
of 2020 [2]. Therefore, considering the huge volume of data in an energy-constrained envi-
ronment, contemporary communication architectures are becoming less effective. Similarly,
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prevailing computing methods are also failing to fulfill the performance expectations of
smart healthcare applications. Furthermore, medical data is time-sensitive, and delayed
medical data is of little help to caregivers (especially in emergencies). Low latency and bet-
ter response time are the key enablers for realizing efficient healthcare systems. Therefore,
swift responses among healthcare entities are of general significance, but in emergencies,
high latency for various stakeholders can lead to catastrophic circumstances.

When it comes to healthcare services, low latency and quick response times are crucial
for swift data access, which enables accurate diagnosis. The following few real-world
scenarios highlight their significance:

• A patient in a remote area with few medical facilities can receive the care they need if
the streaming videos between the doctor and patient work without any glitches.
The doctor will be better able to evaluate the patient’s symptoms and make an
accurate diagnosis.

• Low latency is advantageous for X-rays, MRIs, and other medical imaging since
it allows for speedy loading for the doctor and several viewing angles for quick
interpretation of the delivered reports.

• When a patient needs emergency care, it might be possible to save their life and
guarantee that they receive the right care if a clinician has quick access to their medical
records with no noticeable delays.

Cloud computing provides massive resources (computation and storage) to IoT-
enabled healthcare devices but experiences high latency and slow response time due
to being far from the end devices. Hence, to manage such situations, innovative tech-
niques like edge computing and artificial intelligence can resolve these issues [3]. In edge
computing, data are processed in edge devices located at the brink of the network [4].
This technique contributes to less latency and is more energy efficient. This enables edge-
assisted IoT systems to deliver medical services on time. Moreover, combining these two
technologies can lead the way to providing solutions to many challenging problems in
healthcare systems.

Analysis of medical data can be greatly improved by employing AI techniques and
can reduce the need for human intervention for decision-making. AI can predict diseases
by investigating medical records and can suggest prevention or treatment of the predicted
diseases to the patients. AI techniques need more computational power, so less resource-
hungry AI techniques are needed in edge computing [5]. In edge computing, AI methods
such as ML (machine learning) and DL (deep learning) are widely used for system training
and learning. The combination of AI and edge computing known as edge intelligence
is transforming smart healthcare applications. In edge intelligence, AI services and IoT
data are divided into fragments and these subsets are deployed in different edge devices.
Therefore, edge devices may contain complete or partial AI service/s or IoT data. Hence,
services are transferred from the cloud servers to the edge-assisted IoT devices, providing
AI and data storage closer to end-users [6]. At the same time, the IoT-based healthcare
system consists of various devices with different requirements. These IoT devices pose
several challenges, like higher battery lifetime requirements, interference from other devices,
environmental signal attenuation, poor reliability due to more delay, etc.

In general, accurate diagnosis, prompt treatment, and excellent patient care define
high-quality healthcare services. Technically, the smooth operation of medical monitors
and equipment assures the patient that his or her information will smoothly and promptly
reach the doctor’s computer. This will guarantee that the patient receives appropriate
medical attention on time. This enhances the quality of healthcare service by improving
response time and decreasing waiting between patients and doctors in state-of-the-art
medical facilities as well as remotely. The quality of service parameters in the wireless link
are of utmost priority, which in turn provides improved signal receptions, lowers packet
loss ratios, and minimizes power drain. In addition to this, distributed AI services and IoT
data present several QoS challenges, like battery lifetime, delay jitter, etc.
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1.1. Review Motivation

With its cutting-edge connections between patients and healthcare professionals, smart
healthcare is revolutionizing the industry. The core of the system is efficient communi-
cations. However, delivering QoS is challenging. There are not many publications that
explore how to improve QoS in smart healthcare at various layers of the underlying net-
work and services. Delay and energy efficiency concerns are of utmost importance for
dependable communications within healthcare networks.

QoS is a set of technologies and techniques that are used to manage network resources
and ensure that network traffic is delivered effectively. It enables you to prioritize different
types of traffic so that important traffic gets through first and helps to prevent congestion
on the network. QoS optimization is the process of configuring and fine-tuning these
QoS settings to improve the overall performance and reliability of the network. This can
involve setting priorities for different types of traffic, setting bandwidth limits, and using
techniques such as traffic shaping and packet scheduling to manage the flow of traffic. QoS
optimization is important in networks that carry a mix of different types of traffic, such as
voice, video, and data, to ensure that the network performs optimally for all types of traffic.

QoS is the overall performance of the network service in terms of transmission delay,
throughput, bit error rate, jitter, packet loss, energy drain, etc., from source to destination [7].
Currently, miniature size IoT enabled devices have greatly facilitated healthcare systems,
but at the same time, their computationally hungry functions require more battery power
and pose several challenges in edge AI-IoT-enabled healthcare systems. Our focus is on the
QoS requirements of the healthcare system (as a whole) and as well as on the individual
devices present at different levels of smart healthcare infrastructure, as shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 33 
 

 

are of utmost priority, which in turn provides improved signal receptions, lowers packet 
loss ratios, and minimizes power drain. In addition to this, distributed AI services and IoT 
data present several QoS challenges, like baĴery lifetime, delay jiĴer, etc. 

1.1. Review Motivation 
With its cuĴing-edge connections between patients and healthcare professionals, 

smart healthcare is revolutionizing the industry. The core of the system is efficient 
communications. However, delivering QoS is challenging. There are not many 
publications that explore how to improve QoS in smart healthcare at various layers of the 
underlying network and services. Delay and energy efficiency concerns are of utmost 
importance for dependable communications within healthcare networks. 

QoS is a set of technologies and techniques that are used to manage network 
resources and ensure that network traffic is delivered effectively. It enables you to 
prioritize different types of traffic so that important traffic gets through first and helps to 
prevent congestion on the network. QoS optimization is the process of configuring and 
fine-tuning these QoS seĴings to improve the overall performance and reliability of the 
network. This can involve seĴing priorities for different types of traffic, seĴing bandwidth 
limits, and using techniques such as traffic shaping and packet scheduling to manage the 
flow of traffic. QoS optimization is important in networks that carry a mix of different 
types of traffic, such as voice, video, and data, to ensure that the network performs 
optimally for all types of traffic. 

QoS is the overall performance of the network service in terms of transmission delay, 
throughput, bit error rate, jiĴer, packet loss, energy drain, etc., from source to destination 
[7]. Currently, miniature size IoT enabled devices have greatly facilitated healthcare 
systems, but at the same time, their computationally hungry functions require more 
baĴery power and pose several challenges in edge AI-IoT-enabled healthcare systems. 
Our focus is on the QoS requirements of the healthcare system (as a whole) and as well as 
on the individual devices present at different levels of smart healthcare infrastructure, as 
shown in Figure 1. 

 
Figure 1. QoS requirements at different layers of smart healthcare applications [7]. 

1.2. Review Contributions 
IoT, AI, cloud computing, machine learning, and other cuĴing-edge technologies are 

all part of the smart healthcare ecosystem. However, only a small number of articles on 
smart healthcare have considered QoS optimization. Our foremost contribution is to 
provide a thorough overview of all the key enabling technologies, covering everything 
from the fundamentals of smart healthcare to the most cuĴing-edge systems and services, 
such as delivering reliable levels of service for such applications. This article presents a 
systematic literature review (SLR). Along with it, the following list includes the areas on 
which our review focused: 

Figure 1. QoS requirements at different layers of smart healthcare applications [7].

1.2. Review Contributions

IoT, AI, cloud computing, machine learning, and other cutting-edge technologies
are all part of the smart healthcare ecosystem. However, only a small number of articles
on smart healthcare have considered QoS optimization. Our foremost contribution is to
provide a thorough overview of all the key enabling technologies, covering everything
from the fundamentals of smart healthcare to the most cutting-edge systems and services,
such as delivering reliable levels of service for such applications. This article presents a
systematic literature review (SLR). Along with it, the following list includes the areas on
which our review focused:

1. An innovative method of describing pre-SLR activities that enables readers to judge
whether an issue has undergone thorough research before examining it. To report
on previous multidisciplinary investigations on this new paradigm, the study chose
smart healthcare as the subject for conducting SLR. The mentefacto approach was
used to produce keyword co-occurrence maps, and VOS viewer was used to extract
pertinent research papers and analyze them. In MS Excel, thesaurus files were used to
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remove misspellings, synonyms, abbreviations, and elaborations. Section 2 elaborates
on the entire strategy.

2. A systematic review of recent research on QoS optimization in smart healthcare
applications is conducted, providing valuable insights for researchers and academics.
The state of the art in QoS optimization for healthcare applications is revealed by
this review, which incorporates articles, studies, datasets, and technology. Section 3
delineates the SLR.

3. By concentrating on how ML, cloud computing, and IoT are employed in smart
healthcare, a study of the application of enabling technologies, smart healthcare, and
QoS is offered. Secondary research analyzes primary studies using methods such as
systematic mapping, reviews, and SLRs. The study highlights the lack of compre-
hensive studies and shortcomings in current methods utilized in smart healthcare
applications. These investigations are presented in Sections 4 and 5.

4. Smart healthcare applications encounter challenges with QoS optimization due to
network congestion, interoperability problems, real-time demand, and cost limitations.
Low latency is required by real-time requirements, network congestion produces
unstable connectivity, and interoperability provides seamless system and equipment
operation. Section 6 discusses and presents solutions to these issues.

5. Articles are chosen for their relatedness to cloud computing, machine learning, and
IoT in the context of smart healthcare. Reviewing the literature and extracting QoS
parameters, citation counts, and views, we analyzed in the result section how smart
healthcare applications and service quality are related.

To our knowledge, no other SLR has been written with such a theme or concentration.
Moreover, to validate our claim we conducted a topic-level pre-SLR search elaborated
upon in Section 2. In Section 3, SLR is delineated. Preliminary concepts are presented in
Section 4. Related work is highlighted in Section 5. Section 6 explains SLR results and
analysis. Section 7 is about responses to posed research questions. Section 8 presents the
challenges faced by SHAs and Section 9 elaborates recommendations and lessons learned.
In the end, Section 10 concludes the SLR with future work.

2. Pre-Systematic Literature Review

Smart healthcare has received a lot of attention since the recent COVID-19 pandemic.
In order to deliver smart healthcare services reliably, QoS methods and improvements
should be considered. In an endeavor to advance the body of knowledge in science, we
chose this subject for SLR to present recent multidisciplinary investigations that have been
conducted on this new paradigm. We believe that readers would benefit from and be
guided by this in determining if a particular issue has gotten a lot of research before taking
any topic under consideration. None of the Scopus, IEEE, or Google Scholar databases
produced any matches when the exact title of the SLR in double quotes was searched.
In this part, an innovative and straightforward method for disclosing pre-SLR activity
is discussed.

To extract the most pertinent research papers for the SLR, the following steps
were taken:

• A program called VOS viewer is used to create and display keyword co-occurrence
maps (KCM), as shown in Figure 2 [8].

• Smart healthcare was used as a single search phrase to search the top internet databases
(Scopus, IEEE, and Google Scholar) to create the keywords mentefacto, and the results
were saved as CSV files.

• Thesaurus files were subsequently created in the MS Excel program to filter out
keywords with various spellings, synonyms, abbreviations, and elaborations.

• To comprehend the knowledge structure of smart healthcare by looking at the key-
word relationships in the literature, these files were input into a VOS viewer to draw
a KCM [9].
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Figure 2. KCM of Scopus results as per keyword co-occurrence frequency [8].

According to KCM, the top three keywords are “IoT”, “Cloud”, and “ML”, with “smart
healthcare” appearing in Figure 3. Indeed, it is thanks to these technologies that smart
healthcare is already a reality. The strength of the relationships reveals how frequently the
terms are used together. All three technologies have several connections to smart healthcare,
indicating potential uses for them there. Additionally, link strength analysis reveals that
recent research in smart healthcare has emphasized IoT and ML over cloud computing,
with the latter receiving less attention.
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More connections exist between IoT and machine learning than between ML and
cloud computing. This analysis shows that the combination of ML and IoT is more recent
than the combination of ML with cloud computing. It is also likely that because the former
is a relatively new concept, the scientific world is just now beginning to pay attention to it.
The connections between IoT, ML, and cloud computing also give useful data, which are
compiled in Table 1.

Table 1. Link strength analysis among IoT, ML, and cloud computing.

Links Strength Information

IoT↔ML strong more research articles published
IoT↔ Cloud Computing strong more research articles published
Cloud Computing↔ML weak fewer research articles published

The findings of the keyword-based search process were then taken into account
while designing the keywords mentefacto as seen in Figure 4. As may be seen, a well-
organized SLR is suggested by the hierarchy of searched terms. As a final step in pre-SLR,
QoS synonyms, abbreviations, and elaborations were looked for in the filtered articles in
web databases.
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3. The Systematic Review Process

Systematic reviews offer an in-depth review of the most recent research on a specific
subject. Similarly, we conducted this SLR to compile and explain the current trends in the
field of smart healthcare, with an emphasis on QoS methods for delivering credible SHAs.
To identify and classify the QoS optimization in smart healthcare applications, a systematic
review of available and recent research is carried out. The researchers and academics would
receive knowledge and insights from this synthesis of numerous recent and cutting-edge
studies. To the best of our knowledge, no other SLR regarding QoS optimization in smart
healthcare applications has been published. This research drew on numerous articles,
studies, datasets, and different technologies used in this field.

3.1. Research Questions

Raising the proper questions makes review studies valuable and significant to the
research community since they influence the entire SLR process. Review questions explain
any changes or evolution in the SLR topic’s status and suggest if these changes should be
accepted as part of the body of knowledge [10]. Questions were organized in a hierarchy
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of fundamental inquiries to ongoing research difficulties to provide readers a thorough
understanding of the subject. Additionally, RQs were in line with the research objectives
and the most up-to-date procedures and techniques being used in SHAs. The research topics
that follow are intended to reveal the state of the art in QoS optimization for healthcare
applications. The following research questions are answered in this review:

• Which fundamental enabling technologies are primarily used in today’s smart health-
care applications?

• What is the scope of QoS optimization in recent smart healthcare applications?
• Which QoS parameters are mostly employed in current smart healthcare applications?
• What are the current QoS aware technologies, methods, tools, and datasets employed

in healthcare applications?
• What are the current QoS optimization challenges and solutions in smart healthcare

applications (SHAs)?

3.2. Search Strategy

Various reputed research data sources were explored to extract the required results
from the well-known digital libraries as enumerated below in Table 2. The research
community highly regards IEEE Xplore and ScienceDirect for their relevant material, open
access, and variety of publication types. Their availability of search capabilities and citation
analysis data in numerous formats is the most significant aspect. Additionally, Google
Scholar offers a vast number of search results, some of which even point to high-quality
research papers that may not be accessible through other search engines. Each database
offers a variety of logical tools that can be used to enhance search terms in an easy and
efficient way.

Table 2. List of Data Sources.

S.No. Name Web Link

1 IEEE Xplore Digital Library www.ieeexplore.ieee.org (accessed on 10 January 2023)
2 ScienceDirect www.sciencedirect.com (accessed on 17 January 2023)
3 Google Scholar www.scholar.google.com (accessed on 30 January 2023)

The research questions were broken down into individual keywords, and an array
of alternative spellings and synonyms was built. Furthermore, the query string was
composed using Boolean logic operators of AND and OR. Figure 5 below shows the simple
and sophisticated (using logical AND/OR operators) query strings, which were used to
search the previously mentioned data sources [11].

The identified keywords were used to search online data sources and databases. It
was discovered that longer keyword strings were not helping in determining individual
keywords’ contributions. Keyword strings were kept under 5 to 6 words unless unavoidable.
The below guidelines were followed:

• Advanced settings of databases were used to restrict search results or relevant papers
and considered metadata comprised of TAK (title, abstract, and keywords).

• For every search pass, only the first 100 results were reviewed.
• Mostly recent publications (3 to 5 years old) were considered unless unavoidable.
• If highly important papers were not available because of any restrictions (e.g., paid or

members only) then they were searched alternatively, such as on the author’s page.
• Reference management application was used to record and manage the references of

the papers—web links, books, etc.

The searched research was selected as per the relevance of formulated research ques-
tions. This selection criteria were carried out iteratively. In the first iteration, only titles,
abstracts, and keywords of the research were considered, and if required, the introduction
and conclusion were also reviewed to determine the paper’s relevance with the research

www.ieeexplore.ieee.org
www.sciencedirect.com
www.scholar.google.com
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question [12]. Subsequently, the research methodology of the selected papers was reviewed
to identify QoS parameters, network layers, technologies, and data sets employed in
smart health applications. Moreover, other than relevance, the following inclusion criteria
were considered:

• Research papers published in the last 3 to 5 years;
• Research papers in the English language only;
• Research papers published by academics only.
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Likewise, the following exclusion standards were taken into account:

• Research published in dissertations, unpublished work, and editorial notes;
• Duplicates and research papers not available in the full text.

According to the specified search and quality assessment criteria, data were retrieved
from the pertinent research papers as shown in Figure 6 [13]. Data analysis on QoS
enhancement in smart health care applications. Furthermore, pertinent information relating
to the research questions was recorded in our SLR.



Sensors 2023, 23, 8885 9 of 33

Sensors 2023, 23, x FOR PEER REVIEW 9 of 33 
 

 

 Research published in dissertations, unpublished work, and editorial notes; 
 Duplicates and research papers not available in the full text. 

According to the specified search and quality assessment criteria, data were retrieved 
from the pertinent research papers as shown in Figure 6 [13]. Data analysis on QoS en-
hancement in smart health care applications. Furthermore, pertinent information relating 
to the research questions was recorded in our SLR. 

 
Figure 6. The SLR flow diagram outlines the selection process and selections taken at various stages 
of the systematic review as well as how the articles that were found were screened [13]. 

4. Preliminary Concepts 
This section provides a brief explanation of the notions of smart healthcare, enabling 

technologies, and QoS. It has been the objective of the research to explore further the pre-
sent approaches of mixing various technologies to produce a high-quality SLR to describe 
the concepts and practices utilized in smart healthcare applications. According to this per-
spective, the goal of this research is to understand and examine the ways that current re-
search is now producing, reporting, and applying the process of introducing and employ-
ing cuĴing-edge ICT technologies to provide smart healthcare services with a higher QoS. 
The top three technologies used in smart healthcare are IoT, cloud computing, and ML, as 
was discussed in the pre-SLR section. Further details on the applications of IoT, ML, and 
cloud computing are provided after an introduction to smart healthcare. The foundations 
of QoS, its metrics, and its application to smart healthcare are then investigated. 

  

Figure 6. The SLR flow diagram outlines the selection process and selections taken at various stages
of the systematic review as well as how the articles that were found were screened [13].

4. Preliminary Concepts

This section provides a brief explanation of the notions of smart healthcare, enabling
technologies, and QoS. It has been the objective of the research to explore further the present
approaches of mixing various technologies to produce a high-quality SLR to describe the
concepts and practices utilized in smart healthcare applications. According to this perspec-
tive, the goal of this research is to understand and examine the ways that current research
is now producing, reporting, and applying the process of introducing and employing
cutting-edge ICT technologies to provide smart healthcare services with a higher QoS. The
top three technologies used in smart healthcare are IoT, cloud computing, and ML, as was
discussed in the pre-SLR section. Further details on the applications of IoT, ML, and cloud
computing are provided after an introduction to smart healthcare. The foundations of QoS,
its metrics, and its application to smart healthcare are then investigated.

4.1. Smart Healthcare

Traditional healthcare cannot address all the needs of the population due to rapid
population expansion. Hospital visits are challenging given the state of the planet, the
most recent pandemic (COVID-19), the high expenditures, and the distances. To satisfy
the demand for long-term care and remote medical monitoring, as well as to reduce the
financial burden on patients by creating a digital healthcare system, it is essential to rely
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on technology that connects easily accessible medical resources and healthcare services.
Smart healthcare is an IoT application that monitors, gathers, and analyzes medical data to
provide online healthcare services. Smart healthcare could result in the development of a
system of interconnected medical devices with sensors for the observation and treatment
of patient health, as shown in Figure 7 [14]. Medical sensors are compact, sophisticated,
reasonably priced, and light wearable sensor nodes used for health monitoring. They can be
attached or connected to devices inside or outside the body. By effectively integrating these
tiny devices with wireless technology, smart healthcare monitoring can be carried out using
the Internet of Things [15]. By automatically interacting with them, these technologies
alert users, physicians, and other healthcare providers, enabling them to deliver services
effectively [16]. Given the growing trend towards smart cities, an effective smart healthcare
system assures a healthy lifestyle for its citizens. Connectivity technologies are essential for
developing smart healthcare applications. Smart healthcare apps are powered by cloud
computing, machine learning protocols, and IoT. A patient record system that functions
properly with the right sensing mechanisms and gathers structured and unstructured data
for ML analysis is the technology and architecture of smart healthcare. Cloud computing
makes it simple to access medical data from numerous sources, including test results and
electronic medical records. Additionally, this framework offers analyses that allow medical
professionals to compare how they perform to norms for high-quality treatment [17].
Smart healthcare integrates medical technology (sensors), the cloud, and humans (ML)
to track, handle, and maintain patient records for continuing treatment and machine
learning analysis.
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The platforms and architectures used to achieve smart healthcare offer a wide range
of features. Perception, networking, middleware, and application layers are the four levels
that make up the architecture of smart healthcare apps. The three key components of the
architectures and platforms utilized to achieve smart healthcare are configuration, orga-
nization, and framework. To build seamless healthcare service environments, a variety
of important sensors and actuators with complementary applications are installed in het-
erogeneous computing grids as part of the configuration process. On the other side, the
organization integrates the physical requirements for healthcare with the hierarchy of the
design. Smart healthcare designs must be able to interface with several technologies—such
as Wi-Fi, Bluetooth, LoRa, etc.—as medical sensors will be linked to one another by a body
area network [18]. Organizations therefore look at the operational ideas and approaches
used in network designs. Libraries and environments implementing the healthcare architec-
ture are incorporated into a framework. Additionally, healthcare platforms can be divided
into network, computing, and service platforms.

Network platforms connect several architectural types, whereas computing platforms
are a nexus of more general ideas, such as database management, human–computer in-
terface, machine learning techniques, etc. A “service platform” is a more sophisticated
support layer that acts as a barrier between users and technology and could take the shape
of call center personnel or automated chatbots [19]. As a result, services can range from
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straightforward warnings to context-sensitive ones. For instance, contacting an ambulance
(based on geographic sensory data) for further paramedic assistance or reporting the num-
ber of miles traveled using a wearable sensor. Applications for smart healthcare include
telesurgery, monitoring vital signs in intensive care units (ICUs), and fitness tracking in
daily activities. Applications fall under two categories: emergency notification systems
(ENS) and remote health monitoring (RHM) (ENS). Patients can obtain medical care for
tracking symptoms, post-hospitalization care, etc., from home or in a remote geographic
location. A recent pandemic (COVID-19) or endemic is just one example of a medical
emergency that the ENS warns the general public or groups of individuals about. As
a result of the use of mobile devices to facilitate medical follow-up, “m-health”, which
utilizes and assesses health statistics, was also established [20].

4.2. Internet of Things

In a presentation describing how RFID may be used for supply chain management,
Ashton, K. [21] introduced the phrase “Internet of Things”. The phrase “Internet of Things”
today is used to refer to a network of devices and gadgets—including various kinds of
sensors and actuators, mobile phones, and wearable technologies—that communicate with
one another over the Internet [22]. These devices establish connections with servers so
that information can be retrieved and transmitted between them, successfully providing
essential services. This ground-breaking technology can be seen as a paradigm change in
patient health-focused low-cost healthcare applications. The Internet of Things connects
patients and clinicians in a setting that incorporates sensors, sophisticated algorithms,
cloud interfaces, and communication interfaces. Technology advancements in sensor, RFID,
and WSN networks support data collection infrastructure as shown in Figure 8. Advanced
algorithms are then used to analyze the data [23]. Cloud services can be utilized to upload
medical data and lessen the complexity of the scenario due to the resource limitations
of IoT devices. Healthcare applications cannot effectively use the delays provided by
cloud computing due to low latency, great dependability, and other criteria for healthcare.
With real-time analysis and efficient decision-making tools, healthcare applications are run
anywhere near users to overcome these limitations. To overcome these restrictions, fog,
and edge computing run healthcare apps close to IoT devices with real-time analysis and
efficient decision-making tools [24]. Despite all its advancements, the IoT continues to be
in its infancy. Numerous issues—such as the heterogeneity of various devices, scalability,
security, and privacy—are still being researched.
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Transportation, smart cities, monitoring, healthcare, and other industries are among
the applications covered by the IoT concept. Applications for the IoT can be used in the
healthcare sector to monitor patients at the hospital or, more precisely, at home for elderly
patients with chronic illnesses. This results in an earlier diagnosis, better treatment, lower
healthcare costs, and a longer life expectancy [25].
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4.3. Cloud Computing

In cloud computing (CC) the provision of virtualized, on-demand computing, data
storage, and networking capabilities via internet access via cloud services is completely
customizable. The complexity and cost of CC resources vary depending on the desired
capabilities and degree of application complexity for which they are used [26]. Compared
to local computing resources, the cost, manageability, and flexibility of cloud computing
resources have recently improved. Each data center in which cloud services are normally
housed uses thousands of computers regularly. These systems must be able to scale up to
extraordinarily high service demand levels while preserving reasonable processing times
and low hardware and energy costs. This can enable interface simplicity that helps in
processing widely accessible cloud data and offers a variety of services by linking multiple
platforms. Infrastructure as a service (IaaS), platform as a service (PaaS), and software
as a service are the three main services that make up CC services (SaaS). Companies
may either buy or use CC services from cloud service providers, like Amazon, or they
can build their own private clouds for their employees to use. Participatory community
clouds are frequently used by research organizations and other pertinent organizations.
In hybrid clouds, both private and public strategies are employed [27]. To assist better
decision-making across a variety of application domains, including healthcare, applications
enabled by CC solutions can extract highly important data. CC is one of the key enabling
technologies for smart healthcare, which is made up of a variety of sensors, actuators, apps,
and communication technologies, as shown in Figure 9.
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Clinicians can provide services to clients wherever they may be thanks to cloud-
based health services. Patients can use applications that operate on a variety of platforms,
and their requests can be fulfilled automatically without the need for someone to handle
them. The two cloud-based healthcare applications that are most frequently utilized are
telemonitoring and electronic health records (EHR). EHR offer a standardized method for
gathering electronic patient health data. Clinic settings may more easily share various sets of
data, such as medical histories, vital signs, and medication, thanks to this standard platform.
To provide healthcare remotely, medical telemonitoring employs information analysis
and transmission methods. As indicated in [28], there have been various discussions
regarding how cloud resources could be used more efficiently to provide high-quality
healthcare services.

4.4. Fog/Edge Computing

Due to the numerous drawbacks of conventional centralized computing—such as
single point failure, excessive latency, energy consumption, etc.—a more distributed and
decentralized paradigm for cloud computing has emerged. Although CC does address
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several problems, such as single points of failure, it is still responsible for concerns with
latency and energy use brought on by big uploads to the cloud servers. It became apparent
that it would be best to upload only the data that required more processing to the cloud
rather than the entire acquisition of data. It would be preferable to carry out operations
that require lighter processing locally or very near to the user. Fog and edge computing are
concepts that were inspired by this particular idea. This processing idea is shared by fog
computing and edge computing. However, they differ technically as indicated by the Venn
diagram in Figure 10.
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computing paradigms.

Both paradigms are crucial in the context of SHAs for providing reliable services to
the stakeholders. The application requirements can determine the specific choice. Fog
computing, on the other hand, can be used for improved patient data analysis, such as in
laboratory reports or prognosis, whilst edge computing can provide quick responses for
patients at a distance from hospitals or doctors.

4.5. Machine Learning

Artificial intelligence, a new assistant for doctors, can help them with diagnostics
and even prognoses. The ability to learn from experience can also make it easier to fully
understand the conditions of the patients. The use of AI algorithms in SHAs allows for
the creation of computer programs that acquire knowledge and grow as a result of ex-
perience rather than being explicitly programmed to make predictions or suggestions.
Over the past few decades, technological advancements in computer power have made it
possible for resource-intensive AI methods, like machine learning solutions, to be created.
Machine learning programs use information for training, or data samples, to statistically
develop a predictive model, as shown in Figure 11 [29]. Applications that are needed
for sound decision-making employ this training to categorize things or make predictions.
Smart healthcare applications use machine learning logic to process health data gathered
from sensors and send it to the cloud for processing using machine learning algorithms.
The received data are referred to as the testing data, and the outcomes are adequately
emulated. After being emulated, the results will also be used for the training portion
of the forthcoming testing data. The data obtained by the sensors are therefore viewed
as testing data and, following processing, as training data for further medical assess-
ments. Computational efficiency, detection precision, and robust implementation are
the most important factors to consider when choosing machine learning algorithms for
healthcare applications [30].
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Typically, supervised learning, unsupervised learning, and reinforcement learning
are used to categorize machine learning systems. The use of labeled datasets to train
algorithms that accurately categorize or predict data or outcomes is the definition of
supervised learning. By giving the algorithm examples of inputs and the anticipated
outputs that they should produce, the goal is for the program to learn a general rule that
connects inputs to outputs. Unsupervised learning refers to the algorithms used to find
patterns in data sets, including data points that are neither categorized nor labeled. The
learning algorithm does not receive labels; instead, it independently uncovers hidden
patterns in the data and works as a feature extraction tool. An algorithm for reinforcement
learning can perceive and comprehend its environment, act and learn from mistakes, and
decide what actions intelligent agents should take to maximize the concept of cumulative
reward in a particular environment. As it traverses its issue area, the learning algorithm
interacts with a dynamic environment and receives feedback that could be compared to
rewards, which it seeks to maximize [31]. A subset of machine learning known as “deep
learning” algorithms may learn to carry out categorization tasks directly from images, text,
or voice. They are supported by synthetic neural networks.

Vital sign data is gathered via sensors, which enables AI to spot trends in real-time.
Triage systems powered by AI select cases according to their urgency, speeding up emer-
gency response. By using the aforementioned AI techniques, large amounts of data pro-
duced by health sensors may be processed quickly and easily. This swift processing aids
in prompt diagnosis, which decreases latency. Additionally, the use of AI-enabled remote
monitoring devices, automation of the patient’s screening process, instant notifications, and
predictive algorithms aid doctors in making timely decisions and substantially improve
response time. Deep learning models are developed using a large amount of sample data
and neural network designs with numerous layers to reach state-of-the-art accuracy [32].
Convolutional neural networks and deep belief networks are two examples of analytical
deep learning models that provide computational intelligence solutions by studying sizable
datasets in circumstances when shallow learning is unable to investigate the necessary
meaningfulness of trends. These learning models are frequently used in precision medicine
for disease diagnosis and therapeutic development processes [33]. The ML algorithms used
to anticipate and classify health data exhibit an analytical pattern and provide results that
are generally acceptable. AI and edge computing integration in smart healthcare enhances
latency, efficiency, and tailored healthcare delivery, promoting a responsive, dependable,
and effective system. They are regarded as a key enabling technology in this SLR due to
the frequent use of categorization and prediction models in smart healthcare applications.

4.6. Quality of Service

Given how delicate the subject of health is, accuracy and perfection are paramount.
Because health facilities cannot accept network performance difficulties or downtime
caused by QoS solutions that were earlier suitable, providing QoS is a crucial obligation for
smart healthcare apps. Since the information is so important to the patient’s health, the
system needs to quickly gather reliable data. The QoS requirements must be met when a
packet is sent from one place to another as shown in Figure 12. The throughput, bandwidth,
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transmission delay, availability, jitter, latency, and packet loss metrics are among them, as
pointed out by Sodhro in [34]. They are defined as:

• Throughput: within the time frame specified, data transmission traveled between
two points.

• Bandwidth: the optimum rate at which data can move through a network.
• Delay: elapsed time for data traffic to reach its destination.
• Availability: ratio of network’s accessibility to inaccessibility by its users.
• Jitter: rate of change in data packets’ delays.
• Latency: the sum of the time it takes a data packet to travel from its source to its

destination plus any computational delays.
• Packet loss: network issues preventing data packets from reaching their destinations.
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A fundamental QoS model considers the overlay apps and the properties of the
underlying network. These views need to be managed consistently because healthcare re-
quirements are constantly changing. Based on their requirements, the network components
are in charge of giving the apps a certain level of QoS. Applications can better track QoS
metrics, such as the access network, battery life, client preferences, and delays.

The performance of a network is evaluated using QoS measures. The physical, link,
network, transport, and application layers of the network stack are only a few of the layers
where these parameters can be considered. Signal strength, signal-to-noise ratio, and bit
error rate are examples of QoS parameters that can be applied at the physical layer. Packet
loss rate, latency, and jitter are examples of QoS parameters at the link layer. Throughput,
routing effectiveness, and congestion control are examples of QoS criteria at the network
layer. Round-trip duration, retransmission rate, and error correction are examples of QoS
parameters that can be used at the transport layer. Response time, availability, and reliability
are examples of QoS factors that can be applied at the application layer. According to the
needs and objectives of the network and applications, certain QoS factors may generally be
more relevant or significant at different tiers of the network stack.

5. Related Work

Secondary research examines prior studies—primary research—to direct future study
planning and offer practical insights. Methodologies used in secondary research include
systematic maps, reviews, and SLRs. The accompanying SLRs, surveys, and systematic
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mappings in smart healthcare applications are examined in this part to highlight the
dearth of comprehensive evaluations and shortcomings of current methodologies. “Smart
healthcare” was searched for in Scopus, IEEE, and Google Scholar (article titles only) to
find related literature. For this part, only survey articles (SLRs, surveys, and systematic
mappings) are taken into consideration. The results of the search are analyzed in Figure 13.
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5.1. Systematic Literature Reviews/Surveys/Reviews

In this section, an overview of pertinent evaluations of smart healthcare is covered.
These reviews fall within the categories of systematic mapping publications, surveys,
and SLRs.

An SLR conducted by R. Dwivedi [35] focused on IoMT applications in smart health-
care systems and delved into detail regarding how IoMT works. As examples of relevant
modern technologies, extended reality (XR) and its subsets, parallel processing techniques
and their variations, data technologies, and 5G were cited. The limitations and uses of IoMT
in the healthcare industry are then covered. Despite PRISMA guidelines being followed, no
research questions are mentioned, and no QoS-related issues or challenges are discussed.

The analytics from recent studies on IoT applications in healthcare are provided
in [36] by the authors. This SLR has tackled issues and obstacles relating to system,
user, cost, and data to offer IoT-based healthcare services. The writers gave the SLR
title their entire attention, but they failed to adequately handle QoS, one of the toughest
problems in healthcare. The article’s [37] major goal was to make clear the standards
and factors to be considered when integrating IoT into healthcare systems. In addition
to a comprehensive SLR, questionnaires and surveys were also conducted to investigate
several IoT-based healthcare solutions. During COVID-19, a lot of focus was also placed
on the IoT and how IoT-based telemedicine reduced the risk of infection transmission.
There was also a preliminary breakdown of the difficulties with money and privacy in
telehealth. A detailed SLR was conducted as part of another study [38] that concentrated
on IoT and AI-based E-cardiac care. Reporting on academic research that uses IoT and AI
to diagnose various heart irregularities may help people understand cardiovascular issues.
The E-Cardiac architecture and core formalized RQs were fully addressed. Considerable
amounts of research was reviewed, outlining both the advantages and limitations of AI- and
IoT-based cardiology.

In [39], discussion is confined to spotting weaknesses in edge-enabled smart health-
care’s blockchain-based security concerns. Access control, node security, and data trans-
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mission security have all been mentioned in recent literature as blockchain-based security
topics. The authors concluded that it will only be feasible to detect and address any poten-
tial operational issues and hidden risks by putting edge-enabled smart healthcare systems
into use in the real world. In a survey [40] on blockchain technology, many approaches for
sharing and obtaining access to health data among healthcare organizations were covered.
According to a substantial blockchain application addressing patient-based ownership of
their own health data that was offered, patients would own their data and be able to select
who had access to it.

A list of various smart health monitoring (SHM) frameworks that leverage ML and
other contemporary technologies has been created by the study [41]. The authors have
talked extensively about the use of various ML approaches in SHM as well as cloud and
fog computing. Network QoS was also addressed, and fog/edge computing was offered as
a remedy to reduce network delay and reaction time in healthcare applications. Further
suggestions for improving the QoS of fog/edge computing-based healthcare systems
included fault-tolerant and multi-tiered architecture.

The TOE (technology–organization–environment) paradigm was used by Renukappa [42]
to analyze why the health sector failed to implement smart strategies. The paper describes
the difficulties in adopting smart technologies in healthcare. According to the results, organi-
zational difficulties are the biggest barrier to implementing clever strategies. The two most
challenging issues in this regard are general planning and a lack of cultural transformation.
One of the key technical issues is cost and security. End users’ willingness to transition to
smart healthcare applications is the key tenet in implementing smart strategies for healthcare
in environmental issues. Every difficulty is covered in detail.

5.2. Comparison

The authors of the aforementioned papers have tried to include as many models,
frameworks, and technologies as they can in their publications. However, their literature
evaluations are only concerned with general characteristics of enabling technology in smart
healthcare. It was discovered that just one review article [41] was comparable to our review
paper, but QoS was not stressed, and the same coverage of too many technologies was
also noted.

The scope of QoS optimization has increased in current smart healthcare applications
to cover several important areas, such as monitoring and control in real-time: Smart
healthcare applications use a range of sensors and equipment to keep tabs on patients. For
these devices to operate consistently and properly, as well as for the timely and accurate
transmission of the data they collect, QoS optimization is crucial [43]. Patients can receive
care remotely through telemedicine and other forms of remote monitoring thanks to smart
healthcare applications. QoS optimization is crucial for ensuring that patient data are
transferred swiftly and accurately and that video and audio communications are clear and
have low latency. Predictive analytics and machine learning: smart healthcare applications
evaluate patient data and spot potential health hazards using predictive analytics and
machine learning. The speedy and accurate completion of these studies and the accessibility
of the data for healthcare practitioners are both dependent on QoS optimization [44]. Smart
healthcare applications must be able to communicate with a variety of tools, platforms,
and systems. This is known as interoperability. The effective communication of these
systems and the accuracy and dependability of the data they exchange depend on QoS
improvement. Security and privacy: reliable healthcare applications must ensure that
patient information is not accessed by unauthorized individuals and is only utilized for the
purposes for which it was collected. QoS optimization is essential for the security of the
systems and the data [45]. In general, QoS optimization is a crucial component of smart
healthcare applications because it guarantees that patients receive the best care possible
and that healthcare professionals have the information, they need to make wise decisions.
The analysis of the survey articles and SLRs mentioned above is summarized in Table 3.
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Table 3. Comparative evaluation of the examined publications using basic SLR criteria.

Ref. Review
Type Main Topic Year Covered Pre-SLR Criteria Papers

Screened RQs QoS

[35] SLR IoMT 2022 2005–2020 NA Citation
Impact factor ≥ 1 135 Not clear NA

[36] SLR IoT 2022 2015–2022 NA Keywords 106
Reasons

constraints
solutions

Cost

[37] SLR IoT 2022 2015–2021 NA Quality
assessment score 22 IoT adoption NA

[38] SLR IoT
AI 2022 2016–2021 NA

Citation count
impact factor

journals
104 E-Cardiac NA

[39] SLR IoT 2021 NA NA Keywords 81
Edge

computing
Blockchain

NA

[40] Survey Blockchain 2019 NA NA Keywords NA NA NA

[41] PRISMA ML 2022 2016–2021 NA Keywords 50 Smart
Technologies Network

[42] PRISMA Smart
Healthcare 2022 2015–2021 NA Geographical 26 Adoption

challenges NA

Our Hybrid QoS
Optimization 2023 2018–2023 Mentioned Recent keywords’

frequency 60 Optimization
issues Optimization

6. Analysis of SLR Results

This section presents comprehensive SLR findings from our research on QoS enhance-
ment in SHAs. As a result, 15 highly relevant technical papers on QoS optimization and
energy efficiency were found, with an emphasis on SHAs.

6.1. Paper Distribution

The papers were categorized based on the study’s goals and the year they were
published as shown in Figure 14. Additionally, a citation analysis is performed to determine
the current rate of research effort in the QoS of SHAs.
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The pie chart illustrates the quantity of recently released filtered research publications.
The fact that more than half of the articles were released in 2020 and 2021 shows how much
the research community has recently been interested in QoS-related issues in SHAs.
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Figure 15 displays the distribution of research articles by study methodology. Studies
that used simulations predominated, followed by publications and surveys that had an
experimental focus. Simulator-based papers were those that simply employed simulators,
whereas experimental-based papers included some or all hardware interfacing. Finding
review or survey articles proved challenging. This distribution demonstrates the QoS
research direction for the smart healthcare system. Furthermore, the dearth of review
publications points to the necessity of SLR in this area of research.
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Figure 15. Distribution of papers according to research methods.

A citation analysis was also conducted, as shown in Figure 16, to evaluate the impact
of selected works on the research community and body of knowledge. Although it was not
the most popular piece, the most-cited article was published in 2018. On the other hand,
the most well-liked piece was released later, in 2020, and garnered fewer citations. The
article that had the least number of views and citations was the one that appeared first, in
2017. As indicated by increasing views but relatively limited published research output
and consequently fewer citations, this trend shows that the research community has begun
to pay greater attention to QoS issues in smart healthcare.
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Figure 16. This pattern shows that QoS issues in smart healthcare are receiving increased attention
from the research community [46–56].

6.2. Golden Papers’ Synopses

These articles were also selected due to their strong connections to IoT, cloud comput-
ing, and machine learning, the three main pillars of smart healthcare.

The key themes of the papers are summarized and outlined. The literature reviewed
below explores the connections between smart healthcare applications and quality of
service. To show how influential each publication is in the subject of smart healthcare, QoS
parameters, citation counts, and views are extracted. Simulation tools and datasets are also
discussed to evaluate current trends in simulation software in the research community.

In [46], service latency is discussed at the network layer, with an emphasis on 5G
networks, to meet the demands of service requesters (SRs). Resource allocation schemes
are compared to determine the tradeoff between service satisfaction and revenue.
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Specifically, a distributed network selection technique is presented for the hetero-
geneous wireless network environment [47]. The network selection problem has been
characterized as an optimization problem to minimize the transmission energy consump-
tion, cost, latency, and distortion. Network selection problems are addressed through the
development of optimization strategies to obtain the best network possible within the
constraints of resources and latency. The reward and convergence of the objective function
are used to assess the method’s effectiveness.

The positive effects of edge computing for smart alternatives for distributed com-
putation as well as the evaluation of smart IoT medical sensing were underlined in this
paper [48] by the authors. This means that by fully or partially educating edge intelligent
nodes at the edge of the network level, system latency can be decreased. It is possible to
spread additional processing for computationally intensive applications throughout edge-
as well as fog-based nodes or perform it in the cloud. Such methods offer considerable
advantages in a situation where prevention and the early detection of symptoms are the
primary considerations.

In a CR-WBAN analytical model based on EH, a primary sensor network and a
secondary sensor network coexist [49]. The authors test the hypothesized WBAN of
the CR system’s throughput performance under the specified parameters using the TSC
(time-switching cooperation) and PSC (power-splitting cooperation) protocols. For the
considered network, they studied the performance of two EH-based spectrum-sharing
protocols, called TSC and PSC protocols, in terms of OP, throughput, and power efficiency
over log-normal-distributed fading channels.

A new job-offloading approach has been presented [50] to decide whether to offload a
job to a certain fog node or to a cloud server at a specific time. When there are no direct
connections between IoT nodes and cloud servers, IoT nodes may occasionally offload a
task to fog nodes first, and fog nodes may subsequently offload the activity to the cloud. To
resolve the issue, a Markov decision process (MDP) is employed. The suggested MDP takes
into account two decision-makers: IoT users can decide which fog nodes to assign their
work to, and fog nodes can decide whether to split up specific jobs between themselves
or to cloud servers to preserve the task balance. The simulation results show that the
suggested methodology outperforms competing strategies in terms of minimizing delays,
doing more tasks, and distributing the workload.

In this study [51], the confident information coverage hole repairing known as the
CICHR problem was solved using the algorithms confident information coverage hole pre-
dicting abbreviated as CICHP, CEER, and DEER. The CIC (confident information coverage)
concept served as an inspiration for these algorithms. The CEER and DEER algorithms have
outperformed C-CICHH and D-CICHH, respectively, in terms of MSD, moving energy
consumption, residual energy, and coverage ratio in the LS-HWSN based on the prior
knowledge of confident information coverage hole that was acquired using the CICHP
method. In comparison to C-CICHH and D-CICHH, simulation results show that the
suggested algorithms can provide higher network QoS, a longer network lifetime, and
reduced time complexity.

Feng [52] proposed a hierarchical approach called “green communication” for patient
monitoring. The energy consumption of each device throughout each of its several states—
idle, sleep, awake, and active—is modeled by this methodology. The base station chooses
the cluster heads. A centralized routing system chooses the cluster heads at the base station
level. The cluster heads no longer require join-request messages from the health monitoring
instruments for the clustered to gather. As a result, they use less energy, which increases the
network’s lifespan. Experimental outcomes demonstrate the effectiveness of our strategy.

The implementation of CoT in the context of smart healthcare is examined in this
study [53], along with CoT designs and platforms. It is still necessary to find effective ways
to achieve energy efficiency in data processing and transmission. The CoT architectures,
platforms, and their use in healthcare were surveyed in this research. Instead of focusing
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on more general recommendations, it largely studied the energy efficiency problems in
depth with the more pertinent proposals.

In this work [54], a rapid and dependable cloud resource allocation model for body
sensor devices to ensure QoS for healthcare applications utilizing smart homes is developed.
The suggested resource allocation strategy used Agent-Based Modeling (ABM) and the
ABM application NetLogo. Numerous sensors are used by the CABAN platform to collect
physiological data. Wearables, mobile devices, cloud platforms, participants, and display
terminals make up the system’s five core components. It analyzes and saves the data via
gateways and the cloud. Utilizing four different sorts of entities—turtles (moving entities),
patches (stationary agents), connections, and the listener—provides a context for replicating
natural processes. The evaluation is carried out by determining the algorithm’s execution
time, which determines how resources are distributed based on input data. The findings
show that agent-based modeling (ABM) can be used to address complicated challenges.

The proposed grey filter Bayesian CNN method [55] is introduced to reduce commu-
nication overhead besides response time. In comparison to recent efforts, the suggested
GFB-CNN method shortens the end-to-end response time by only storing the best human
activity using the Bayesian logistic sigmoid activation function. About the various numbers
of instances, the performance of the proposed GFB-CNN approach is assessed in terms of
communication time, overhead, and accuracy, and it is then contrasted with two previous
works. The simulation results show that, when compared to cutting-edge works, the
suggested GFB-CNN technique performs better. The proposed FB-CNN method, however,
neglects to take security and privacy into account while analyzing medical data.

In [57], static sensors are installed to watch over sleeping patients, while mobile
sensors track moving patients to collect data and store it on cloud servers. The proposed
SHM consists of the SSOA, BSN, cloud services, and data management domains. An SSOA
upholds security and QoS while engaging in activities. Knowledge-based repositories,
cloud servers, and semantic information extraction in the data management area are all able
to be accessed and exchanged by those with authorization. The mobile sensor recruitment
and selection phase assists in obtaining sensors from other clusters for the cluster that lacks
enough sensors—first from a neighboring area, then from a nonadjacent area—to improve
throughput and reduce latency.

To solve the COVID-19 diagnosis problem effectively while maintaining patient pri-
vacy, this paper [58] offers insights into how edge computing and machine learning tech-
nologies might be used. By enabling remote healthcare units to take advantage of the
collaborative learning paradigm without revealing local data, this paper advances the field
of research. To analyze visual input intelligently at the edge, a multi-modal ML model that
can recognize COVID-19 in both X-ray and ultrasound imagery is trained using a collabo-
rative learning framework based on clustered federated learning (CFL). In comparison to
conventional FL (such as X-ray and ultrasound images), it has been discovered that CFL
can handle the divergence in data distribution from numerous sources better while still
being able to meet strict security, privacy, and quality of service criteria (low latency).

To reduce network congestion, the suggested approach employed [59] a priority-
based data routing strategy. In terms of the percentage of correctly received packets,
average throughput, and average hop-by-hop delay, the suggested congestion management
mechanism for healthcare-focused IoT networks is assessed and contrasted with the current
renowned TARA methods in the literature. These findings suggest that in real IoT-based
healthcare studies, our proposed strategy performs better than the current congestion
control approaches. The presented method reduces the network’s overall energy use and
increases the QoS. The study papers mentioned above were carefully examined, and the
answers to the research questions are given below.

7. Responses to Research Questions

The answers to research questions are the main goal of this SLR. A distinct strategy
was used to respond to the first two questions because they are frequently asked and
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appear in many review articles. Our special edition is that we initially responded to this
query by earlier (pre-2018) research publications. Subsequently, we answered these queries
again after completing SLR and determined the present (2018–2022) research trends in
this regard.

7.1. Response to Research Question 1

As mentioned in the pre-SLR section, the same approach was adopted to search the
literature published before the year 2018, and several key enabling technologies were found
that were employed in smart healthcare applications a brief overview of those technologies
is given below.

Internet of Things technology permits for the integration of medical devices, such as
wearables and sensors, with healthcare systems to enable remote monitoring and commu-
nication [60]. It is covered more thoroughly in Section 4 in considerable detail. Big data in
smart healthcare refers to the use of large and complex data sets to improve healthcare de-
livery, medical research, and public health. Smart healthcare systems generate and collect a
vast amount of data from various sources such as electronic health records, medical devices,
and wearables. By using advanced analytics and machine learning techniques on this data,
healthcare professionals can gain insights that can improve patient outcomes and reduce
costs. For example, big data can be used to identify patterns in patient data that indicate a
potential health problem, such as a disease outbreak or an adverse drug reaction. It can
also be used to optimize treatment plans and improve population health management. In
medical research, big data can be used to identify new drug targets and biomarkers and
to accelerate the discovery of new therapies. However, Big data in healthcare also poses
some challenges, such as data privacy and security, data integration, and data governance.
It is important to ensure that data is collected, stored, and analyzed in compliance with
relevant regulations and guidelines for patient data privacy and security [61]. Large vol-
umes of medical data can be stored, managed, and processed thanks to cloud computing.
It also allows for remote access to health information and facilitates communication and
collaboration among healthcare providers [62]. As mentioned and discussed in the pre-SLR
section, the current research focus in smart healthcare is still very similar, but artificial
intelligence and more specifically machine learning are quite prominent, along with IoT and
cloud computing.

7.2. Response to Research Question 2

QoS is an important aspect of healthcare applications as it ensures that the system
can provide a certain level of performance for real-time and mission-critical services. As
of pre-2018 publications, QoS in healthcare applications was focused on medical imaging,
telemedicine, electronic health records (EHR), and medical devices. In general, QoS in
healthcare applications is essential for making sure that patients receive the most effec-
tive treatment and that healthcare professionals have the information they need to make
wise decisions. Currently, research publications are more focused on network perfor-
mance, data volume, data complexity, and system performance. Optimizing QoS in smart
healthcare applications typically involves identifying and addressing the factors that are
causing delays or other issues and implementing strategies to boost the general perfor-
mance of the communication and data transfer processes. This may include things like
optimizing network performance, minimizing data volume and complexity, and improving
system performance.

7.3. Response to Research Question 3

The fact that SHAs are a superset of IoT, cloud, fog, edge, ML, and other technologies
means that they inherit all the well-known characteristics of QoS as well as its difficulties
and problems, including delay, latency, energy consumption, and other metrics. Specific
QoS metrics have been considered crucial considerations in this domain because of the dy-
namic nature and strict requirements of smart healthcare systems. In emergency treatment,
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for instance, patient data must be provided and evaluated swiftly. Even though obtaining
QoS in SHA applications is difficult owing to several limitations, it is the most desirable
prospect in SHA applications. It is possible to fully utilize the QoS assessment of the
technology and get beyond its challenges because SHAs have many uses. We investigated
filtered articles in depth to identify the simulation models, QoS metrics, and sensors in
SHAs, as shown in Table 4.

Table 4. Simulation models, QoS metrics, and sensor-based trends in filtered articles.

Ref. Model QoS Metric Sensors

[46] Matching based model Latency, energy consumption IoT

[47] Deep Reinforcement
Learning (DRL) model Energy consumption and latency Mobile sensors

[48] DL models Energy consumption and latency IoT
[49] Monte Carlo Throughput and energy efficiency Medical and motion
[50] Hybrid fog–cloud of offloading (HFCO) delay IoT
[51] Confident information coverage (CIC) model Energy consumption Mobile sensors
[52] Cluster-based hierarchical approach Energy consumption Smart Sensors
[53] Cloud Based Models Energy consumption N/A
[54] Agent-based modeling and Ontology Overall QoS Body sensors
[55] Secure human-centric mobility-aware (SHM) model Throughput and latency CPS sensors

[56] Grey Filter Bayesian Convolution Neural Network
(GFB-CNN) Delay and latency Smart IoT sensors

[58] Clustered federated learning (CFL) model Latency Smart IoT sensors
[59] Network model Latency IoT sensors

Currently, SHAs are experiencing difficulties with latency, delay, and energy con-
sumption. Because of this, many QoS metrics for SHAs concentrated on ways to lower
total energy consumption and boost network throughput while simultaneously prolonging
network lifetime and assuring more dependable communication by lowering congestion
and collision. We investigate metrics like end-to-end delay, latency, throughput, response
time (RT), and energy consumption (EC) because we are primarily interested in network
performance. The amount of time a data packet needs to traverse from its origin to its
final location is referred to as network latency. The performance and efficiency of medical
equipment and systems can be significantly impacted by delays in intelligent healthcare
systems [63]. For example, in telemedicine applications, where patients and healthcare
providers communicate and interact remotely through video and audio, high latency can
result in delays and poor audio and video quality, which can affect quality of care. In remote
patient monitoring applications, high latency can also affect the accuracy and timeliness of
collected data as well as the ability to respond promptly to alerts and alarms. In general,
smart healthcare systems need to have low latency to ensure that medical devices and
systems function effectively, and that the quality of care is not compromised. To minimize
latency, it is important to optimize the network infrastructure and design, as well as the
protocols and algorithms used to transmit data.

Moreover, datasets and challenges in adopting smart healthcare are also analyzed.
The classification of researched articles is summarized in Figure 17 in terms of the QoS
parameters employed over the enabling technologies for developing SHAs that are QoS
aware [64]. Different models are applied to analyze QoS factors for efficient smart healthcare
applications. Delay, latency, and energy consumption are the QoS metrics that have been the
subject of the most research on SHAs, as is clear from the classification above. Furthermore,
the top technologies used in SHAs are 5G, IoT, and cloud/fog/edge computing.
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7.4. Response to Research Question 4

There are many QoS-aware technologies which are employed in healthcare applica-
tions, such as network virtualization and resource allocation. In [46], resource allocation
is used to maximize SPs’ income while considering SR priority and interference in the
5G network. Using cognitive radio technology, A. K. Shukla [49] primarily focused on
maximizing QoS through intelligent spectrum sharing, allowing different sensor nodes in
the network infrastructure to coexist without jeopardizing QoS standards. For on-demand
access to a shared collection of resources such as networks, servers, storage, and services
to maintain QoS requirements, authors in [53] used the cloud computing concept. In [54],
BANs are integrated with CC to fulfill the QoS requirements of caregivers. Traffic manage-
ment regulates the flow of data in the network to ensure that critical traffic is delivered
promptly and to prevent network congestion. Traffic management in healthcare refers to
the process of controlling and directing the flow of patients, staff, and resources within a
healthcare facility. This can include scheduling appointments, managing patient flow in
clinics and hospitals, and coordinating the movement of medical equipment and supplies.
The goal of traffic management is to improve the efficiency and effectiveness of healthcare
delivery, as well as to enhance patient satisfaction and safety. This can be achieved with
technology such as electronic medical records, computerized appointment scheduling
systems, and real-time location tracking systems [65].

To handle the data traffic of healthcare applications and achieve the necessary QoS
levels, researchers used a variety of routing algorithms in [51,59]. Quality of experience
(QoE) measurement involves using specialized tools and techniques to measure the per-
ceived quality of a healthcare service, including factors such as latency, reliability, and
usability. In healthcare, QoE measurement can be used to evaluate the effectiveness of
telemedicine systems, electronic health records, and other digital health tools. This can
assist developers and healthcare practitioners in identifying problem areas and making the
required corrections to improve user satisfaction [66]. In [46,51], QoE is addressed along
with QoS to measure the technical aspects as well as the user’s perception of the service.
Machine learning involves using machine learning algorithms to analyze and optimize QoS
in healthcare applications, such as by predicting and preventing network congestion. Some
of the most promising areas of research in machine learning for healthcare include [67]
Computer-aided diagnosis, in which machine learning algorithms are used to analyze
medical images to identify signs of disease. Predictive analytics uses machine learning
algorithms to predict future health outcomes based on a patient’s medical history and other
factors. This involves using data and analytics to predict and prevent issues that could
affect QoS, such as network congestion or device failures [68]. Natural language processing
(NLP) uses machine learning algorithms to extract information from unstructured data,
such as electronic medical records. Currently, various ML algorithms and models are used
in SHAs from underlying network selection to disease detection and even prognosis.

Methods that are quality-of-service-aware guarantee QoS while giving end users
effective medical treatment. Research articles review a variety of methodologies, and
they choose the most recent and widely used methodologies from the reviewed research
publications. The prioritization method involves assigning higher priority to critical traffic,
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such as real-time medical data, to ensure that it is delivered promptly. Bandwidth allocation
reserves a certain amount of bandwidth for critical applications and devices to ensure that
they have the resources they need to function effectively. To ensure that vital traffic is
delivered quickly and to avoid network congestion, traffic shaping modulates the data flow
throughout the network. Error correction uses techniques such as forward error correction
(FEC) to detect and correct errors in transmitted data to ensure that it is received correctly.
Load balancing distributes traffic across multiple network resources to ensure that no single
resource becomes overloaded and to improve overall system performance.

The electronic medical records (EMR) dataset [69] contains electronic medical records
for many patients. It can be used to evaluate and optimize QoS in healthcare applications,
such as by analyzing the effect of network latency on the precision and timeliness of data
collection and analysis. Clinical trial datasets are datasets containing data collected during
clinical trials, including data on patient outcomes and treatment effectiveness. They can
be used to evaluate and optimize QoS in healthcare applications, such as by analyzing the
impact of network latency on the accuracy and timeliness of data collection and analysis.
Wearable device datasets are collected from wearable devices, such as fitness trackers and
smart watches. They can be used to evaluate and optimize QoS in healthcare applications,
such as by investigating the influence of network latency on the correctness and timeliness
of data collection and analysis.

Numerous simulation technologies can be employed in applications for smart health-
care. Several scenarios were found in recent literature. A popular programming language
used to create applications for smart healthcare is Java. Platform independence, security
features, and the capacity to process enormous sizes of data are some of the characteristics
of Java that make it suitable for healthcare applications. Java-based healthcare applications
can be used to gather, store, and analyze patient data and can run on a range of devices,
including smartphones, tablets, and laptops. Medical imaging software, telemedicine
platforms, and electronic health record systems are a few examples of Java-based healthcare
applications [46,59]. Healthcare applications for the numerical computing environment and
programming language MATLAB (Matrix Laboratory) include image and signal processing,
data analysis, and method development. MATLAB can be used in smart healthcare to create
and analyze medical pictures, separate characteristics from signals, create prediction mod-
els, and create control schemes for medical equipment. To facilitate more complex analysis
and decision-making, MATLAB can also be combined with other tools and libraries, such
as those for machine learning and deep learning. Image-guided surgery, computer-assisted
diagnostics, and patient monitoring are a few examples of smart healthcare applications
that make use of MATLAB [47,50,52,56]. C++ is a sophisticated programming language that
is popular in many industries, including in applications of smart healthcare. It is frequently
employed in the creation of medical software, including clinical decision support systems,
medical imaging software, and electronic health record systems. Additionally, C++ is
used to create embedded systems and gadgets, such as wearable tech and medical sensors
that may gather and transmit patient data for tracking and analysis. Additionally, C++ is
frequently used to create simulations and other kinds of software for medical research. It is
a preferred option for creating complicated and resource-intensive healthcare applications
because of its flexibility and performance advantages, as mentioned in [51,58]. Healthcare
applications can benefit from the usage of TensorFlow, a potent machine learning software
framework that is available for free and open source. Predictive modeling, natural language
processing, and image and signal analysis are some of the activities that TensorFlow can
be used for in the healthcare industry [59]. The fields of complexity science and systems
thinking frequently use the programming language and modeling environment known as
NetLogo. It can be used to build simulations of intricate systems, such as those in health-
care. To simulate the effects of various treatment options on a patient’s health outcomes,
for instance, or to model the transmission of a disease within a population, NetLogo can
be employed. Additionally, the visualization features of NetLogo [70] can be utilized to
provide interactive displays of medical data, which can be helpful for both researchers
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and practitioners. CloudSim [71] is a simulation tool used to model and evaluate cloud
computing systems and services. In the context of smart healthcare, CloudSim can be used
to simulate and analyze the performance of various healthcare systems that are based on
cloud computing, such as electronic health record systems, telemedicine systems, and med-
ical imaging systems. By simulating these systems in a controlled environment, researchers
and developers can identify potential bottlenecks and optimize the performance of the
systems before they are deployed in real-world settings [57]. Additionally, CloudSim can
be used to evaluate the cost-effectiveness and scalability of different cloud-based healthcare
solutions. Table 5 lists numerous QoS aware technologies, techniques, and datasets that are
currently being used in healthcare applications.

Table 5. Selected papers to show different technologies, techniques, tools, and datasets.

Ref. Technologies Methods Simulation Tools Datasets

[55] Resource allocation Bandwidth allocation,
QoE Java platform Wearable device datasets

[46] Machine learning
predictive analytics Prioritization MATLAB EEG dataset

[47] Machine learning
predictive analytics Load balancing Wireless brain

monitoring system N/A

[49] Resource allocation Prioritization N/A Wearable device datasets

[50] Machine learning
predictive analytics Load balancing, QoE MATLAB Electronic medical records (EMR) dataset

[48] Traffic management Error correction MATLAB, C++/C# Wearable device datasets

[51] Machine learning
predictive analytics Load balancing Not mentioned Wearable device datasets

[52] Resource allocation Load balancing MATLAB Electronic medical records (EMR) dataset

[53] Resource allocation Load balancing NA Wearable device datasets

[54] Machine learning
predictive analytics QoE measurement NetLogo Electronic medical records (EMR) dataset

mHealth (mobile health)

[56] Quality of experience Prioritization CloudSim Wearable device datasets

[64] Security tools QoE measurement C++/Java Electronic medical records (EMR) dataset

[59] Traffic management Traffic shaping TensorFlow Electronic medical records (EMR) dataset
X-ray and ultrasound

7.5. Response to Research Question 5

QoS optimization in smart healthcare applications can be challenging due to several
factors [72]. Major obstacles include network congestion, interoperability issues, real-time
demand, and financial constraints. When too many users or devices attempt to access
the same network at once, network congestion can occur, resulting in delayed or unstable
connectivity. In healthcare, where many systems and devices may need to exchange
information, interoperability refers to the capacity of various systems and equipment to
operate together seamlessly. Real-time demands refer to the demand for very low latency
in specific healthcare applications, such as remote surgery or monitoring critical patients.
The cost of adopting and sustaining QoS might be a significant obstacle.

8. Challenges

As was stated in the response to research question No. 5, implementing SHAs involves
a number of challenges. In the following section, these challenges are described in more
detail with possible solutions.
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8.1. Challenge 1

When improving healthcare apps, the cost must be considered. Cost is the amount of
money spent on providing healthcare services while maintaining a standard of care given
to patients. One solution for cost optimization in QoS in smart healthcare applications is to
use data analytics and ML practices to detect patterns and trends in patient data and use
this knowledge to make more informed decisions regarding resource allocation. Designing
more efficient treatment protocols, identifying high-risk patients who may require more
frequent monitoring, and optimizing session timing are some examples of how to achieve
this. Another option to reduce the need for in-person visits and save healthcare costs is to
use telemedicine and remote monitoring technologies [73]. Additionally, by reducing the
number of people in need of medical care, the introduction of preventative measures and
health awareness campaigns can help reduce costs.

8.2. Challenge 2

Security and privacy must be considered while implementing quality of service (QoS)
optimization in smart healthcare systems. Sensitive patient data should be protected from
unauthorized access and hackers using security measures like encryption and authenti-
cation. One can limit who has access to patient information by using access restrictions.
Privacy is a significant problem in smart healthcare applications due to the sensitivity
of personal health information. The de-identification of patient data, safe data storage,
and strict access controls are all actions that can be taken to protect privacy. Healthcare
organizations must also abide by appropriate rules and regulations, such as HIPAA in the
US, to ensure that patient privacy is protected [74]. Owing to the blockchain’s decentralized
structure, healthcare providers may securely share patient data while also guaranteeing
that the data is impregnable and cannot be changed without the network’s consent. Addi-
tionally, smart contracts can automate several processes and ensure that only those with the
right authorization can access data [75]. This has the potential to greatly improve healthcare
delivery’s effectiveness and precision, which would ultimately benefit patients.

8.3. Challenge 3

Smart healthcare devices may generate a high volume of data, which can lead to net-
work congestion and result in delays in data transmission [76]. There are many techniques
to handle network congestion in smart healthcare applications in the context of QoS opti-
mization. By utilizing cloud-based services and edge computing, network performance can
be improved, and network load can be spread. Finally, having a solid network architecture
may help guarantee that medical data is transmitted quickly and safely. One example is
5G networks [8,77].

8.4. Challenge 4

Smart healthcare devices from different manufacturers may not be able to communi-
cate with each other, which can make it difficult to optimize QoS across the entire system.
One approach to achieving interoperability in smart healthcare applications in the con-
text of QoS improvement is to use a standard for data sharing, such as HL7 FHIR (fast
healthcare interoperability resources) [78]. This standard makes it easy to transfer data
between different platforms and systems while guaranteeing that the data is accurate and
current. Making sure that data is consistently formatted and easy for different systems
to interpret can also be accomplished with the use of a standard data model, such as the
one provided by HL7 FHIR. Another approach is to implement a distributed architecture,
which would allow for decentralized communication between various services, lessen
dependency on a central hub, and boost robustness and scalability. The use of reliable
and secure communication protocols, such as MQTT, CoAP, etc., could be an additional
solution [79]. Regarding high throughput, low power consumption, and short latency,
these protocols are designed to maximize service quality. Overall, building interoperability
in smart healthcare applications while enhancing QoS requires the use of standardized data
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interchange formats and protocols as well as the creation of a robust and adaptable design
that can adapt to the changing requirements of the healthcare system.

8.5. Challenge 5

Some smart healthcare applications have strict real-time requirements, such as in the
case of remote monitoring and telemedicine, which can make QoS optimization challenging.
Real-time constraints in smart healthcare systems can be met by applying QoS optimization
techniques. These techniques include priority-based scheduling, efficient bandwidth and
resource allocation, and the application of network protocols that facilitate real-time com-
munication [80]. The system can also be made more responsive and able to meet real-time
demands by using edge computing and a distributed design. It is also vital to assess and
monitor the system’s performance to make sure that the goal QoS is being met and to adjust
as needed. It is important for healthcare organizations to carefully consider these trade-offs
and limitations when selecting and implementing QoS optimization methods to ensure
that they meet the needs of the organization and its users [81].

In addition, authors in [82–88] presented several interesting and emerging research
challenges related to the QoS, medical QoS, and QoE and then proposed various frame-
works, methods, and algorithms. The effective and adaptive QoS optimization methods
are proposed in [89–93]. The AI- and ML-driven classification and regression methods are
the key role players in medical QoS and end-user perception analysis [94–98].

9. Recommendations and Lessons Learned

We have this opportunity to impart some recommendations from this extensive ac-
tivity through SLR development and responding to the research questions. It became
clear throughout the examination of the presented literature that smart healthcare is an
interdisciplinary subject with roots in social and political studies in addition to health and
engineering disciplines [99]. For instance, a patient should be allowed to decide whether to
receive treatment from a real doctor or from an ML-based algorithm, and they should be
fully informed about how and where their medical data will be utilized. From a technical
standpoint, algorithms should be thoroughly examined and free of bias because other-
wise, it could result in erroneous diagnoses [100]. Additionally, patients require accurate
diagnoses, and emotional, and psychological support from the doctor, which may not
be acceptable to the patient if a machine takes the doctor’s role for most of the doctor’s
activities. The excessive adoption of technology may also interfere with the doctor–patient
interaction, lowering expectations of care. The distribution of smart healthcare resources
should initially go to underserved areas, and difficulties with the digital divide should be
adequately handled, to maintain the quality of healthcare services [101]. To offer SHAs
continual quality improvement, a research and review framework for partnerships at vari-
ous levels should be established among healthcare stakeholders, academia, the research
community, and the public.

The lessons which we learned can be summarized as follows:

• The most notable trend is to switch from conventional computing techniques to novel
smart technologies to speed up the response time of SHAs.

• The most efficient method of computation is distributed since it is flexible and reduces
delays.

• Due to their natural capacity to process enormous data contents, ML and DL algo-
rithms are ideal for analyzing the health data that is currently available.

• Most readily accessible datasets are extremely general and have constrained access
for researchers.

• Most of the evaluated literature concentrated on broad QoS issues, whereas SHA
adoption requires more specialized research on its many practices and methodologies.

In summary, our research on QoS optimization in SHAs provided important new
information about QoS-conscious techniques and practices. Adopting smart technologies,
concentrating on AI techniques in SHAs, and enhancing QoS are some of the key lessons
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acquired. These lessons highlight the value of prompt responses and minimizing delays in
SHAs. Our recommendations concentrate on the implementation of AI techniques with
patients’ permission and the prioritization of resource distribution, with an emphasis on
underserved areas.

10. Conclusions & Future Work

QoS optimization in smart healthcare applications is the process of ensuring that
the efficacy and dependability of healthcare services meet or exceed that of patients and
healthcare professionals. To do this, several methods can be used, for instance, resource
allocation, network optimization, and the prioritization of critical tasks. Enhancing the
durability of wireless networks to reduce delay and increase the efficiency of remote patient
monitoring systems. Allocating computer power to ensure clinical decision support systems
have the necessary processing power to provide accurate and timely guidance. The major
goal of QoS optimization in smart healthcare apps is to increase the efficacy and quality of
healthcare services. Our future work on QoS optimization in smart healthcare applications
will evaluate how, by using blockchain technology, it is possible to store patient data
securely, prevent tampering with it, and enable secure information flow between healthcare
providers. Secondly, it will consider integrating 5G technology to support high-bandwidth
applications like telemedicine, remote surgery, and real-time monitoring. Moreover, it
will establish new QoS metrics that consider the unique requirements of smart healthcare
applications, such as patient privacy and confidentiality.
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