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Abstract: This paper presents a cooperative control method for connected and automated vehicle (CAV)
platooning, thus specifically addressing the challenge of sensor measurement errors that can disrupt
the stability of the CAV platoon. Initially, the state-space equation of the CAV platooning system was
formulated, thereby taking into account the measurement error of onboard sensors. The superposition
effect of the sensor measurement errors was statistically analyzed, thereby elucidating its impact on
cooperative control in CAV platooning. Subsequently, the application of a Kalman filter was proposed as a
means to mitigate the adverse effects of measurement errors. Additionally, the CAV formation control
problem was transformed into an optimal control decision problem by introducing an optimal control
decision strategy that does not impose pure state variable inequality constraints. The proposed method was
evaluated through simulation experiments utilizing real vehicle trajectory data from the Next Generation
Simulation (NGSIM). The results demonstrate that the method presented in this study effectively mitigates
the influence of measurement errors, thereby enabling coordinated vehicle-following behavior, achieving
smooth acceleration and deceleration throughout the platoon, and eliminating traffic oscillations. Overall,
the proposed method ensures the stability and comfort of the CAV platooning formation.

Keywords: intelligent transportation; connected and automated vehicle (CAV) platoon; sensor
measurement error; cooperative control

1. Introduction

A connected and automated vehicle (CAV), also known as an intelligent connected
Vehicle, represents an emerging product within the realm of vehicular networking within
the transportation sector. The CAV is set to facilitate the emergence of new forms and
modes of transportation operations. The platooning mode of CAVs represents one of the
archetypal applications in this domain. In the CAV platoon system, advanced onboard
sensors and communication technologies are deployed for the purpose of detecting and
exchanging information concerning the operational status of the vehicles. Through the
application of CAV platoon control techniques, these CAVs are orchestrated to maintain
a close spatial arrangement, thereby operating in a platoon formation. This operational
configuration holds the potential to enhance road capacity, reduce energy consumption,
and carry various latent advantages [1].

Traditional vehicle platoon control primarily relies on adaptive cruise control (ACC)
technology. Building upon the foundation of cruise control (CC), ACC technology utilizes
onboard sensors such as millimeter-wave radar and cameras to gather real-time information
about the preceding vehicle’s speed, acceleration, and headway distance. Then, this data
is used to regulate the throttle and brake systems, thereby enabling speed control within
a following scenario and maintaining a safe distance from the leading vehicle. However,
platoon operation lacks a coordinated mechanism, which results in an inability to mitigate
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traffic shockwaves originating from upstream traffic. This is due to exclusive reliance on the
motion states of the preceding and following vehicles for formulating control decisions in
the absence of real-time status data from other vehicles within the platoon. This deficiency
leads to a subpar performance in controlling the platoon system under complex operational
conditions [2]. In response to the aforementioned issues, scholars have introduced the
cooperative adaptive cruise control (CACC) technology, which encompasses cooperative-
perception-based CACC methods and cooperative-behavior-based CACC methods [3].
Dhawankar et al. [4] have addressed the development and numerical implementation of a
V2X (vehicle-to-vehicle and vehicle-to-infrastructure) control system architecture for an
autonomous vehicle platoon. Their investigation encompassed a comprehensive set of
case studies aimed at evaluating the system’s performance in various aspects, including its
responsiveness to the communication infrastructure, sensitivity to emergency scenarios,
adaptability under conditions of communication loss, and its behavior in dynamically
changing driving environments. Lazar et al. [5] present a comprehensive overview
of the control architecture for connected vehicle platoons, wherein they discuss sensor
technologies, in-vehicle networks, vehicular communication, and control solutions with the
goal of improving road safety, traffic flow, emissions, fuel consumption, and driver comfort.
The cooperative-perception-based CACC methods primarily utilize the preceding vehicle’s
speed information [6], information regarding the positions and speeds of multiple preceding
vehicles [7], or the position information of both preceding and following vehicles [8] to
optimize the control performance of individual vehicles within the platoon. However,
these cooperative-perception-based CACC methods do not consider all the vehicles within
the platoon as a cohesive unit; thus, they are effectively lacking in true collaboration,
which affects the platoon stability [9]. On the other hand, the cooperative-behavior-based
CACC methods treat all CAVs in the platoon as an integrated whole, thus achieving
synchronized control of the longitudinal driving behavior (acceleration or deceleration) in
the platoon system to maximize control performance [10]. Generally, cooperative-behavior-
based CACC methods transform the platoon control problem into an optimal control
problem for overall optimization. These methods utilize measurements of the current
platoon state to predict future system dynamics and optimize performance metrics, thereby
determining the optimal control decisions for all follower vehicles. By incorporating
various optimization objectives and constraints, these methods systematically enhance
comfort, safety, energy efficiency, and other performance aspects [11]. Ren et al. [12]
proposed a CACC algorithm based on the frenet frame, which decouples the vehicle motion
into one-dimensional motion in order to simplify the controller design and improve the
efficiency of the solution. Tan et al. [13] proposed a real-time predictive distributed CACC
control framework that addresses time delays, actuator lag, and utilizes intent-sharing-
based distributed computing to improve string stability under various traffic dynamics by
formulating a Kalman-filter-based real-time current driving state prediction model, thus
solving the problem using a sequential Kalman filter update process and implementing
a real-time distributed MPC-based CACC controller with delay-compensated predicted
initial conditions. Existing research indicates that, when compared with noncooperative-
behavior-based models, cooperative-behavior-based CACC methods can provide smoother
acceleration and deceleration behaviors, thereby ultimately enhancing the stability and
safety of CAV platoon systems [14].

In the literature, the design of CACC is based on the assumption that sensors can
acquire high-precision motion state data for a CAV platoon. Thus, the sensor uncertainty
remains a significant challenge for the deployment of CAV platoons in real-world road
traffic environments [15]. Tian et al. [16] designed a novel controller based on an interval
type-3 fuzzy logic system to address the challenges of the CAV’s lateral path tracking,
which handles uncertainties and tackles approximation errors and perturbations using
compensators. Additionally, the suggested adaptation laws estimate the bounds of uncer-
tainty and ensure stability under unknown dynamics and critical maneuvers. Focusing on
improving the lateral motion performance under different maneuvers and in the presence
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of parameter uncertainties and external disturbances, the article of [17] introduced a robust
two-layer control scheme that enhanced the performance of four-wheel independent-drive
electric vehicles. Moreover, in the logical architecture of a CAV platoon system, the ac-
quisition of data from onboard sensors is a pivotal step, which relies on various onboard
sensors to continuously measure and obtain the platoon’s motion state [18]. However, in
practical driving scenarios, onboard sensors may experience failures or exhibit significant
measurement errors over certain time intervals, thereby negatively affecting the control
efficacy of CACC algorithms. This could potentially introduce uncertainty in future vehicle
states, thereby leading to reduced platoon stability, oscillations, or even traffic accidents.
Li et al. [19] proposed an improved modified model predictive control (MPC) method
for energy-optimal ACC that addresses the negative effects of system noise. Andrade, E.
et al. [20] introduced a PReCAV, which is a mechanism for cooperative CAV platoon recov-
ery against false data injection attacks, thus utilizing virtual and physical system models
to maintain platoon stability and resilience, as well as ensuring stability and resilience in
the face of network and sensor attacks. Cui et al. [15] presented a simulation platform that
enables the assessment of CACC impacts on safety, thus considering factors such as vehicle
dynamics, sensor errors, automated vehicle control algorithms, crash severity, and cyber-
security attacks. The issue of sensor failures in CAV platoons is a current area of research
focus [21]. For instance, Wang et al. [22] proposed a robust, nonfragile, fault-tolerant control
strategy to ensure the functional safety of CACC in the case of sensor failures. Simulation
experiments demonstrated the effectiveness of this quantitative risk reduction method for
platoon driving. Cai et al. [23] addressed sensor failure in complex traffic scenarios, which
effectively controls the speed of the CAV platoon and prevents collisions. Guo et al. [24],
based on a switched sampling data CACC system model, proposed a state feedback con-
troller design approach that ensures the stable stability of the system and mitigates the
impact of sensor failures. Regarding onboard sensor measurement errors, Chen et al. [25]
introduced a preceding vehicle recognition method within a fully networked vehicle en-
vironment for mitigating sensor measurement errors in real traffic conditions. However,
experimental findings derived from the NGSIM real vehicle trajectory data underscored
the necessity for ensuring a relative position accuracy within a 1.1 m threshold to ensure
collision avoidance through the method. Yang et al. [26] proposed a robust H controller
to mitigate the combined impacts of sensor fusion errors and sensor/channel noise and
their effect on platooning performance, thus including the tracking performance and string
stability. Zhou et al. [27] focused on optimizing the car-following stability of CAV platoons
under periodic disturbance through an autonomous platoon formation strategy (APFS),
which contributed to the understanding of CAV platooning strategies and highlighted the
potential of APFS to improve the stability of CAV platoons in real-world traffic scenarios.
Sheikh et al. [28] primarily investigated collision avoidance for the on-ramp merging of
autonomous vehicles and proposed a collision avoidance model that effectively reduces col-
lision risks and improves traffic safety. Additionally, some researchers employ techniques
such as deep learning [29] and reinforcement learning [30] to enhance the performance of
CAV platoons under control delays and sensor measurement errors. Nonetheless, these
methods require large datasets for training and face generalization challenges.

Although the existing research on CACC has touched upon the issue of sensor mea-
surement errors, there has been a lack of in-depth exploration into the impact mechanism
of measurement errors on the collaborative control of CAV platoon systems. This gap
renders CACC methods less adaptable to intricate road traffic operational environments.
Addressing these concerns, this study establishes a cooperative-behavior-based CACC
state-space system model that accounts for onboard sensor measurement errors, thereby
utilizing a fixed time interval strategy that substantiates the cumulative effects of multiple
sensor measurement errors. Moreover, by employing Kalman filtering to mitigate the
negative impact of measurement errors, a strategy is proposed for optimal control decision
making without the constraints of pure state variable inequalities. As shown in Figure 1, the
initialization of the parameters, size, and state variables X0(t) of the CAV platoon occurs



Sensors 2023, 23, 9006 4 of 19

at time t. The leading CAV obtains the values of X0(t) through vehicle-to-vehicle (V2V)
communications. The solution algorithm solves the two-point boundary-value problem
(38) to determine the optimal control decisions U∗. The optimal control decisions are sent
from the leading CAV to the following CAVs to control the CAV platoon. The state variables
X(t + 1) for the CAVs are observed by the onboard sensors. Kalman filtering is employed to
estimate the value of X̂ (t + 1) for the motion state of the CAV platoon. Then, the two-point
boundary-value problem (38) is solved again to obtain the optimal control decisions at time
t + 1. These steps are repeated at each sampling time step. This strategy aims to ensure the
smooth operation of the CAV platoon system, thus safeguarding both the platoon stability
and comfort. The theoretical contributions of this article can be summarized as follows:

(1) Introduction to the cooperative control method considering sensor measurement
errors: The article proposes a cooperative control method that takes into account sensor
measurement errors in the context of CAV platooning. By analyzing the cumulative effects
of sensor measurement errors and introducing the application of Kalman filtering, the
proposed method effectively mitigates the adverse impacts of measurement errors and
enhances the stability and control performance in CAV platooning.

(2) Transformation from the CAV platooning formation control problem into an opti-
mal control decision problem: The article transforms the CAV platooning formation control
problem into an optimal control decision problem by introducing an optimal control de-
cision strategy that does not rely solely upon pure-state variable inequality constraints.
This approach enables the optimization of control decisions for the platoon while en-
suring smooth acceleration and deceleration, thereby eliminating traffic oscillations and
maintaining stability and comfort.

(3) Validation of the proposed methodology through simulation experiments: The
article evaluates how effective the proposed cooperative control method is through simula-
tion experiments that utilize real vehicle trajectory data, which represents the movement of
the leading CAV. The results demonstrate how the proposed method successfully mitigates
the influence of measurement errors and enables coordinated vehicle-following behavior,
achieves smooth acceleration and deceleration throughout the platoon, and eliminates
traffic oscillations. Overall, the proposed method ensures the stability and comfort of the
CAV platooning formation.

Figure 1. The conceptual flowchart of the proposed method.
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2. Cooperative-Behavior-Based CACC State-Space Model with Measurement Errors
2.1. Assumptions

Consider the CAV platoon system in a highway lane as illustrated in Figure 2, where
i ∈ {0, 1, 2, · · · , n} represents the longitudinal serial number of the CAVs in the platoon
stream ranging from 0 for the leading vehicle to n for the tail vehicle. The following
assumptions will be employed to design the longitudinal control of the CAV platoon
system:

(1) All vehicles in the platoon stream are CAVs.
(2) All CAVs are equipped with onboard sensors that are capable of collecting motion-

state data, such as speed and relative distance to the preceding vehicle. The models of
onboard sensors are the same in the CAV platoon.

(3) Bidirectional vehicle-to-vehicle (V2V) communication is established between the
leading vehicle and the following vehicles in the platoon. Each following CAV promptly
transmits real-time information (speed and distance) to the leading vehicle. The leading
vehicle computes and transmits optimal control decisions to each following vehicle to
regulate their respective driving behaviors.

(4) We disregard delays related to actuation and information transmission, that is, the
following CAVs can execute control decisions simultaneously.

Figure 2. The platoon of CAVs.

2.2. CACC State-Space System Formulation

According to the assumptions, V2V communication exists between the leading vehicle
0 and the following vehicle i in Figure 2. Each Following CAV i transmits real-time state
information gathered by its onboard sensors to the leading vehicle 0. The real-time state
information gathered by the onboard sensors includes the relative distance si between
vehicle i and vehicle i− 1, as well as the speed vi of vehicle i. The leading CAV 0 computes
the optimal control decisions ui and transmits them to vehicle i, thereby regulating the
driving behavior of the following vehicle i.

The core idea of cooperative-behavior-based CACC proposed in this paper is to
achieve convergence among various state parameters [31]. The state parameters of the CAV
platoon include the relative speed (vi(t)− vi−1(t)) and the deviation-from-equilibrium
distance (si(t)− s∗t (t)) [32]. Here, the deviation-from-equilibrium distance is defined as
the disparity between the measured distance si(t) and the ideal safe distance s∗i (t) for CAV
i relative to CAV i− 1. That is to say,

lim
t→∞

(vi(t)− vi−1(t)) = 0 (1)

lim
t→∞

(si(t)− s∗t (t)) = 0 (2)

where si(t) = di−1(t) − di(t). The di(t) is the longitudinal position of vehicle i in the
platoon at time t.
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The ideal safe distance s∗t (t) is calculated as follows:

s∗t (t) = r∗i · vi(t)+s f (3)

where s f is the safe distance of the CAV i to the predecessor vehicle. r∗i is the headway.
The headway of each of the CAVs in the platoon stream is constant based on constant time
headway (CTH) policy, that is, r∗ = r∗i .

We introduce the variables ξi(t) and ςi(t), which are

ξi(t)=si(t)− s∗t (t) (4)

ςi(t)=vi(t)− vi−1(t) (5)

The Equation (4) can be rewritten as

ξi(t)=di−1(t)− di(t)− r∗ · vi(t)− s f (6)

and then
ξ̇i(t) = −yi(t)− r∗ · ai(t) (7)

ς̇i(t) = ai(t)− ai−1(t) (8)

where ai(t) is the acceleration of vehicle i at time t
Denote ξ(t) = [ξ1(t), ξ2(t), · · · , ξn(t)]

T , ς(t) = [ς1(t), ς2(t), · · · , ςn(t)]
T and u(t) =

[a1(t), a2(t), · · · , an(t)]
T . ξ(t) and ς(t) are the state variables of the CAVs. u(t) is the

optimal control decision. Then, the linear time-invariant system state-space model is
defined as follows:

Ẋ(t) = AX(t) + Bu(t) (9a)

Y(t) = CX(t) + V(t) (9b)

where X(t)=
[
ξ(t)T , ς(t)T

]T
are the state variables. Y(t)=

[
ξ̄(t)T , ς̄(t)T

]T
are the obser-

vational variables of the system. A =

[
0n −In
0n 0n

]
, B =

[
M
S

]
, C =

[
In 0n
0n In

]
,

M = −r∗ · In, and S =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0

0 0
. . . . . . 0

0 · · · 0 −1 1

. In is n-dimensional identity matrix. 0

is the n-dimensional zero matrix.
Equation (9a) represents the state equation of the CAV platoon system, which describes

the relationship between the deviation-from-equilibrium distance, the relative speed, and
the acceleration of the CAVs in the platoon stream. Equation (9b) represents the observation
equation, where Y(t) is the measurement of the onboard sensor at time t, and V(t) ∈ <2n

is themeasurement error.

2.3. Analysis of Onboard Sensor Measurement Errors

In this section, we discuss the impact mechanisms of the measurement errors. In
real-world driving environments, the measurement values acquired by onboard sensors
regarding the vehicle’s motion state are subject to measurement errors due to various
factors such as outdoor temperature, rain, or foggy weather conditions; vehicle vibration;
and sensor installation positions.
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Let ξ̄i(t) be the observed value representing the deviation-from-equilibrium distance:

ξ̄i(t) = ξi(t) + εξi (t)

= s̄i(t)− s̄∗t (t)

= [si(t)+εsi (t)]−
[
r∗(vi(t) + εvi (t)) + s f

]
= ξi(t) + [εsi (t)− r∗εvi (t)]

(10)

where εξi (t) is the measurement error of ξi(t). s̄i(t) is the measurement value of si(t). εsi (t)
is the measurement error of si(t). s̄∗t (t) is the measurement value of s∗t (t). εvi (t) is the
measurement error of vi(t).

Similarly, let ς̄i(t) be the observed value representing the relative speed between
vehicle i to its predecessor vehicle at time t:

ς̄i(t) = ςi(t)+εςi (t)

= v̄i(t)− v̄i−1(t)

= [vi(t)+εvi (t)]−
[
vi−1(t)+εvi−1(t)

]
= ςi(t)+

[
εvi (t)− εvi−1(t)

] (11)

where εςi (t) is the observed error of ςi(t). Then,

εξi (t) = εsi (t)− r∗εvi (t) (12)

εςi (t) = εvi (t)− εvi−1(t) (13)

According to the statistical principle, we assume that the measurement errors of
εξi =

[
εξi (1), εξi (2), · · · , εξi (m)

]
follow a normal distribution with a mean of zero and a

variance of σ2
ξi

with the increase in the number of measurements. Similarly, the measure-
ment errors of εςi = [εςi (1), εςi (2), · · · , εςi (m)] follow a normal distribution with a mean of
zero and a variance of σ2

vi
, i.e.,

εξi ∼ N
(

0, σ2
ξi

)
(14)

εςi ∼ N
(

0, σ2
ςi

)
(15)

According to th second assumption, εξi and εςi are independently and identically
distributed. Therefore, let σ2

ξ = σ2
ξi

, σ2
ς = σ2

ςi
, i ∈ {0, 1, 2, · · · , n}, where σξ and σς are

constants.

Proposition 1. The linear combination of independent normal random vectors with zero mean
maintains normality.

Proof of Proposition 1. Denote X = [ε1, ε2, · · · , εn]
T ; εi represents the independent normal

random vectors with means of zero. α=[α1, α2, · · · , αn], where αi is a constant. Thus, the
linear combination can be rewritten as

αX=α1ε1+α2ε2+ · · ·+αnεn (16)
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The characteristic function is

ϕαX(t) = ϕα1ε1(t)× ϕα2ε2(t)× · · · × ϕαnεn(t)

= exp

(
−

α2
1σ2

1 t2

2

)
× exp

(
−

α2
2σ2

2 t2

2

)
× · · · × exp

(
−α2

nσ2
nt2

2

)

= exp

(
−
(
α2

1σ2
1+α2

2σ2
2+ · · ·+α2

nσ2
n
)
t2

2

) (17)

Thus, the linear combination of independent normal random vectors follows a normal
distribution with a mean of zero and a variance of

(
α2

1σ2
1+α2

2σ2
2+ · · ·+α2

nσ2
n
)
.

According to Proposition 1 and Equations (12) and (13), the Equations (14) and (15)
can be written as

εξi (t) ∼ N
(

0, σ2
ξ + r∗2σ2

ς

)
(18)

εςi (t) ∼ N
(

0, 2σ2
ς

)
(19)

Therefore, V(t) follows a normal distribution with a mean of zero and a variance of R
in the observation Equation (9b), and

R =

[ (
σ2

s + r∗2σ2
v
)
· In 0n

0n 2σ2
v · In

]
(20)

For CAV platoon systems, the measurement errors of the motion state produce a
cumulative effect, that is, the variance in the CAVs platoon’s motion-state measurement
errors is greater than the variance in the measurement errors from individual sensors. The
cumulative effect has a significant negative impact on the CAVs’ platoon control, thereby
necessitating the implementation of effective measures to mitigate the interference caused
by measurement errors.

3. CAV Platoon Motion-State Estimation Based on Kalman Filtering

In this section, Kalman filtering is employed to estimate the motion state of the CAVs’
platoon systerm, thus aiming to mitigate the negative impact of the cumulative effect of the
measurement errors. By applying the Euler formula, we derive the equivalent discrete state-
space equation corresponding to the linear time-invariant system state-space model (9):

X(t+τ) = ΦX(t) + Γu(t) (21a)

Y(t) = CX(t) + V(t) (21b)

where Φ=In + τ ·A, Γ=τ · B, and τ is the sampling time.
The Kalman filtering state estimation consists of two steps. The first step is called a

priori estimation:
X̂( t+τ|t) = ΦX̂( t|t) + Γu(t) (22)

where X̂( t+τ|t)=
[
ξ̂( t+τ|t)T , ς̂( t+τ|t)T

]T
is the prior estimated state of CAV i for next

time step t + τ, which is predicted based on the vehicle dynamics model Equation (9a) with
the control input u(t) at the current time step t.

The second step is called a posteriori estimation:

X̂( t+τ|t+τ)=X̂( t+τ|t) + K(t+τ)
[
Y(t+τ)− CX̂( t+τ|t)

]
(23)

where X̂( t+τ|t+τ) is the posterior estimated state vector. K(t+τ) is the Kalman gain.
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Equation (23) employs the Kalman filter gain to correct the a priori estimate X̂( t+τ|t)
by reducing the disparity between the actual measurement value Y(t+τ) and the estimated
value Ŷ( t+τ|t) of the CAVs’ platoon motion state at time t+τ . The estimated value is

Ŷ( t+τ|t) = CX̂( t+τ|t) (24)

and the Kalman gain is

K(t+τ) = P( t+τ|t)CT
[
CP( t+τ|t)CT+R

]−1
(25)

where
P( t+τ|t) = ΦP( t|t)ΦT (26)

P( t + τ|t + τ) = [I2n − K(t+τ)C]P( t+τ|t) (27)

By substituting Equation (22) into Equation (23), we derive the Kalman filter discrete
state estimator as follows:

X̂( t + τ|t+τ)=(In + τA)X̂( t|t) + Γu(t) + K(t+τ)
[
Y(t+τ)− C

(
(In + τA)X̂( t|t) + Γu(t)

)]
(28)

Equation (9a) is a continuous state-space equation. Therefore, it is necessary to convert
the discrete Kalman state estimator into a continuous Kalman state estimator. Both sides of
Equation (28) are subtracted by x and then divided by t, which can be written as

X̂( t+τ|t+τ)− X̂( t|t)
τ

=AX̂( t|t) + Γu(t) +
K(t+τ)

τ

[
Y(t+τ)− C

(
(In + τ ·A)X̂( t|t) + Γu(t)

)]
(29)

Let K(t) = K(t+τ)
τ and τ → 0. Then, taking the limit on both sides of Equation (29)

yields the optimal estimate of the linear continuous system for Equation (9a):

˙̂X(t)=(A− K(t)C)X̂(t) + (I2n − K(t)C)Γu(t) + K(t)Y(t) (30)

4. Control Strategy and Solving Algorithms
4.1. Formulation of Optimal Control

This paper formulates the following optimal control problem to optimize the control
decisions for all follower CAVs in the platoon at each sampling time τ, thereby improving
the performance of CAVs platoon stream:

min
u

∫ Tp

0

1
2

(
X̂(t)T

[
R1

R2

]
X̂(t) + u(t)TR3u(t)

)
dt+

1
2

X̂(Tp)
T
[

R4
R5

]
X̂(Tp) (31a)

˙̂X(t)=(A− K(t)C)X̂(t) + (I2n − K(t)C)Γu(t) + K(t)Y(t) (31b)

si(t) = xi(t) + r∗
(

v0(0) +
i

∑
j=1

yj(t)

)
+ s f ≥ smin > 0 (31c)

0 ≤ vi(t) ≤ vmax (31d)

umin ≤ ui(t) ≤ umax (31e)

X(0)=
[
ξ0

T , ς0
T
]T

(31f)

∀i = 1, 2, · · · , n (31g)

Equation (31a) is the the objective function, which is used to find the optimal control
input u∗(t) for the CAVs’ platoon system (9). The objective function consists of two

components. In the first part, X̂(t)T
[

R1
R2

]
X̂(t) is used to minimize the deviation-
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from-equilibrium distance and the relative speed between CAV i to CAV i− 1 in the platoon.
u(t)TR3u(t) is incorporated with the intention of enhancing the comfort of the platoon
operations by reducing emergency braking and sudden acceleration. The succeeding

component, denoted as X̂(Tp)
T
[

R4
R5

]
X̂(Tp) , assumes the role of the terminal cost

function. This particular term serves the purpose of imposing penalization upon deviations
of the state-variable values from the equilibrium point, thus effectively influencing the
objective function. The weight matrices R1, R2, R4, and R5 are symmetric positive definite
matrices. R3 is a positive definite diagonal matrix. Equation (31b), which delineates
the dynamic behavior of platoon systems over time, is the system-dynamics equation
governing the state variables encompassing the equilibrium-distance discrepancies and the
relative speed pertaining to every contiguous pair of CAVs in the platoon. Equation (31c)
embodies the safety constraint, which serves the essential function of guaranteeing that the
intervehicle spacing among any two successive vehicles within the platoon consistently
exceeds the defined threshold, which is denoted as smin. Equation (31d) represents the
speed constraint, where vmax is the maximum speed limit on the highway. Equation (31e)
sets the upper and lower limits for acceleration. Equation (31f) represents the initial values
of the state variables.

4.2. Solution Algorithm

In this section, a two-point boundary-value problem has been formulated to address
the optimal control problem as stated in (31); its resolution dictates the optimal control
decisions for the CAVs platoon. The optimal control problem (31) is characterized by the
inclusion of pure-state variable inequality constraints (31c). The incorporation of these
pure-state variable inequality constraints notably compounds the intricacy for devising an
efficient solution algorithm, primarily due to their dependency on the historical sequence
of the control actions. In order to tackle this challenge, the initial optimal control problem
(31) has been transformed into an equivalent problem that circumvents the presence of
pure-state variable inequality constraints. To achieve this, a new variable XN is introduced,
thus establishing a functional relationship as follows.

ẊN(t) =
n

∑
i=1

(
Xi

N,1(t), Xi
N,2(t), Xi

N,3(t)
)

(32a)

Xi
N,1(t)=(si(t)− smin)

2δ(si(t)− smin), δ(si(t)− smin)=

{
0 i f si(t)− smin ≥ 0
1 otherwise

(32b)

Xi
N,2(t)=(vmax − vi(t))

2δ(vmax − vi(t)), δ(vmax − vi(t))=
{

0 i f vmax − vi(t) ≥ 0
1 otherwise

(32c)

Xi
N,3(t)=vi(t)δ(vi(t)), δ(vi(t))=

{
0 i f vi(t) ≥ 0
1 otherwise

(32d)

The optimal control problem (31) can be reformulated as follows:

min
u

∫ Tp

0

1
2

(
X̂(t)T

[
R1

R2

]
X̂(t) + u(t)TR3u(t)

)
dt+

1
2

X̂(Tp)
T
[

R4
R5

]
X̂(Tp)+γ

(
X̂(Tp)

)2
(33a)

˙̂X(t)=(A− K(t)C)X̂(t) + (I2n − K(t)C)Γu(t) + K(t)Y(t) (33b)

ẊN(t) =
n

∑
i=1

(
Xi

N,1(t), Xi
N,2(t), Xi

N,3(t)
)

(33c)

umin ≤ ui(t) ≤ umax (33d)

X(0)=
[
ξ0

T , ς0
T
]T

(33e)

XN(0)=0 (33f)



Sensors 2023, 23, 9006 11 of 19

The Hamiltonian equation for the optimal control problem (33) is

H
(
X̂(t), λA(t), u(t)

)
= X̂(t)T

[
R1

R2

]
X̂(t) + u(t)TR3u(t) + λ(t)T(AX̂(t) + Bu(t)

)
+λN(t)

(
n
∑

i=1

(
Xi

N,1(t), Xi
N,2(t), Xi

N,3(t)
)) (34)

where λ(t) = [λ1(t), λ2(t), · · · , λ2n(t)]
T and λN(t) are the costate variables. Then, let

λA(t) =
[
λ(t)T , λN(t)

]T
, and let XA(t) =

[
X̂(t)T , XN(t)

]T
. In accordance with Pontrya-

gin’s minimum principle, the requisite conditions for u∗(t) to constitute an optimal solution
for the problem (34) are defined as follows:

λ̇A(t) = −
∂H

∂XA(t)
(35)

with the initial conditions given in Equation (33e) and the terminal conditions as

λ(Tp) = ∂

(
1
2

X̂(t)T
[

R4
R5

]
X̂(t)

)/
∂X̂(t)

∣∣∣∣
t=Tp

=

[
R4

R5

]
X̂(Tp) (36)

λN(Tp) = ∂
(

γ(XN(t))
2
)/

∂XN(t)
∣∣∣
t=Tp

=2γXN(Tp) (37)

Finally, the following initial and terminal conditions are derived, thus forming a
two-point boundary-value problem:

˙̂X(t)=(A− K(t)C)X̂(t) + (I2n − K(t)C)Γu(t) + K(t)Y(t) (38a)

ẊN(t) =
n

∑
i=1

(
Xi

N,1(t), Xi
N,2(t), Xi

N,3(t)
)

(38b)

λ̇(t) = −
[

R1
R2

]
X̂(t)− λ(t)TA−

[
cx
cy

]
λN(t) (38c)

λ̇N(t) = 0 (38d)

X(0)=
[
ξ0

T , ς0
T
]T

(38e)

XN(0)=0 (38f)

λ(Tp) =

[
R4

R5

]
X̂(Tp) (38g)

λN(Tp) = 2γXN(Tp) (38h)

where

cx =
∂ẊN(t)
∂X̂(t)

= 2


(s1(t)− smin)δ(s1(t)− smin)
(s2(t)− smin)δ(s2(t)− smin)

...
(sn(t)− smin)δ(sn(t)− smin)



cy =
∂ẊN(t)
∂y(t)

= 2


(vmax − v1(t))δ(vmax − v1(t))
(vmax − v2(t))δ(vmax − v2(t))

...
(vmax − vn(t))δ(vmax − vn(t))

+2


v1(t)δ(v1(t))
v2(t)δ(v2(t))

...
vn(t)δ(vn(t))

+


c1,y
c2,y

...
cn,y



ci,y =
i

∑
j=1

2
(
sj(t)− smin

)
δ
(
sj(t)− smin

)
, ∀i = 1, 2, · · · , n
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The CAV platoon cooperative behavioral control problem (31) is transformed into a
two-point boundary-value problem (38), which can be solved using various methods [33].
In this paper, the shooting method [34] is employed to solve the two-point boundary-value
problem (38), thus obtaining the unique solution for the following optimal control decisions:

u∗i (t) =


umin,
umax,
pi(t),

i f
i f
i f

pi(t) < umin
pi(t) > umax
umin ≤ pi(t) ≤ umax

(39)

where P = [p1(t), p2(t), · · · , pn(t)]
T = −R−1

3
(
BTλ∗(t)

)
.

5. Simulation Experiment and Analysis
5.1. Experiment Setup

This section conducts numerical experiments to demonstrate the efficacy of the pro-
posed cooperative control method of the CAVs’ platoon system. The platoon under consid-
eration comprises eight CAVs, wherein one serves as the leading CAV, denoted as (i = 0),
while the remaining seven function as following CAVs. The movement of the leading
CAV in the experiment has been extrapolated from NGSIM field data [35], as depicted
in Figure 3. This dataset encompasses a four-minute record with a resolution 0.1 s of the
vehicle trajectories gathered along the eastbound I-80 route in Emeryville, San Francisco,
California. A consistent time headway of 1 s was employed across the entire platoon
in order to mitigate any disparities in the controller transient response, thus facilitating
a uniform traffic flow. The initial conditions for the numerical experiments were set as
follows: the initial acceleration ai(0) was 0 m/s2, and the initial speed vi(0) was 25 m/s for
all the CAVs in the platoon; the safe distance s f of CAV i to the predecessor CAV i-1 was set
to 10 m; The sampling time was set to τ = 0.1 s; according to the numerical experiment in
Ploeg et al., the measurement noise of the sensors were set to σs = 0.17 and σv = 0.13 [36];
the vehicle acceleration range was set to [−5 m/s2, 3 m/s2]; the maximum speed limit vmax
on the highway was set to 120 km/h.

Figure 3. Acceleration of the leading vehicle.
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5.2. Experimental Results and Analysis
5.2.1. Control Decisions and Performance of Each CAV in the Platoon

This section is dedicated to the evaluation of the control decisions and the perfor-
mance of an individual CAV within the platoon stream. Figure 4 serves as an illustrative
representation of the control decisions and performance of a single CAV operating within
the platoon. To facilitate a meaningful comparison between different scenarios, Figure 4
incorporates three distinct curves, each of which represents a unique case. In Case 1, we
considered an ideal condition where the platoon state data remained unaffected by any
measurement errors. The red dotted line in Figure 4 corresponds to this scenario. In Case 2,
we introduced the influence of measurement errors originating from the onboard sensor,
thereby reflecting a more realistic scenario. The pink solid line in Figure 4 illustrates the
control decisions and performance under the impact of sensor measurement errors. Case
3 represents an approach to mitigate the impact of sensor measurement errors. Here, we
applied Kalman filtering to the motion state data within the platoon formation. The filtered
data significantly reduced the adverse effects of the sensor measurement errors. The blue
solid line in Figure 4 corresponds to this scenario.

Figure 4a visually represents the control decisions for the three distinct cases, spanning
from CAV 1 to CAV 7 within the platoon. It is evident that the control decisions for the CAV
1 remained relatively consistent across all three conditions. However, as we observed the
accumulation of measurement errors, the disparity in the control decisions between Case 1
and Case 3 remained small, while the oscillation range of the control decisions in Case 3
noticeably expanded. This observation underscores the adverse impact of cumulative error
effects on the control of trailing CAVs within the platoon stream. Notably, a significant
acceleration error tended to introduce instability into the platoon’s control. Figure 4b offers
a comparative analysis of the deviation from the equilibrium distance for the three different
cases. It is discernible that the deviation from the equilibrium distance between Case 2
and Case 1 was more pronounced than the deviation observed between Case 3 and Case 1.
This disparity emphasizes that the presence of measurement errors, as depicted in Case
2, leads to a greater deviation from the desired equilibrium distance, thereby adversely
affecting platoon stability. Furthermore, Figure 4c illustrates the relative speed between
the three cases. Here, we again note that the relative speed difference between Case 2 and
Case 1 was more significant than that observed between Case 3 and Case 1. This finding
further accentuates the influence of measurement errors, particularly in Case 2, where
a higher relative speed deviation posed challenges to the platoon control. In summary,
Figure 4 provides valuable insights into the impact of the measurement errors on the control
decisions, equilibrium distance, and relative speed within the CAV platoon. These findings
underscore the importance of our proposed algorithm in mitigating the adverse effects of
sensor measurement errors and enhancing the stability of CAV platoons.

C
A

V
1

Figure 4. Cont.
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Figure 4. Control decisions and performance of a single CAV in the platoon: (a) control decisions;
(b) deviation-from-equilibrium distance; (c) relative speed.



Sensors 2023, 23, 9006 15 of 19

5.2.2. Control Decisions and Performance of the CAV Platoon Stream

This section is dedicated to a comprehensive comparison of the control decisions
and control performance outcomes within the CAV platoon stream. Figure 5 showcases
the optimal control decisions for the following vehicles in the CAV platoon, which were
estimated using the proposed method. As shown in Figure 5a, we delved into the estimated
control decisions influenced by measurement errors. Notably, the control decisions for the
CAV 1 exhibited a marginally reduced oscillation amplitude when compared to the leading
vehicle. However, as we progressed through the subsequent trailing CAVs, it became
evident that they manifested slightly larger oscillation amplitudes in their optimal control
decisions relative to their preceding vehicles. Transitioning to Figure 5b, we observed that
the estimated control decisions underwent Kalman filtering to mitigate the impact of sensor
measurement inaccuracies. Here, the amplitudes of the control decisions for the subsequent
CAVs exhibited a progressive reduction relative to that of the CAV 1. This signified a
gradual attenuation of the traffic oscillations as we moved from the lead to the rear of the
platoon stream. Furthermore, the effectiveness of our cooperative control approach became
particularly evident when examining instances of sudden acceleration or deceleration
maneuvers, as observed at 70 s, 110 s, 140 s, and 190 s. During these intervals, a noticeable
reduction in the acceleration magnitude was observed in the subsequent vehicles. This
observation underscores the capability of our proposed approach to significantly enhance
ride comfort within the CAV platoon.

(a) (b)

Figure 5. Optimal control decisions of the following CAVs: (a) affected by sensor measurement errors;
(b) eliminating sensor measurement errors with Kalman filtering.

Figure 6 serves as an illustrative representation of the optimal equilibrium spacing
and speed of the trailing vehicles within the CAV platoon. As shown in Figure 6a,c, we
scrutinized the scenarios where the Kalman filter was not employed to eliminate measure-
ment errors. Here, we observed a sequential increase in the oscillations of the equilibrium
spacing and speed among the following vehicles within the platoon. This notable trend
underscores the adverse impact of measurement errors on the control strategy, thus result-
ing in suboptimal control performance within the CAV platoon system. Conversely, when
we introduced the application of the Kalman filter to mitigate measurement inaccuracies,
as demonstrated in Figure 6b,d, the outcome was strikingly different. The effectiveness
of the Kalman filter became apparent, as it efficiently suppressed oscillations in both the
optimal equilibrium distances and speeds among the following vehicles in the platoon.
This outcome highlights the pivotal role played by the Kalman filter in enhancing the
robustness and stability of the control strategy, thereby ultimately leading to improved
control performance within the CAV platoon.
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(a) (b)

(c) (d)

Figure 6. Optimal equilibrium spacing and speed of the following CAVs: (a) equilibrium distance
affected by sensor measurement errors; (b) equilibrium distance unaffected by measurement errors;
(c) speed affected by sensor measurement errors; (d) speed unaffected by measurement errors.

Figure 7 offers a detailed representation of the control performance associated with
deviations from the equilibrium spacing and relative speed, which is a crucial aspect gov-
erned by the cooperative control strategy implemented within the CAV platoon system
introduced in this study. As shown in Figure 7a, we scrutinized the deviation-from-
equilibrium distance for the trailing CAVs. Notably, the amplitude of oscillation in the
deviation-from-equilibrium distance gradually diminished as one progressed from the
leading vehicle towards the rear of the platoon. This gradual reduction culminated in the
oscillation curve of the seventh following vehicle converging towards a value of zero. As
shown in Figure 7b, we delved into the relative speed between each following vehicle
and its preceding counterpart. Here again, we observed a consistent trend of diminishing
oscillation amplitudes as we traversed from the leading end to the trailing end of the
platoon. This trend suggests a convergence of the motion state within the CAV platoon
towards a state of equilibrium. Of noteworthy significance is the robustness of this con-
vergence, even in scenarios where real-world disturbances were introduced, such as the
relatively extreme driving maneuvers undertaken by the lead vehicle at 70 s, 110 s, and
140 s. Despite these challenging events causing observable oscillations in the motion state
of the CAV platoon, they swiftly stabilized and returned to equilibrium conditions. The
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simulation results in Figure 7 also validate the core proposition put forth in this paper, as
expressed by Equations (1) and (2), wherein the equilibrium distance and the ideal safe
distance ultimately converge. In conclusion, the methodology presented in this paper
enables the effective coordination of following vehicles within the CAV platoon system,
thereby facilitating seamless deceleration and acceleration actions. By doing so, it efficiently
mitigates oscillations in the operation of the convoy, thereby ensuring the overall stability
and reliability of the CAV platoon.

(a) (b)

Figure 7. Control performance of CAV platoon: (a) deviation-from-equilibrium distance; (b) relative
speed.

6. Conclusions

This paper has demonstrated the cumulative impact of measurement errors in ve-
hicular sensors. It has established a mathematical model for CAV platoon operation that
takes into account the measurement errors. Building upon this foundation, it has utilized
Kalman filtering to mitigate the adverse effects of measurement errors and proposed an
optimal control decision method for CAV platoons. Furthermore, it has transformed the
problem into a two-point boundary-value problem to obtain a unique solution. Simulation
results demonstrate that the cooperative control method proposed in this paper effectively
coordinated the behavior of following vehicles within the platoon. It enabled smooth
acceleration and deceleration, eliminated traffic oscillations in the convoy, and ensured the
stability and comfort of the CAV platoon.

The study has primarily addressed the perspective of measurement errors in vehicular
sensors. In future investigations, it will be imperative to adopt a more comprehensive
approach that accounts for the influence of factors such as vehicular communication latency,
vehicle actuator delay, computational latency, and others on cooperative control. This holis-
tic consideration will lead to the development of a more realistic model for CACC in CAV
platoons, thereby ultimately enhancing platoon stability in complex road environments.
Furthermore, subsequent research endeavors should focus on the computational efficiency
of cooperative control algorithms, with the aim of proposing more efficient algorithms to
facilitate the practical implementation of CAV platoons.
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